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Abstract

Model predictive control is a receding horizon control policy in which a linear or quadratic program with linear constraints is
solved on-line at each sampling instance. An algorithm is developed that allows quick computation of suboptimal control moves.

The linear constraint set is approximated by an ellipsoid and a change of variables is performed so that a solution may be computed
e�ciently via bisection. The ellipsoid is rescaled on-line to reduce conservatism. This allows the implementation of model predictive
control algorithms to large scale processes using simple control hardware. # 1999 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In the late 1970s, Model Predictive Control began to
be applied in the chemical process industries. In Model
Predictive Control [1±3] (and its many variants, MPHC,
GPC, DMC, IDCOM, MMC), the control objective is
optimized on-line subject to the constraints. A linear
program (LP) or quadratic program (QP) is solved at
each sampling instance. These optimization problems
can be large (1000 variables and 2000 or more con-
straints for a process with 200 manipulated variables
and a control horizon of ®ve).
Even today, there are applications for which the

computational expense associated with solving the LP
or QP on-line can be inconvenient. Control hardware in
industrial environments is often not state-of-the-art, and
in some cases is over a decade old. There are many
industrial processes for which it is desirable to have the
advantages of advanced control, but for which the time
and expense of installing modern control hardware is
not justi®ed. Even if modern control hardware is avail-
able, reducing the computations associated with the
control algorithm can free up resources to provide more
¯exibility in the control algorithm (e.g. to take non-
linearities or model uncertainties into account), and to
implement other algorithms (e.g. on-line identi®cation,
fault detection and isolation, data reconciliation).

As an example, a control algorithm implemented on
an industrial-scale adhesive coater was much less
expensive and provided performance similar to a
model predictive control algorithm that solved the QP
on-line [4]. The company engineers preferred the more
reliable and easier-to-implement control algorithm as it
could be quickly migrated to other coaters within the
company.
In the past few years, several researchers have devel-

oped algorithms that quickly compute an optimal or
suboptimal solution to the linear or quadratic pro-
grams associated with model predictive control [5±8].
Much of this work was focused on application to sheet
and ®lm processes (which can have 100s±1000s of
inputs and outputs), although the algorithms that were
developed apply to more general processes. In this
manuscript, it is shown how to compute a fast sub-
optimal solution to generic QP-based model predictive
control problems.

2. Algorithm

The proposed algorithm, called the iterated ellipsoid
(IE) algorithm, consists of two parts. The ®rst set of
computations is performed o�-line. The linear con-
straint set is approximated by an ellipsoid, and a change
of variables is performed to give the problem a simpler
structure. The second set of computations is per-
formed on-line. It e�ciently computes a suboptimal
solution via bisection and rescales the ellipsoid to reduce
conservatism.
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2.1. O�-line computation

Model Predictive Control (MPC) typically consist of
multiple computational steps, for example, model pre-
diction, state estimation, and control computation [1±3].
This paper will focus on the computation of the control
moves, as this is the most computationally expensive
step in an MPC algorithm. The control move computa-
tion for the most popular formulations of MPC can be
written as a linearly constrained quadratic program
(QP):

min
Fz4q

Hzÿ ck k22 �1�

where it is assumed that H has full column rank. The
linear constraints Fz4q form a bounded convex poly-
tope. It is assumed that any pure equality constraints
have been removed by rede®ning the manipulated vari-
ables, so that the polytope has an interior. To e�ciently
compute a suboptimal solution to (1), the linear con-
straints will be approximated by an ellipsoid. This
approximation is performed o�-line as follows. We
compute the ellipsoid of maximal volume which is
completely contained within the polytope de®ned by the
linear constraints. An ellipsoid E is de®ned by

