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Abstract

An approach is proposed for the robust identification and control of batch and semibatch processes. The batch experiments used

for model identification are designed by minimizing the magnitude of the parameter uncertainties, and the effect of these

uncertainties on the product quality achievable by optimal control is used as a stopping criterion for the identification procedure.

The optimal control approach incorporates a quantification of the impact of both parameter and control implementation

uncertainties on the performance of the optimal control policy. The approach is applied to the nucleation and growth of crystals

with multiple characteristic dimensions, where the nominal parameters used in the simulation study are quantified from

experimental data.
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1. Introduction

Batch processing is used in the production of specialty

chemicals, polymers, and pharmaceuticals. Since batch

processing requires operations over a range of condi-

tions, relevant process models are highly nonlinear.

Many batch processes involve complex products, and

the lumped and distributed parameter models for these

processes have many unknown parameters that must be

identified from experimental data.
The exact identification of the parameters is impos-

sible due to unmeasured disturbances and limited and

noisy data. This motivates using model identification

techniques that quantify the accuracy of the model

parameters (Beck & Arnold, 1977; Cooley & Lee, 2001;

Featherstone, VanAntwerp & Braatz, 2000; Miller &

Rawlings, 1994). Here an identification and control

procedure for batch processes is proposed that takes

these model parameter uncertainties into account. Batch

experiments used for model identification are designed

to minimize the magnitude of the parameter uncertain-

ties quantified in the parameter estimation procedure. A

quantification of the impact of parameter and control

implementation uncertainties on the product quality is

used to decide whether more experiments are needed to

obtain a higher accuracy model which can result in more

accurate predictions of the product quality, and to

define the performance objectives for the lower level

feedback control loops that implement the optimal

control policy. The objective of the optimal control

formulation is to compute the control policy that

optimizes the worst-case product quality. The robust

identification and control procedure is applicable to the

design of finite-time optimal control policies for non-

linear lumped and distributed parameter systems, in-

cluding both batch and semibatch operations. The

approach is evaluated through application to the

nucleation and growth of crystals with multiple char-

acteristic dimensions, where the nominal parameters

used in the simulation study are quantified from

experimental data.

The next section provides background on the classical

approach to the identification and control of batch

processes. It is discussed how the classical approach

does not adequately address model uncertainty. This is
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followed by an approach that incorporates the para-

meter uncertainty description produced by the model

identification procedure to design the optimal control

policy to be robust to model and control implementa-
tion uncertainties. The approach is demonstrated for the

nucleation and growth of crystals with two character-

istic dimensions from aqueous solution.

2. Background: the classical approach

The following formulation of the batch identification

and control problems will be referred to as the classical

approach, since it has been extensively studied and

applied for nearly three decades.

2.1. Iterative process of model identification

Model identification is an iterative procedure. The

first batch experiment is either designed using engineer-

ing judgment on how to excite the dynamics of the

system, or is computed using initial estimates of the

kinetic parameters. Improved parameter estimates and

an associated confidence region are computed from the

dynamic data collected from the experiment. The
parameter and uncertainty information is used to design

the next laboratory experiment (Atkinson & Donev,

1992; Beck & Arnold, 1977; Blau, Klimpel & Steiner,

1972; Reilly, Bajramovic, Blau, Branson & Sauerhoff,

1977; Reilly & Blau, 1974). Parameter estimates ob-

tained from this procedure can be much more accurate

than estimates obtained without using optimal model-

based experimental design. Once the model parameters
are considered to be accurate enough, the simulation

model is used by a dynamic optimization algorithm to

compute the batch control policy, which can include

initial conditions and physical design variables as well as

the manipulated variables and setpoints to lower level

feedback control loops. The relationships between

parameter estimation, optimal experimental design,

and batch optimal control are illustrated in Fig. 1. The
selection between several hypothesized models can be

incorporated into this procedure as well (Blau et al.,

1972; Gunawan, Ma, Fujiwara & Braatz, 2002; Mat-

thews & Rawlings, 1998); for brevity this is not

discussed here.

