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Copper electrodeposition in submicron trenches involves phenomena that span many
orders of magnitude in time and length scales. In the present work, two codes that
simulate electrochemical phenomena on different time and length scales were externally
linked. A Monte Carlo code simulated surface phenomena in order to resolve surface
roughness evolution and trench in-fill. A 2-D finite difference code simulated transport
phenomena in the diffusion boundary layer outside the trench. The continuum code passed
fluxes to the Monte Carlo code, which passed back a concentration to the continuum code.
A numerical instability that arises in the multiscale linked code was suppressed by
filtering the concentration data passed from the Monte Carlo code to the finite difference
code. The resulting simulation results were self-consistent for a sufficiently small amount
of filtering. © 2004 American Institute of Chemical Engineers AIChE J, 50: 226-240, 2004
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Introduction

Electrodeposition involves phenomena that are simulta-
neously important over a wide range of time and length scales.
For example, the current and potential distribution between
electrodes depends on heterogeneous and homogeneous reac-
tions that occur among the species that move by migration,
diffusion, and convection. At the same time, atomic-to-
nanoscale events associated with metal nucleation and growth
must be controlled to achieve the deposit properties and growth
morphologies that determine product quality. While numeri-
cally stable codes are available for modeling continuum and
noncontinuum phenomena, the linkage of such codes to form
multiscale simulations can be numerically unstable due to
temporal mismatch at the interface between the two codes. In
this work, we report on a coupled simulation model that uti-
lized a first-order filter to eliminate the numerical instability,
while at the same time maintaining self-consistency.

The shift from Al to Cu for on-chip interconnections in
microelectronic devices occurred because of the need for in-
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creased speed (Andricacos, 1999), reduced cost (Gau et al.,
2000), reduced resistivity (Harper et al., 1999), and reduced
processing temperature (Gau et al., 2000). An electrodeposition
process is used to deposit copper in submicron trenches to
fabricate interconnects. The electrochemical process requires
simultaneous control of deposit uniformity over the wafer
surface, shape evolution during trench in-fill at the submicron
scale, and nucleation/morphology at the nanoscale.

The discovery of new applications where control of events at
the nanoscale is critical to product quality is now driving the
development of interlocking multiscale design tools that bridge
both continuum and noncontinuum phenomena. Such applica-
tions are characterized by precision processing, rapid innova-
tion, and incorporation of new knowledge at different scales.
The engineering challenge associated with rapid innovation of
new products is, in part, to link understanding of molecular
events that control product quality with the events at larger
scales that also influence processing (Alkire et al., 1998). In the
case of electrodeposition of interconnects, recent fundamental
advances have been made in experimental areas (Horkans et
al., 2000; Moffatt et al., 2000; Kolb, 2002; Budevski, 2000) as
well as continuum computational methods (Moffat et al., 2001;
Merchant et al., 2000; Andricacos et al., 1998; Georgiadou et
al., 2001; Gill et al., 2001; West, 2000; Soukane et al., 2002).
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The manufacturability of these components that are formed by
electrodeposition depends critically on precise control of inter-
facial conditions during processing (Datta et al., 2000).

A multiscale electrodeposition simulation was recently re-
ported in a two-part publication (Pricer et al., 2002a,b) in
which a Monte Carlo code describing noncontinuum events
associated with surface roughness evolution was linked inter-
nally to a one-dimensional (1-D) continuum finite difference
code for describing diffusive transport. In Part I, the Monte
Carlo portion of the code simulated the molecular mechanism
for copper electrodeposition in additive-free solution, and gave
predictions of roughness evolution on an initially flat copper
surface. In Part II, the mechanistic hypothesis was extended to
include additives that follow the Kardos-Foulke blocking
mechanism, and simulations were performed in a trench ge-
ometry such as used for on-chip interconnects. This work
provided a “proof of concept” for the use of a noncontinuum
approach for simulating additive effects on morphology evo-
lution. The work was extended to a more complex 3-additive
system (Drews et al., 2003).