E � z z � By� d; yTy41
�� 	� �2�

where d is a vector that de®nes the center of the ellipsoid
and B is a symmetric positive de®nite matrix that
de®nes the semi-axes of the ellipsoid. Finding the largest
(maximal volume) ellipsoid which is completely con-
tained within the polytope Fz4q is a convex optimiza-
tion problem [9]:

max
B;d

log det�B� �3�

subject to the constraints

B � BT > 0 �4�

BFik k � FT
i d4qi; 8i 2 �1;L� �5�

where FT
i is a row vector corresponding to the ith row of

F, qi is the ith element of q, and L is the number of ele-
ments in q. This optimization problem can be solved in
polynomial time by interior point methods [10].
We will now write the ellipsoid in (2) in an equivalent

form. Solving for y in (2) and inserting this into the
constraint yTy41 gives

�Bÿ1�zÿ d��T�Bÿ1�zÿ d��41: �6�

Rearranging shows that the ellipsoid (2) is equivalent to

E � z �zÿ dTBÿ2�zÿ d�41
�� 	

:
� �7�

The QP (1) with the linear constraints replaced by the
ellipsoid constraint is now in the form

min
�zÿd�TBÿ2�zÿd�4�

Hzÿ ck k22 �8�

where � > 0 is a scaling parameter which is optimized
online to minimize conservatism. The QP (8) is equiva-
lent to

min
x�
TBÿ2x�4�

Hx� ÿ b


 

2

2
�9�

where x� � zÿ d and b � cÿHd. Now de®ne x � Bÿ1x�.
This gives

min
xTxÿ�40

xTATAxÿ 2bTAx� bTb � min
g�x�40

f�x� �10�

where A � HB has full column rank.
To summarize, the general linear constraints in (1)

were approximated with an ellipsoid and the problem
was converted to an equivalent form (10) with simpler
structure via a change of variables.

2.2. On-line computation

The functions f�x� and g�x� in (10) are convex and
continuously di�erentiable with respect to x for all x,
and x � 0 is a feasible point. Thus a necessary and suf-
®cient condition for x̂ to be the global solution of (10) is
that there exists a Lagrange multiplier l50 which
satis®es

1. lg�x̂� � 0; and
2. rx�x̂TATAx̂ÿ 2bTAx̂� bTb� � lrx�x̂Tx̂ÿ �� � 0.

First consider the case where l � 0. Then the solution
to the constrained optimization problem is equal to the
solution of the unconstrained optimization problem and
is calculated from condition 2 to give

x̂u � �ATA�ÿ1ATb; �11�

where the matrix �ATA�ÿ1AT is calculated once o�-line
and stored for use here. The ®rst step of the IE algo-
rithm is to compute this unconstrained solution. Next, it
is checked against a linear transformation of the origi-
nal constraints in (1):

FBx̂u4qÿ Fd �12�
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where FB and qÿ Fd are calculated o�-line and stored
for use here. This transformation is done to avoid hav-
ing to perform a change of variables repetitively. If the
unconstrained solution satis®es these constraints, then it
is implemented.
If the unconstrained solution violates the constraints,

it follows that one or more constraints are active, and a
global solution x̂ to (10) must satisfy the following three
conditions:

1. l > 0;
2. x̂

T
x̂ � �; and,

3. 2ATAx̂ÿ 2ATb� 2lx̂ � 0

Solve for x̂ in the third equation to give

x̂�l� � �ATA� lI�ÿ1ATb; �13�

substitute into the second, and de®ne the function h�l�
which satis®es the equation

h�l� � x̂�l�Tx̂�l� � �: �14�

The function h�l� is strictly monotonically decreasing in
l, and there exists a unique ®nite l > 0 which satis®es
h�l� � �. Further, this l may be determined by bisection.
The vector x̂�l� [and the function h�l�] may be com-

puted very e�ciently by taking advantage of the fact
that the matrix ATA has the following SVD decom-
position