2.2. Parameter estimation

Let u be the vector of model parameters to be

determined from experiments. A common formulation

for the parameter estimation problem is to minimize:

F(u)�
XNm

i�1

XNdi

j�1

wij(yij� ỹij(u))2 (1)

where yij and ỹij are the measurement and model

simulation prediction of the i th measured variable at

the jth sampling instant, wij is a weighting factor, Nm is

the number of measured variables, and Ndi
is the

number of sampling instances for the ith measurement.

The weights are selected to take the magnitude of the

noise for each measurement into account, where larger

weights are used for more accurate measurements.

Maximum likelihood estimation selects the weights

based on the standard deviation of the noise for each

measurement (Beck & Arnold, 1977).

The parameter estimates are stochastic variables
whose joint distribution can be estimated along with a

hyperellipsoidal confidence region that quantifies the

accuracy of the parameters:

Eu�fu:(u� û)T V�1
u (u� û)5x2

Np
(a)g (2)

where a is the confidence level, Np is the number of

parameters, x2
Np

is the chi-squared distribution with Np

degrees of freedom, and the parameter covariance
matrix Vu can be estimated using sensitivity equations

(Caracotsios & Stewart, 1985; Feehery, Tolsma &

Barton, 1997; Li, Petzold & Zhu, 2000) or by using

Monte Carlo simulations (Bard, 1974; Featherstone &

Braatz, 1998).

It is common in real applications for the matrix Vu to

have a large condition number. In this case, computing

the matrix Vu using sensitivity equations requires the
inversion of an ill-conditioned matrix (Beck & Arnold,

1977). Even with double-precision arithmetic, the nu-

merical roundoff errors associated with this matrix

inversion step can be large. In this situation it is best

to use Monte Carlo simulations to estimate Vu or to

directly estimate Eu . Monte Carlo simulations avoid the

matrix inversion step which causes numerical difficulties

for ill-conditioned systems, but involve multiple para-
meter estimation calculations, which are more compu-

tationally expensive.

2.3. Optimal model-based experimental design

Classical model-based experimental design computes

the experimental conditions that minimize the volume of

the hyperellipsoid Eq. (2), which is equivalent to

minimizing (Atkinson & Donev, 1992; Beck & Arnold,

1977):

C(u(t))�det(Vu) (3)

where Vu is the covariance matrix based on the

simulation model and current and past data. In Eq.

(3), u is the vector of experimental design variables,
which can include fixed variables, initial conditions, and

functions of time t . This minimization is subject to all

experimental constraints u (t) � /Vexp where constraints
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on the states are included by parameterizing the state

variables in terms of u (t).

2.4. Optimal control

The batch optimal control problem is formulated as:

min
u(t)�Vcontrol

Y(u(t)) (4)

where Y is some desired performance objective at the

end of the batch computed from the simulation model,

and u (t ) contains all variables that can be optimized

during batch operations, including initial conditions,

manipulated variables, setpoints to lower level feedback

control loops, and equipment specifications (e.g. vo-

lume, number of units, etc.). The performance objective
is typically in terms of a product quality variable such as

purity, or can be a monetary objective such as profit or a

weighted sum of several product quality and economic

variables. The constraints Vcontrol ensure that the

optimal control policy u (t) can be implemented in

practice. While many techniques have been proposed

for computing the solution to the optimal control

problem, probably the most common approach is using
sequential quadratic programming that iteratively calls

the batch simulation model (e.g. see discussion by

Feehery & Barton, 1999 and references cited therein).

3. Robust identification and control

3.1. Critique on the classical approach

There are several drawbacks to the classical approach

for batch identification and control. First, the stopping

criterion for determining whether the model parameters

are sufficiently accurate is not directly linked to the

accuracy of the performance objective computed by the

simulation model. Hence the assessment of whether the

model is sufficiently accurate is based on engineering
guesswork rather than a rigorous assessment in terms of

the main purpose of the batch identification procedure,

which is to produce a simulation model able to

accurately predict the performance objective which is

to be optimized by the optimal control algorithm.