External linkage of multiscale codes is desirable, since im-
provements can then be made in a component code at one scale
without affecting the codes at other scales. External code
linkage has been performed recently in a variety of applica-
tions, although the stability of the code linkage was not ana-
lyzed in these works. A linked Monte Carlo and continuum
transport/reaction model of boundary-layer phenomena was
used in a multiscale integration hybrid algorithm to simulate a
unimolecular surface reaction (Vlachos, 1997). A multiscale
metal film growth simulation was created by incorporating
molecular dynamic data into a level-set model of the growing
film (Hansen et al., 2000). A molecular dynamics code was
coupled to a Monte Carlo code to improve feature-scale sim-
ulations of copper ionized PVD in a trench; the molecular
dynamics code provided copper-ion sticking probabilities to
the Monte Carlo code that were a function of the position in the
trench, and the Monte Carlo code simulated the trench filling
(Coronell et al., 2000). Linked codes were also used to simulate
metal—oxide—semiconductor field-effect transistors
(MOSFET); a Monte Carlo code calculated an equilibrium
density on the device and passed that information to a finite-
element continuum code that computed a potential-field distri-
bution that was passed back to the Monte Carlo code (Hadji et
al., 1999). The code sequence was run until the electron density
and the potential field converged. Finally, multiscale low-
pressure CVD behavior was simulated by linking a reactor-
scale code, a feature-scale code, and a mesoscale code that
mediated the linkage between the other codes (Gobbert et al.,
1997). The reactor-scale code passed concentration, tempera-
ture, and pressure information to the mesoscale code, which
resolved the information to a finer mesh and passed the infor-
mation to the feature-scale code. The feature-scale code re-
turned flux information via the mesoscale code to the reactor-
scale code. For computational efficiency, the reactor-scale code
ran multiple iterations before calling the other codes for up-
dated information, a strategy that does not affect the accuracy
of the simulations provided that the smaller-scale codes are
called before too much change has taken place in the reactor-
scale code.

In the present work, we report on implementing an external
linkage of a Monte Carlo electrodeposition code with a 2-D
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Table 1. Parameters Used in the Monte Carlo and
Continuum Codes in the Coupled Simulations

Model Parameter Value

MC Cu?* bulk-diffusion rate 6.0 X 10® nm?/s
MC Cu?* adsorption rate 150 nm/s
MC Cu?" adsorption transfer coefficient 0.339

MC Cu?* surface-diffusion rate 2.0 X 10® nm?/s
MC Cu?* step energy barrier —1.5%X1072°7J
MC Cu?* broken-face energy barrier —5.0X 107227
MC Cu?" new-face energy barrier 50X 10722]
MC Cu?* incorporation rate 2.0 X 10* nm?/s
MC Cu?" incorporation transfer coefficient —-04

MC Cu?* incorporation transfer- 0.2

coefficient contribution from Cu
CONT H* bulk-diffusion rate
CONT SO bulk-diffusion rate
CONT Cu?** bulk-diffusion rate

9.312 X 1072 cm?/s
1.0 X 107> cm?/s
0.72 X 107° cm?/s

Abbreviations: MC = Monte Carlo; CONT = continuum.

finite difference code. Simulation results are compared to sim-
ulations performed with a 1-D continuum code linked inter-
nally to the Monte Carlo code as previously reported (Pricer et
al., 2002a,b). No numerical instability is observed in the 1-D/
Monte Carlo simulations, whereas numerical instability is ob-
served in 2-D/Monte Carlo simulations, where the 2-D code is
called less often due to computational constraints. The use of
digital filtering to improve the numerical stability of the 2-D/
Monte Carlo linked codes is described. Simulations are re-
ported to illustrate how the amount of filtering affects the
linkage between the codes, as well as to check that the linked
simulation results are self-consistent for a sufficiently small
amount of filtering.

Reaction Mechanism for Cu Electrodeposition

The reaction mechanism used in this article was the same as
(Pricer et al., 2002a) for additive-free copper. The Cu®" ions
diffuse to the surface, where they react by a two-step process.
The first step involves a one-electron transfer and adsorption of
Cu™ onto the surface

Cu** +e¢ — Cu’ (1)

The cuprous adions move by surface diffusion to a second
location where they react to become incorporated into the
crystal lattice.

Cu"+e¢ — Cu )

The parameters associated with the base case (Pricer et al.,
2002a) were used in the present study and are listed in Table 1.
The cupric-ion adsorption-rate constant used in this study dif-
fers from that used by Pricer because the constant used here
was fit to experimental data generated by a related experimen-
tal study with a similar diffusion boundary layer thickness as
that simulated here (Drews et al., 2003).

Simulation Methods

This work simulates the electrodeposition of copper onto the
inner surface of a submicron rectangular trench with an (addi-
tive-free) electrolytic solution containing 0.5 M CuSO, and 1
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M H,SO,. The kinetic Monte Carlo code, used to simulate
near-surface behavior, provided concentrations to the con-
tinuum code, while the continuum code, which simulated trans-
port of the species in a diffusion layer region, passed fluxes
back to the Monte Carlo code. Simulations were performed
under galvanostatic (constant current) control, although the
code was also able to simulate potentiostatic as well as poten-
tiodynamic (time-dependent) control.