ATA � VRVT; �15�

where V is a unitary matrix and Ris a diagonal matrix
containing the singular values of ATA. Thus

x̂�l� � V�R� lI�ÿ1VTATb; �16�

where the matrix VTAT was computed once o�-line for
use here. The vector �VTAT�b is computed once for each
control move to be implemented and each element of
this vector is divided by the corresponding diagonal
element of R� lI. The vector x̂�l� is then computed by a
single matrix±vector multiplication.
When x̂ in (11) does not satisfy the constraint set,

then an optimal solution to (1) must have one or more
of its constraints active. Thus, if the solution obtained
from (13) does not have an active constraint then the
scaling parameter � is adjusted and the process of sol-
ving (14) is repeated until a solution is obtained which
has an active constraint.
Using a result from [9], it can be shown that � 2 �1; ���,

where

�� � min n2; x̂Tu x̂u
n o

�17�

where x̂u is the unconstrained solution given in (11).
Using a result given in [11], this lower bound on �� can
be tightened to

�� � min n; x̂Tu x̂u
n o

�18�

when the polytope is symmetric. The case � � 1 de®nes
an ellipsoid completely enclosed by the polytope
Fz4q. The case � � n2 (� � n if the ellipsoid is sym-
metric) de®nes an ellipsoid completely enclosing the
polytope Fz4q. These bounds imply that the � which
makes the constraints active also can be computed by
bisection.
In summary, the on-line computation consists of an

inner loop and an outer loop for each constrained con-
trol move to be computed. The inner loop ®nds the l
which makes h�l� � � for a given � via bisection and
requires nothing more expensive than a matrix-vector
multiplication at each step. The outer loop ®nds, via
bisection, the � which makes the constraints active. The
constraints are checked in the outer loop, which
requires a single matrix±vector multiplication.
The IE algorithm is not a standard ellipsoidal algo-

rithm [12], since B in (2) is computed only once. Stan-
dard ellipsoidal algorithms recompute a new ellipsoid
that encloses the optimal solution at each step Ð this is
at a higher computational cost relative to the IE algo-
rithm which only rescales the ellipsoid at each step. The
IE algorithm may be interpreted as a penalty function
approach with a time varying weight on the control
action [13]. The penalty function approach computes
the solution to an unconstrained optimization problem,
but ensures feasibility to the original optimization pro-
blem by penalizing the control action in the objective
function until the constraints are satis®ed. In our case,
this is accomplished by a variable penalty term and a
constant weighting matrix de®ned by the orientation of
a well-chosen ellipsoid.
Standard ellipsoidal algorithms [12] are much slower

than the fastest interior point algorithms [10], which
have cubic growth in the number of ¯ops as a function
of problem size. For the standard MPC formulation,
this is O��nm�3�, where m is the control horizon and n is
the number of manipulated variables [7]. In contrast,
the IE algorithm's most expensive step is a matrix±vec-
tor multiplication, which has quadratic growth
O��nm�2� as a function of problem size. The structured
interior point method of [7] is O�m�n� 2ns�3�, where ns
is the number of states of the system. Hence the IE
algorithm will be faster than the structured interior
point algorithm for problems with large numbers of
manipulated variables, but will perform more slowly for
problems with very long control horizons.
The performance of the IE algorithm can be monitored

on-line. A lower bound to the optimal QP objective (1) is
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obtained by solving (13) and (14) for �� de®ned in (17)
and (18). For the same past history, the solution to the
IE algorithm gives an upper bound for the QP objective
(1). The di�erence between the lower and upper bounds
provides an upper bound on the conservatism of the IE
algorithm.