Second, when computing the optimal control policy

the classical approach does not take into account the

parameter uncertainty Eu identified in the parameter
estimation step. While it is common to run a few

simulations with different model parameter values, this

does not take into account the correlations in the model

parameter uncertainties that are common in practical

problems. A limited number of simulations may not

locate a critical combination of parameter uncertainties

that has a significant effect on the performance objec-

tive. Third, the classical approach ignores control
implementation uncertainties, that is, that the optimal

control policy cannot be implemented exactly due to

disturbances, nonminimum phase behavior, and mea-

Fig. 1. Iterative process of model identification: u represents all experimental design variables (e.g. initial conditions, temperature profile), y

represents the measurements (e.g. solute concentration), û is the vector of estimated kinetic parameters, Eu is a confidence region for the parameters,

û is the optimal control policy, and Eu is the uncertainty in the implementation of the optimal control policy.
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surement noise which limits the performance of lower

level feedback control loops used to implement the

optimal control policy. Past work has shown that

control implementation uncertainties are critical for
some batch processes (Ma & Braatz, 2001; Ma, Chung

& Braatz, 1999).

3.2. Uncertainty analysis for batch processes

Addressing the aforementioned weaknesses of the

classical approach requires rigorously taking model

parameter and control implementation uncertainties

into account in the identification and control algo-
rithms. This need to address robustness of batch control

policies to model uncertainties has been recognized by a

number of researchers (e.g. see Belanger, 1966; Eaton,

Rawlings & Edgar, 1988; Ma & Braatz, 2001; Ma et al.,

1999; Miller & Rawlings, 1994; Phenix, Dinaro, Tatang,

Tester, Howard & McRae, 1998; Takamatsu, Hashi-

moto & Ohno, 1970; Visser, Srinivasan, Palanki &

Bonvin, 2000 and references cited therein).
One approach to relating model parameter uncer-

tainty to its effect on the performance objective is to fix

a perturbation of optimal performance Yopt inside some

allowable region first, then to utilize sensitivity analysis

to estimate the size of parameters’ confidence region

(Takamatsu et al., 1970). While this formulation does

not address all of the weaknesses of the classical

approach, it is especially notable given the earliness of
the contribution. Some more recent papers have focused

on developing efficient algorithms for computing the

distribution of the performance objective based on the

distribution on the parameters (see Tatang, 1995 and

references cited therein). These techniques apply to

computing distributions on any state variables, or

functions of state variables, and so can provide deep

insight into the effects of uncertainty on the dynamics of
the system. Here we focus on the effects of uncertainty

on the performance objective, since its minimization is

the goal of batch optimal control.

Here we summarize an approach that explicitly uses

the model parameter uncertainty Eu and control im-

plementation uncertainty Eu to compute bounds on the

performance objective (Ma & Braatz, 2001; Ma et al.,

1999; Matthews, 1997). More specifically, the approach
computes bounds on the performance objective for all

parameters and control policies described by the para-

meter and control implementation uncertainty sets. The

approach uses a combination of series expansions and

structured singular value analysis to quantify the worst-

case performance for the batch crystallization system.

The approach is based on the fact that an arbitrary

polynomial objective function maximized over an un-
certainty set can be written exactly as a skewed

structured singular value problem (Braatz & Russell,

1999; Braatz, Young, Doyle & Morari, 1994), and that

stability is not an issue for control problems defined

only over a finite time horizon. The analysis approach

has been applied to unidirectional crystal growth, using

experimentally determined models for the nucleation
and growth kinetics. The upper and lower bounds for

the skewed structured singular value ms for these

problems was found to be extremely tight as is typically

found when ms is used to analyze the worst-case

performance of continuous-time lumped parameter

systems. This approach provides additional information

than just using sensitivity calculations to characterize

robustness (Belanger, 1966; Caracotsios & Stewart,
1985; Eaton et al., 1988; Takamatsu et al., 1970), since

this approach computes explicit bounds on the perfor-

mance objective.