Monte Carlo code

The 3-D kinetic Monte Carlo code simulated mesoscale
behavior in the near-surface region during deposit growth with
use of cubic mesoparticles that represented clusters of mole-
cules of various species in the deposition bath. A mesoscale
simulation approach has been described elsewhere (Maroudas,
2000), and is important for simulating surface roughness evo-
Iution that cannot be accurately described by a continuum
approach. The mesoparticle approach has been widely used
(Birdsall and Langdon, 1985; Bird, 1994; Lu et al., 2001). In
the present work, mesoparticles were assumed to be homoge-
neous in both phase and composition. The user specifies the
species, the steps of the reaction sequence in which they
participate, the parameters required for each action, and the
operating variables.

The Monte Carlo simulation domain had periodic boundary
conditions in the x- and y-directions, an impenetrable boundary
at the bottom of the trench (in the z-direction), and a link to the
continuum code at the top boundary, where the flux of meso-
particles into the domain from the continuum region was ob-
tained as described in the next section. The initial trench aspect
ratio used for the simulations reported here was 2:1. The trench
width of 0.50 wm was used for the simulations presented here,
and the mesoparticle size was 12.5 nm, which gave a simula-
tion space that was 70 mesoparticles wide, 120 mesoparticles
high, and 6 mesoparticles deep, within which the trench was 40
mesoparticles wide and 80 mesoparticles high. The additional
height in the Monte Carlo space allowed the deposit to grow on
the external surface adjacent to the trench.

At a given Monte Carlo time step, a mesoparticle can only
make a maximum of one move. The moves that a mesoparticle
makes are a function of the location of the particle in the
simulation space and the number and type of nearest neighbors.
All actions are computed as frequencies, with units of s~ for
homogeneity.

Bulk diffusion is used to move species through the bulk
electrolyte, and it is typically the most computationally de-
manding part of the simulations. Bulk-diffusion coefficients are
generally large compared to reaction rates, so the bulk-diffu-
sion coefficients typically dictate the dynamics of the system,
since the Monte Carlo time step is computed as 1/(frequency of
an action). The movement of a particle by bulk diffusion to one
of its six nearest-neighbor sites is simulated by a random-walk
mechanism

_6D
f—fi (3)

Surface diffusion is used to specify how a particle can
maneuver along a solid surface. Surface-diffusion coefficients
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are typically not as high as bulk-diffusion coefficients, and
particles tend to only surface diffuse for a short amount of time
before they incorporate into the surface. The movement of a
particle by surface diffusion is also simulated by a random-
walk mechanism

6 D ) eAE/kT
- )

The AE is computed at each Monte Carlo time step as a
function of the local surface morphology and makes it more
facile or difficult for a particle to diffuse into one location or
another depending on the value of AE.

The code can model adsorption with and without charge
transfer. If the adsorption occurs with charge transfer, a meso-
particle of charge is consumed and the number of mesoparticles
of charge consumed in the simulations is tracked and used to
compute the current in the system. The reaction is a combina-
tion of Arrhenius and Tafel kinetics

6k e(AE/kT)*(aTnF"n/RT)
rxn

f= L 5)

The energy barrier in the reaction frequency is computed as a
function of the six nearest neighbors of the particle.

The Monte Carlo time step must be small enough to capture
the full dynamics of the system, so the time step is dictated by
the time scale of action of the fastest species. To compute the
time step, all of the possible frequencies for each species are
computed. Then the inverse of each summed frequency is
computed. The Monte Carlo time step 7, is then selected as
the smallest inverse summed frequency

1
e =7 (6)

k
> f;

J

Iye = m_in(tMC,) @)
j

In the simulations presented here the Monte Carlo time step
was ~4.34 X 1078 s, and the simulations involved ~1.04 X
10° time steps. During the Monte Carlo simulation, mesopar-
ticles are selected in the Monte Carlo domain and the simula-
tion code looks at the “menu” of possible moves defined for the
species, which is called the probability array