3. Simulation examples

This section will illustrate the properties of the iter-
ated ellipsoid (IE) algorithm via simulation examples.
The performance of the IE algorithm is compared to
quadratic programming (QP) and to two recently pro-
posed algorithms [8] Ð the Modi®ed QP (MQP) and the
Linear Approximation (LA) algorithms. These algo-
rithms were selected for simulation studies because the
MQP algorithm is the most accurate approximate MPC
algorithm to appear in the literature to date, while the
LA algorithm is the fastest approximate MPC algo-
rithm to appear in the literature to date. Comparisons
are also made to a ``fast'' exact LP [6], an approximate
LP [6], and a fast QP algorithm [7]. Simple simulation
models (simple dynamics, no measurement noise, no
model uncertainty) were selected both for brevity and to
facilitate a direct comparison of the algorithms. The
QPs generated for the QP and MQP methods in these
examples were solved using IMSL's QP solver, which
is an active set method implemented in FORTRAN
[14±16]. This QP solver was selected because it is widely
distributed, and because a detailed simulation study
indicated that the code was of comparative e�ciency to
other well-known QP solvers such as QPSOL [16]. The
IE and LA algorithms were also implemented in FOR-
TRAN. To provide a fair comparison between the IE,
QP, MQP, and IE algorithms, all algorithms were all
compiled with the same level of optimization. Also, to
provide a fair comparison, none of the implemented
algorithms were given a ``warm start'' [17] (all of the IE,
QP, and MQP algorithms' computational times could
be reduced for future sampling instances by using warm
starts).

3.1. Simpli®ed paper machine

The purpose of this example is to compare the speed
of the IE algorithm to a QP active set method [14±16]
and the MQP algorithm (the LA algorithm is the fastest
algorithm but can perform more poorly as will be
demonstrated in the next section).
Consider the Toeplitz model for the simpli®ed paper

machine model studied in [8]:

y�k� 1� � 0:6y�k� � Bu�k� � d�k� �19�

where

B � 2:5

1 0:7 0:4 0:1 0 0 . . . 0

0:7 1 0:7 0:4 0:1 0 . . . 0

..

. ..
.

0 . . . 0 0 0:1 0:4 0:7 1

266664
377775 2 Rn�n

�20�

and y�k� 2 Rn, u�k� 2 Rn. Although this model is far
too simple to describe a modern paper machine [18], it is
used here to directly compare with previous results. The
disturbance vector d�k� is equal to 2.5, 8k51. The
initial pro®le is y�0� � 0. The inputs, u�k�, are con-
strained such that ui�k�j j41, 8i, which constrains the
second-order bending moment to be less than four [4].
We consider an output horizon of p � 10 and a control
horizon of m � 5. The objective function to be mini-
mized is:

X10
i�1
�r�k� i� ÿ y�k� i k��T�r�k� i� ÿ y�k� i k������ �21�

Fig. 1 shows the solution time for this problem as a
function of problem size �n� for the IE, QP, and MQP
algorithms. The times are shown as the total computa-
tional time for control calculations performed at 10
consecutive sampling instances. The above disturbance
was scaled to have much larger magnitude so that the
constraints would be active at each sampling instance,
in which case the IE algorithm will perform at its slow-
est (since it is much faster when the unconstrained
solution is optimal), taking approximately the same
computation time at each sampling instance.
The problem is a quadratic program (QP) of size mn.

The number of ¯ops for the fastest generic algorithms

Fig. 1. On-line computation time on an UltraSparc 143 MHz as a

function of problem size for 10 sampling times for a disturbance in

which the constraints were active at each sampling instance. QP (*), IE

(+), and MQP (o).
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for solving the QP is O��mn�3� [10]. The MQP algorithm
solves a quadratic program of size n instead of mn by
assuming that inputs u�k� 1�; . . . ; u�k�mÿ 1� are
unconstrained. Thus the computational cost for the
fastest MQP algorithm is O�n3� ¯ops. The IE algorithm
solves a problem of size mn by approximating the poly-
topic constraint set as an ellipsoid (see the Algorithm
section). The IE algorithm's most expensive step is a
matrix±vector multiplication, whose cost is O��mn�2�
¯ops.
The order of the computational requirements for each

algorithm can be estimated from the slope of its line in
Fig. 1. The slope for both QP algorithms is approxi-
mately 3.2 while the slope for the IE algorithm is 2.0.
Thus, for large scale problems, the lower order of the
IE algorithm makes it faster than the MQP and QP
algorithms.
Fig. 2 and 3 compare the closed loop performance of

the algorithms. Measurement noise and model uncer-
tainty were not included in the simulation to facilitate this
comparison. The plot of the outputs shows that the QP
performs better than the IE algorithm at the ®rst time step
(a standard deviation of 0.0565 rather than 0.0512) but
after that, both algorithms achieve perfect disturbance
rejection. The MQP algorithm achieves performance
very similar to the QP solution in simulations in [8].