Let û(t) be the nominal control policy, and du(t) and

du represent the perturbations around nominal values

û(t) and û; respectively. Then the worst-case perfor-

mance is:

Ymax(û(t))� max
du �Eu

du(t) �Eu

Y(û(t)�du(t); û�du) (5)

The parameter uncertainty set Eu is determined from

the parameter estimation algorithm, while the control

implementation uncertainty set Eu is determined from

an analysis of the disturbances and achievable perfor-

mance for the feedback controllers that implement the
optimal control policy.

3.3. Robust optimal identification and control

The aforementioned analysis tools provide a quantifi-

able link between the model parameter and control

implementation uncertainties and their effect on the

performance objective for batch optimization. These
analysis tools can be used to modify the classical

approach to remove the weaknesses described in Section

3.1.

First, the analysis tools provide a criterion for

determining whether the model parameters are suffi-

ciently accurate to stop the iterative model identification

procedure. The stopping criterion can be that the

performance objective satisfies a robustness specifica-
tion (j/Ymax/�//Y/j5/o , where o is specified by the engineer),

or that the worst-case performance objective satisfies

some specification (/Ymax/B/g , where g is specified by the

engineer). With this approach, robustness of the perfor-

mance objective is used to determine whether the model

is sufficiently accurate.

Second, the analysis tools can be used to explicitly

take into account the confidence region Eu identified
from the model identification procedure in the subse-

quent batch optimal control formulation. This approach

replaces the nominal performance objective with the
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worst-case performance objective:

min
û(t)�Vcontrol

Ymax(û(t)) (6)

This min�/max formulation is a direct generalization

of the robust control design formulations used for linear
and weakly nonlinear lumped parameter systems (Mor-

ari & Zafiriou, 1989; Skogestad & Postlethwaite, 1996;

VanAntwerp & Braatz, 2000; Zhou, Doyle & Glover,

1995) to highly nonlinear lumped and distributed

parameter systems.

Third, control implementation uncertainties is directly

included in the robust optimal control formulation,

since the analysis tools handle both control implementa-
tion and model parameter uncertainties. This allows the

effect of disturbances on the performance objective to be

quantified, so that it can be determined whether it is

worthwhile to design the batch process and its control

system to further reduce disturbances.

The next section will describe a case study, in which

this robust identification and control approach is

implemented.

4. Case study: industrial crystallization

Advances in sensor technology and increased global

competition have motivated recent activity on the batch
control of industrial crystallization processes (see

Braatz, 2002; Rawlings, Miller & Witkowski, 1993 and

references cited therein). For crystals of organic mole-

cules it is common for the growth rate to be different for

different faces, which leads to needle-like crystals or

other shapes (Ma, Tafti & Braatz, 2002; Ma, Braatz &

Tafti, 2002; Matthews & Rawlings, 1998). While hy-

pothesis mechanisms provide expressions for the ki-
netics for most crystallization kinetic phenomena

(Nyvlt, Sohnel, Matuchova & Broul, 1985; O’Hara &

Reid, 1973; Randolph & Larson, 1988), the parameters

in these expressions must be estimated experimentally.

4.1. Process model

The distribution in crystal dimensions and other state

variables can be modeled using a population balance

equation (Hulburt & Katz, 1964; Randolph & Larson,

1988). Here the model equations are written for a batch

crystallization process in which the crystals are char-

acterized by two characteristic dimensions, r1 and r2.

This type of model is appropriate for rod-like crystals,
for example Ma and Braatz (2001). It is assumed that

nucleation and growth are the dominant kinetic pro-

cesses. The driving force for the kinetics of these

processes is the relative supersaturation:

S�(C�Csat)=Csat (7)

where, C is the solute concentration and Csat is the

equilibrium solute concentration. Let f(r1, r2, t) be the

crystal size distribution function:

f (r1; r2; t)dr1dr2

�the number of particles in the system in the range r1

9dr1=2 and r29dr2=2 at time t

(8)

The volume of the batch crystallizer is assumed to be
constant throughout any given experiment and spatial

nonuniformity in the crystallizer is assumed to be

negligible.