k
D= tuc 2 (8)
i=1

where p; is the probability array for species j that contains a
vector of probability bands. If all of the elements of p; are
summed, then the value of the summation will be less than 1
for all species, except the fastest reacting species in the system.
If the summation is less than 1, then there is a nonzero prob-
ability of rejecting moves in the code for all species except the
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fastest reacting species in the system. In Eq. 8, each ft),c
defines a “probability band” or bounds on an action. The values
of f;t,,c have to be between 0 and 1. To determine what move
a particle is going to make at a certain time step, the probability
array is first constructed for that species. Then a random-
number generator is called and it returns a random number
between O and 1. The probability bands within which that
number falls dictate the action that the particle takes at that
time step. For all species other than the fastest moving species,
there is a region in the probability array for which “do nothing”
is an option, that is, the upper probability band is less than 1.
If a random number is selected that is between this upper
probability band and 1, then the particle does not do anything
during the current time step. If a particle does not do anything
during the current time step, then it has implicitly rejected a
move. Once a move is selected, another random number is
computed that tells the species to which free space it should
move.

The galvanostatic simulations reported here required devel-
opment of a controller to manipulate the system overpotential
to obtain the desired current density (Drews, 2001). In addition,
step-potential programs were used to determine the dynamics
in the system and to tune the controller to compensate for the
dynamics.

In a previous study, dimensionless scaling arguments were
used to show that fluid convection and ohmic solution resis-
tance are not important within submicron trenches (Takahashi
et al., 1999). Moreover, concentration gradients would be ex-
pected in a trench only if the parameter

2i,L?

& = c.DwnF ©)

is greater than 1. For a typical trench simulation in this study
(0.50 wm deep with deposition occurring at 15 mA/cm?) the &,
parameter is 0.01 for cupric ions. The small value of &,
indicates that one would expect insignificant cupric ion deple-
tion in the trench during electrolysis. In view of these physical
expectations, and in order to reduce the computational time
involved in tracking many species, the assumption was made
for the Monte Carlo region to include only cupric ions in the
volume of the trench. While the cupric concentration gradients
are expected to be small in this investigation, it is important to
retain bulk diffusion in the code for future applications, which
will include consideration of dilute species for which concen-
tration variations may be significant. The cupric ions move
through the electrolyte in the Monte Carlo domain via a ran-
dom-walk mechanism that simulates diffusion.

Finite difference codes

The finite difference model solved a system of coupled
nonlinear partial differential equations and algebraic equations.
Originally developed (Webb et al., 2002) for another applica-
tion, the code was modified to address continuum transport in
the diffusion layer outside the Monte Carlo region. Figure 1
shows the geometry of the continuum domain, along with the
Monte Carlo region in the inset. The height of the continuum
domain corresponded to the diffusion-layer thickness, which
was 50 wm. A mesh of unequally spaced nodes was used. A
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50 um 0.8‘7-5.um 50 pm
Figure 1. Mesh and size of computational domain used
for solution in the finite difference PETSc code
for a 0.50-pum trench with a 50-pum diffusion
boundary layer (bottom diagram not to scale).

necklace of ten nodes existed at the interface between the
Monte Carlo and continuum codes. The width of the Monte
Carlo-continuum boundary was set to 0.875 wm, of which 0.50
pm was the width of the trench and 0.1875 wm on either side
of the trench were the trench walls.

The dilute solution approximation was used to describe
transport by diffusion and migration, and the solution was
stagnant. The transport parameters were assumed to be inde-
pendent of concentration. Elemental material balances were
used for each species, i, containing the base species, k

e,
Z(;)=Ehwxmk (10)
k k k

The equations for reaction equilibria describing relationships
among the concentrations of the chemical species

5 = Ky (1)

along with the electrical neutrality assumption

>z, =0 (12)
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fi, — Vector of fluxes passed at time step k
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Figure 2. Code linkage between the Monte Carlo code and the finite difference PETSc code.

completed the equation set. For a system involving n species,
the set of Eqs. 10—12 provide n + 1 equations for the n + 1
unknowns (n species plus the solution potential).

At the upper, left, and right boundaries, the concentrations of
all species were ascribed their bulk values, and zero potential
with respect to the reference electrode was specified

=0 (13)

At the boundary linked to the Monte Carlo code, the fluxes
of the nonreactive ions were equal to zero

n-N,=0 (14)

Additionally, for the boundary linked to the Monte Carlo code,
the cupric ion flux was given by

N, = —zu,Fe,N® — D V¢, 15)

The boundary conditions for the linked boundary were com-
pleted with the addition of the equation of electroneutrality

>z, =0 (16)

In summary, the set of equations given by Eqs. 10-12 along
with the boundary conditions given by Egs. 13-16 form a
system of coupled nonlinear partial differential equations
mixed with coupled nonlinear algebraic equations. The set of
equations was solved simultaneously to obtain the cupric-ion
flux at the boundary linked to the Monte Carlo code.