On the other hand, the IE algorithm provides a
noticeably smoother series of input vectors (see Fig. 3).
This can be an advantage in many practical applications
for which a `sawtooth' input vector is undesirable (e.g. it
may result in excessive wear to a slice lip).
Although a direct comparison of the IE algorithm

with the fast LP-based approach of [6] is like comparing
apples and oranges since di�erent objective functions
are used, here we compare the solution times for the two
algorithms. Based on the FFT, MM, and TFFTdp
benchmarks (see www.netlib.org/performance), the HP
9000 J210 2-processor workstation used in [6] is
approximately 1.5 times as fast as the single processor
Sun Ultra 1 workstation used to perform these simula-
tions. Since the control horizon is 5, the number of
decision variables for our 100 actuator case is 500, in
which case the IE algorithm took 16/10=1.6 CPU s per
sampling instance. The fastest time to compute the exact
LP solution to a simpli®ed paper machine control pro-
blem with 439 manipulated variables and a control
horizon of one in [6] was 4.95 CPU s, which was for a
V-shaped disturbance (second to last column in Table 6
in [6]). After scaling for computer speed and the number
of decision variables, we estimate that the IE algorithm
would require 20% of the computational time of the
fast exact LP algorithm if run on the same computer

Fig. 2. Output pro®les for the QP and IE algorithms: t=1(�), t=2(+), t=3(o), t=4(*).
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and same problem. Ref. [6] also describes an approx-
imate LP algorithm (called the Vertex LP in Tables 5±8
of [6]) whose solution times are less than 4.91 CPU s for
all disturbances considered. After scaling for computer
speed and the number of decision variables, we estimate
that the IE algorithm would require 20% of the com-
putation time of the approximate LP algorithm if run
on the same computer and same problem. Note that the
exact and approximate LP algorithms of [6] explicitly
exploit structure in the plant interactions matrix in sol-
ving the optimization problem, while the IE algorithm
does not. Another consideration that should be stressed
in the comparison is that the exact fast LP algorithm
provides a global solution, while the IE algorithm com-
putes a suboptimal solution.
Based on the FFT and TFFTdp benchmarks, the

Alphastation 250 used by [7] is roughly 1.8 times as fast
as the Sun Ultra 1. Rao et al studied a 100�100 process
with bound constraints on the input with a control
horizon of 10. This gives the same number of decision
variables as the paper machine example with 200
actuators (since we consider a control horizon of 5). To
solve the on-line MPC optimization problem using Rao
et al.'s sparse structured interior point (SSIP) method

took 43.8 CPU s [7]. For the IE algorithm to solve a
problem with the same number of decision variables
took 52/10=5.2 CPU s for one sampling instance. Fac-
toring in the di�erence in computers, it is estimated that
the IE algorithm would take 7% of the computation
time of the SSIP method if run on the same computer
for the same paper machine example. As discussed in
the Algorithm section, the IE algorithm will be faster
for problems with large numbers of manipulated vari-
ables, while the Rao et al algorithm will be faster for
algorithms with long control horizons.
In both of the above comparisons, the authors would

like to stress that the comparisons are approximate, and
that the exact LP and the SSIP algorithms give globally
optimal solutions, while the IE algorithm gives a sub-
optimal solution.

3.2. An ill-conditioned process

This example compares the performance of the IE
algorithm to the QP and fast LA algorithms. This par-
ticular example was selected because it is a system for
which approximate MPC algorithms can perform
poorly.