With size-independent growth rate along each dimen-

sion and nucleated crystals of negligible size, the

material balance for the crystals is described by the

population balance equation:

@f

@t
�G1

@f

@r1

�G2

@f

@r2

�B(C; T)d(r1)d(r2) (9)

where G1 and G2 are the growth rates in the r1 and r2

dimensions, B is the nucleation rate, and d ( �/) is the

Dirac delta function.
The method of moments replaces the population

balance equation with a small number of ordinary

differential equations (Hulburt & Katz, 1964):

dm00

dt
�B

dmij

dt
� iG1m(i�1)j� jG2mi(j�1); i� j�0

(10)

where, the ij cross-moment is:

mij �g
�

0 g
�

0

ri
1r

j
2 f (r1; r2; t)dr1dr2: (11)

It is assumed that seed crystals are initially present in

the crystallizer, and the cross-moments at t�/0 are

computed from the seed distribution. The model de-
scription is completed by an expression for the equili-

brium solute concentration as a function of temperature

(given by Togkalidou, Fujiwara, Patel & Braatz, 2001),

expressions for the nucleation and growth kinetics, and

a material balance on the solute.

4.2. Parameter estimation problem

The most widely adopted kinetic models are in power

law form (Nyvlt et al., 1985):

B�kbSbm21 (12)

G1�kg1Sg1 (13)

G2�kg2Sg2 (14)

where, S is the relative supersaturation defined in (Eq.

(7)), and kb , b , kg1, g1, kg2, and g2 are kinetic

parameters. Hence the vector of model parameters is:
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u�

g1

kg1

g2

kg2

b

kb

2
6666664

3
7777775
: (15)

Three additional parameters, the activation energies

for nucleation and the two growth axes, are required
when there are significant temperature variations.

4.3. Optimal experimental design problem

For the two-dimensional crystallization process con-

sidered here, u represents the temperature and seed

characteristics, where the seed is characterized by its

initial mass Mseed , two mean characteristic lengths r̄1

and r̄2; and the percentage widths W1 and W2 (see Fig.

2). The temperature must stay within the operating

range of the crystallizer. The experimental design
constraints are listed in Table 1.

4.4. Optimal control problem

In a well-mixed batch seeded crystallizer, the final

crystal product is determined by the supersaturation

profile, the initial seed mass, and the seed crystal size

distribution. In this paper, we only consider the case

where supersaturation is created by reducing the tem-

perature T (t), although other methods of achieving

supersaturation such as antisolvent addition (Charmo-

lue & Rousseau, 1991) can be formulated in a similar
manner. Hence the optimal control variables are the

mass, mean characteristic lengths, and widths of the

distribution for the seed, and the temperature profile.

The classical optimal control formulation is a general-

ization of (Chung, Ma & Braatz, 1999; Miller &

Rawlings, 1994):

minimize
T(t);Mseed ;r̄1;r̄2;W1;W2

Y

subject to

g1(t)�Tmin�T(t)50
g2(t)�T(t)�Tmax50

g3(t)�
dT(t)

dt
�Rmax50

g4(t)�Rmin�
dT(t)

dt
50

g5�C(tfinal)�Cmax50

(16)

where, Y is some desired characteristic of the crystals at

the end of the batch (details below), which is computed

using the cross-moments simulation model. The tem-

perature constraints g1(t) to g4(t ) ensure that the
temperature profile stays within the operating range of

the crystallizer. The constraint g5 is the minimum yield

constraint, as the final solute concentration specifies the

amount of crystals produced. The bounds on the

temperature and rate of change of temperature (Tmin ,

Tmax , Rmin , Rmax ) and the constraints on the seed

characteristics are the same as used in the experimental

design and are given in Table 1.
Several objectives have been recommended to favor

downstream operations or product quality for one-

dimensional crystallizers (Ajinkya & Ray, 1974; Braatz

& Hasebe, 2002; Eaton & Rawlings, 1990; Jones, 1974;

Rawlings et al., 1993). These objectives can be used for

multidimensional crystallization with slight modifica-

tion. Controlling the aspect ratio of two-dimensional

crystals can be another useful optimal control objective
(Ma & Braatz, 2001). In this paper, maximizing the

average length of the crystals is selected as the objective,

which can be calculated directly from the cross-mo-

ments:

r̄2�
m01

m00

(17)

4.5. Specific system under investigation

The measurements selected for this study are solute
concentration, the first-order moments m10 and m01, and

the second-order moments m11, m20, and m02. These

moments can be measured using on-line video micro-

Fig. 2. Seed crystal size distribution: r̄1 and r̄2 are the mean

characteristic dimensions; W1 and W2 are the widths of the distribu-

tion.