The system of coupled nonlinear partial differential equa-
tions and algebraic equations was solved numerically by the
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finite difference method. Second-order centered finite differ-
ences, in two-dimensions, were used to approximate the solu-
tion of the set of nonlinear partial differential equations by
transforming them into a set of nonlinear algebraic equations.
Second-order forward- and backward-difference approxima-
tions were used on the boundaries. The finite difference form of
the partial differential equations was obtained from partial
Taylor series expansion by using unequally spaced nodes, and
a fully implicit scheme was implemented to step forward in
time.

A line-search Newton method was used for the nonlinear set
of equations where the Jacobian was hand coded. The Jacobian
matrix was stored in the AlIJ sparse matrix format. The result-
ing linear system from application of Newton’s method was
solved using the GMRES Krylov subspace method with ASM
preconditioner. The model used PETSc (Portable, Extensible
Toolkit for Scientific Computation) (http://www.mcs.anl.gov/
petsc), which was developed for the parallel solution of sys-
tems of equations resulting from the discretization of partial
differential equations and is particularly useful for this appli-
cation, due to the large system of equations that must be solved.
PETSc provided an efficient set of tools to solve the system of
linear and nonlinear equations and boundary conditions, an
efficient storage method to reduce memory requirements for
the very large and very sparse matrix associated with the set of
equations, and an efficient method to parallelize the structured
grid with a distributed array. PETSc allowed for easy change of
the solution method for both the nonlinear system and the
resulting linear system of equations for determination of the
most efficient solution technique for the set of equations. This
model extended our previous 1-D finite difference model due
the fact that it is a 2-D code that solves for the migration
contribution to the flux. Additionally, the 2-D code is necessary
to accurately simulate the effect of diffusion-limited additives
in a trench, in which significant 2-D variations in the additive
concentrations would be present. In the simulations presented
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Figure 3. (a) Final trench fill image, and (b) potential-time and current density-time (inset) curves for a 0.50-um trench
at 15 mA/cm?, with a 50-um diffusion boundary layer; linked 2-D code simulation with no filtering at the

Monte Carlo-continuum interface.

here, the finite difference code computes steady-state flux in-
formation to pass to the Monte Carlo model, although it is
capable of transient simulations.

Code Linking

The Monte Carlo code and the finite difference code were
not written explicitly to be linked to one another, but were
externally linked by a series of event-handling mechanisms.
Three scripts, used to instruct which code to run when, con-
sisted of a master script that was executed to start the simula-
tion, a script that instructed the Monte Carlo code how to
operate, and a script that instructed the 2-D continuum code
how to operate.

A typical simulation proceeded by the process illustrated in
Figure 2. The user sets the frequency, or time length, over
which the Monte Carlo code runs until it calls the external code
for updated flux information. The user executes the master
script and, in turn, the master script executes the script that
starts the Monte Carlo code. The Monte Carlo code is the
“driving code” in the process and it runs until the user-specified
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time length is reached, which is 0.005 s in the simulations
performed here. At this point, the Monte Carlo code writes a
linkage file that contains filtered concentration data at the upper
boundary in the Monte Carlo domain. The script that runs the
Monte Carlo code detects the existence of the linkage file and
alerts that master script that the linkage file exists. The Monte
Carlo code then sits in standby mode while the following
actions occur.

The master script executes the script that controls the finite
difference code. The finite difference code runs and uses the
concentration data from the linkage file as a lower boundary
condition. It then computes a steady-state flux, which is written
to a different linkage file. The process then happens in reverse.
The finite difference code terminates and the script that runs the
finite difference code signals the master script that the flux
information has been written to a linkage file. When the flux
information is written, the master script signals the script that
runs the Monte Carlo code that the flux has been computed.
The Monte Carlo code is activated, reads in the flux informa-
tion, and redistributes the flux along the top boundary of the
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Figure 4. (a) Monte Carlo-continuum interface concentrations as a function of time, and (b) Monte Carlo-continuum
interface fluxes as a function of time for a 0.50-um trench at 15 mA/cm?, with a 50-um diffusion boundary
layer; linked 2-D code simulation with no filtering at the Monte Carlo-continuum interface.