Fig. 3. Manipulated variables given by the QP and IE algorithms: t=1(�), t=(+), t=3 (o), t=4 (*).
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Consider the following ill-conditioned system:

y�s� � 10

4s� 1

4 ÿ3
ÿ5 4

� �
u�s� �22�

The process condition number is 66. Both inputs are
constrained ui�k�j j41, i � 1; 2. The system is approxi-
mated by 20 step response coe�cients and a sampling
time of 1. The following tuning parameters are used (see
[8] for MPC problem formulation):

m � 5; p � 10;Cy � I;CDu � 0:1I: �23�

The setpoint is changed from (0,0) to (18,ÿ22). The
response of the system for three di�erent control algo-
rithms is shown in Fig. 4.
Although the purpose of this example was to compare

the performance of the algorithms, for completeness,
the solution times are shown in Table 1.
Zheng's LA algorithm assumes that inputs u�k�

1�; . . . ; u�k�mÿ 1� are unconstrained and then makes
a linear approximation to the QP. This gives it O�n2�
growth which is the same as for the IE algorithm.
However, the IE algorithm does a better job of approx-
imating the QP as seen in Fig. 4.
Fig. 5 shows the objective function values for the QP

and IE algorithms and the lower bound for control
horizons of 1 and 2. For a control horizon of 1, the
equality of the IE objective and the lower bound gives
an on-line indication that replacing the QP algorithm
with the IE algorithm gives no conservatism. For a
control horizon of 2, the objective function values are
similar except for the ®rst time step. The IE algorithm
actually gives a lower objective function value than the
QP algorithm at k � 2 and k � 4 (this is possible
because model predictive control is an open loop opti-
mization approach, and the computations after k � 1

have di�erent manipulated and measured variable his-
tories). For k > 1, the closeness of the IE objective and
the lower bound computed on-line indicates that the
conservatism of the IE algorithm is small. The gap
between the IE objective and the lower bound for k � 1
is caused by the high condition number of the plant
matrix in (22).
Our numerical experience is that the lower bound

tends to become more conservative as the process
directionality and/or the process dimension increases.
For example, the lower bound is too small to be useful
for the simpli®ed paper machine model, although the
closed loop performance of the IE algorithm is similar
to that of the QP algorithm.
The MQP algorithm of Zheng applied to a similar ill-

conditioned system gave performance very similar to
that obtained by the QP algorithm [8]. Existing simula-
tion examples seems to imply that the MQP algorithm is
the most accurate ``approximate QP'' algorithm to date.
As shown in the simpli®ed paper machine example, the
IE algorithm is faster than the MQP algorithm for large
scale MPC problems, but not as accurate. The LA
algorithm is the fastest ``approximate QP'' algorithm to
date. The ill-conditioned example seems to imply that the
IE algorithm is more accurate than the LA algorithm,
but not as fast. In comparison to the MQP and LA
algorithms, the IE algorithm is intermediate in both

Table 1

Solution times for the ill-conditioned MPC problem on a Sparc 20 (75

Mhz) workstation

Algorithm Solution time (s)

QP 0.016

IE 0.0053

LA 0.0049

Fig. 4. System responses for the QP, IE, and LA algorithms. QP(*),

IE (+), and LA (o).

Fig. 5. Objective function values for the QP, IE, and lower bound

(LB) for a control horizon of 1 and a control horizon of 2. QP (�), IE
(o), and LB (square).
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computational speed and accuracy for problems with a
large number of manipulated variables.

4. Conclusions

The need to solve large MPC problems quickly and
accurately motivated the development of the IE algo-
rithm. The algorithm approximates the polytopic con-
straints of the MPC QP with an ellipsoid, and then
rescales the ellipsoid to reduce conservatism. A change
of variables is performed to give an equivalent problem
with a simpler structure for which an optimal solution
can be e�ciently computed via bisection. The IE algo-
rithm is faster than the MQP and structured QP algo-
rithms for processes with large numbers of manipulated
variables, and performs better than the LA algorithm
for an ill-conditioned system.
Another application of the IE algorithm is to jump-

start a more sophisticated optimization algorithm. For
example, the manipulated variables computed from the
IE algorithm could be used as an initial guess for an
interior point algorithm [7]. The IE algorithm could also
be combined with other fast MPC algorithms, such as
the MQP algorithm [8], to form an even faster hybrid
algorithm.
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