Table 1

Experimental design and optimal control constraints

Minimum Maximum

Temperature (8C) 23.0 33.0

dT (t )/dt (8C/min) �/0.5 �/1.0�/10�9

Seed mass (g) 5 40

Percentage width W1 0.5 0.95

Percentage width W2 0.5 0.95
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scopy or off-line optical microscopy (Braatz, 2002;

Gunawan et al., 2002). The zeroth-order moment

cannot be measured accurately since it depends strongly

on the number of very small crystals, and the very small
crystals cannot be seen, even under an optical micro-

scope. The higher order moments cannot be measured as

accurately due to their strong dependence on the

statistics of the larger particles in solution. Hence, at

the jth sampling time the measurements are:

yj �

m10

m01

m11

m20

m02

C

2
6666664

3
7777775

j

(18)

Each measurement is assumed to have normally-

distributed noise. The variance for each measurement

was estimated from experimental data. The standard

deviation for the measurement noise for each moment at

jth sampling time was set to 10% of the measurement.

The standard deviation of the solute concentration

measurement noise was set to 0.005 g solute/g solvent,

which is reasonable for ATR-FTIR spectroscopy (Tog-
kalidou, Tung, Sun, Andrews & Braatz, 2002).

Table 2 lists the kinetic parameters for KH2PO4 in

water which were obtained experimentally in a set of

experiments similar to (Gunawan et al., 2002), and are

treated as the true values for this study. The cross-

moment equations were integrated for a batch produc-

tion run of 160 min using the LSODES solver (Hind-

marsh, 1983).
For all optimization problems, the cooling profile

T (t) was parameterized by a linear spline (Wylie &

Barrett, 1995) to reduce the infinite-dimensional non-

linear program to a finite-dimensional nonlinear pro-

gram, which was solved using sequential quadratic

programming (Zhou, Tits & Lawrence, 1998).

4.6. Results and discussion

The estimates of model parameters and their uncer-

tainties produced by applying D-optimal experimental

design are reported in Table 3. The covariance matrix

Vu that quantifies the size of the confidence ellipsoid

was computed by integrating the sensitivity equations

along with the model equations (Beck & Arnold, 1977;

Caracotsios & Stewart, 1985). Although each step in the

model identification procedure quantifies a confidence

ellipsoid around the nominal parameters and it is this

confidence ellipsoid that is used in all robustness

analysis calculations, the confidence ellipsoid for a 6-

dimensional space is difficult to interpret visually, so the

confidence intervals for each parameter are reported

instead. Each iteration of the model identification

procedure reduces the confidence intervals on each

parameter.
The seed characteristics for each experimental design

are reported in Table 4, and the corresponding tem-

perature profiles are reported in Fig. 3. The small

amount of seed in Runs 1 and 2 agrees with past

experimental design studies for one-dimensional crystal-

lization (Chung, Ma & Braatz, 2000). Large seed size

and small seed mass provides less surface area for solute

to be incorporated into crystal surfaces, which results in

a higher average supersaturation throughout the batch

runs. The temperature profiles drop rather quickly for

most of the batch runs, which also causes relatively large

supersaturation. This large supersaturation is needed to

excite the nucleation and growth processes (see Eqs.

(12)�/(14)) so that accurate kinetic parameters can be

obtained when parameter estimation is applied. The

Table 2

Kinetic parameters determined from laboratory data

Parameters Values Units

g1 1.478 Dimensionless

ln kg 1 6.596 ln (mm/min)

g2 1.741 Dimensionless

ln kg 2 8.707 ln (mm/s)

b 2.045 Dimensionless

ln kb 15.318 ln (particles per cm3 min)

Table 3

Kinetic parameters and their confidence intervals (for a�/0.95)

produced by parameter estimation

Parameters Initial

guess

Run 1 Runs 1 and 2 Runs 1, 2, and 3

g1 1.00 1.539/

0.40

1.609/0.18 1.619/0.12

ln kg 1 2.00 7.299/

2.31

6.949/1.02 6.979/0.69

g2 1.30 1.679/

0.40

1.889/0.18 1.909/0.12

ln kg 2 5.00 8.559/

2.32

9.119/1.04 9.179/0.70

b 2.00 2.809/

0.64

2.219/0.28 2.239/0.21

ln kb 10.0 20.09/

3.73

15.79/1.63 15.89/1.21

Table 4

Seed characteristics computed by model-based experimental design

Parameters Runs 1 and 2 Run 3

Mseed (g) 5.0 36.44

/r̄1 (mm) 200.0 200.0

/r̄2 (mm) 200.0 200.0

W1 0.95 0.95

W2 0.5 0.5
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seed characteristics are the same for Runs 1 and 2, and

the temperature profiles are the same for Runs 2 and 3.

Table 5 reports the optimal average length and worst-

case deviation for crystals obtained by batch optimal

control using the nominal and worst-case objectives.

Using the worst-case performance objective as the

objective in batch optimal control can produce control

policies that are more robust than provided by classical

optimal control. The robust optimal control approach

gives a worst-case deviation in the product quality that

is (40�/34)/40�/15% smaller for estimates of the para-

meters and parameter uncertainties computed from

Runs 1 and 2, and (31�/28)/31�/10% smaller for Runs

1, 2, and 3. While the improvement in robustness is not

huge for this example, it is conjectured that this benefit

will tend to increase for systems with more uncertain

model parameters and more manipulated variables

(which gives more degrees of freedom for improving

robustness of the control policies). If the stopping

criterion for the model identification procedure is that

the worst-case deviation in the product quality should

be less than 30 mm, then Run 3 would be the last batch

experiment, provided that the worst-case performance

objective is used in the batch optimal control formula-

tion.

Fig. 4 shows the optimal temperature profiles ob-

tained using the nominal and worst-case product quality

objectives. The temperature profile for the worst-case

objective is somewhat less steep for the first half of the

batch run, presumably to reduce the potential for

excessive nucleation.

5. Conclusions

A procedure was proposed for the robust identifica-

tion and control of batch and semibatch processes. The

procedure incorporates robustness analysis tools devel-

oped for finite-time control policies that are applicable

to nonlinear lumped and distributed parameter systems.

The same parameter uncertainty description is used for

identification and control, and the batch control proce-

dure can take control implementation uncertainties into

account as well. The robustness analysis also provides a

stopping criterion for determining when the iterative

model identification procedure should end.

It is well-known in the process control community

that the best way to reduce the effect of model

uncertainties is by implementing an appropriately de-

signed feedback controller. Recently we have been

working on integrating the robustness analysis tools

into robust feedback controller design for batch and

semibatch processes. A similar mathematical framework

can be applied, but with the robust optimal control

problem solved at each time instance, i.e. in a shrinking-

horizon model predictive control formulation (Eaton &

Rawlings, 1990). Alternatively, a robust optimization

problem can be formulated that directly computes the

parameters of a fixed-structure feedback controller. In

either case, the control procedure uses the same

uncertainty description that is produced by the model

identification procedure.

Fig. 3. Temperature profiles computed by model-based experimental

design: Run 1 (*/), Runs 2 and 3 (- �/ -).

Table 5

The optimal average length and worst-case deviation for crystals

obtained by batch optimal control using the nominal and worst-case

objectives

Runs 1 and 2 Runs 1, 2, and 3

Nominal Worst-case Nominal Worst-case

/r̄2 (mm) 374 371 373 371

/dr̄2 (mm) 40 34 31 28

Fig. 4. Optimal temperature profiles for the nominal (*/) and worst-

case (� � �) objectives based on a model with kinetic parameters and

uncertainty descriptions obtained by applying parameter estimation to

simulation data from Runs 1, 2, and 3.
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