Monte Carlo domain. The flux is redistributed in the Monte
Carlo domain by converting the flux into an equivalent number
of mesoparticles and randomly placing them in the top layer of
the Monte Carlo domain (that is, at the Monte Carlo—con-
tinuum interface). A constant flux could be employed across all
nodes in the Monte Carlo domain if it were possible to vary the
amount of material in a mesoparticle. The Monte Carlo code then
progresses in time until the user-specified time length is reached
again, at which time the entire process is repeated. When the
Monte Carlo simulation is complete, a file is written by the Monte
Carlo code that signals all of the scripts to terminate.

The concentrations passed to the finite difference code are
computed by averaging a species’ concentration over the top
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ten layers in the Monte Carlo domain. The fluxes that are
passed to the Monte Carlo code from the finite difference code
are computed by averaging the flux values computed over all
ten boundary nodes. The variability in the fluxes computed
over the inner eight nodes is low, while the flux computed on
the outer nodes tends to vary slightly.

Simulations with the linked Monte Carlo/2-D continuum
code were run on a Silicon Graphics Power Challenge with 10
R8000 CPUs at Indiana University. These simulations required
approximately four days to run, with a 0.50-wm trench. Sim-
ulations of complex additive chemistries are more computa-
tionally demanding and could require several times longer to
perform than the additive-free simulations presented here.
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Figure 5. (a) Final trench fill image and (b) potential-time and current density-time (inset) curves for a 0.50-um trench
at 15 mA/cm?, with a 50-um diffusion boundary layer; linked code simulation with o, = 0.2 at the Monte

Carlo continuum interface.

Calling the 2-D continuum code at each Monte Carlo time
step would cost (~1.04 X 10° time steps)(20 CPU s) = ~656
CPU years per simulation run, which is computationally infea-
sible. The frequency with which the 2-D continuum code was
called was dictated by the feasibility of the total computation
time required to perform a simulation. The 2-D continuum
code should be called as frequently as possible, but not so often
as to slow the simulations down to where they require an
unreasonable amount of time to complete. Calling the 2D-
continuum code for every 0.005 s of simulation time took ~1.8
CPU days for each simulation run.

To gain insights into the dynamic behavior of the linked
Monte Carlo/2-D simulations, simulations were also run with
the 2-D code replaced by the 1-D finite difference code re-
ported previously (Pricer et al., 2002a,b). The 1-D code was
internally linked to the Monte Carlo code, that is, it was
hard-coded within the Monte Carlo model. The 1-D code was
called every 1 X 107° s and required less than a second
(~0.004 s) to run.

Simulations with the internally linked Monte Carlo/finite
difference code were carried out on a Linux Condor pool
(http://www.cs.wisc.edu/condor) at the National Center for Su-
percomputing Applications at the University of Illinois and at
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various Condor pools at the University of Wisconsin. Condor is
an ideal system to run parameter studies that require large
numbers of simulations. The Condor system seeks unused
processors where it sends jobs to run. A 0.50-um trench
simulation normally required two to three days to complete on
Condor.

Numerical Stability of Multiscale Linked Codes

Both the Monte Carlo code and the 2-D continuum codes
were numerically stable when run as stand-alone codes. How-
ever, the linked code was numerically unstable. This numerical
instability became more problematic as the 2-D continuum
code was called less frequently. Calling the 2-D continuum
code more frequently is not computationally feasible due to its
large computational expense (~20 s). To explore the dynamic
behavior of the linked codes when the continuum code is called
more frequently, the 2-D continuum code was replaced by the
1-D continuum code, whose computational time is small
enough that it can be run at each Monte Carlo time step. This
linked Monte Carlo/1-D continuum code was numerically sta-
ble. The preceding observations suggest that the numerical
instability in the linked Monte Carlo/2-D continuum code is
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Figure 6. Monte Carlo-continuum interface concentrations as a function of time, and (b) Monte Carlo-continuum
interface fluxes as a function of time for a 0.50-um trench at 15 mA/cm?, with a 50-um diffusion boundary
layer; linked code simulation with a4y, = 0.2 at the Monte Carlo-continuum interface.

due to temporal mismatch between the two codes, that is, that
the input to the Monte Carlo code is updated much less often
than the Monte Carlo time step. It is hypothesized that these
numerical instability problems will be common between linked
multiscale codes and would be expected in the case where more
complex additive chemistries are simulated in the multiscale
code presented here as well, since this temporal mismatch will
also occur in the complex additive simulations. To suppress
this numerical instability, the concentrations that are passed to
the finite difference PETSc continuum code are digitally fil-
tered, which acts to stabilize the codes. In this manner, the
concentration passed from the Monte Carlo code to the con-
tinuum code contains concentration information from previous
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time steps. Only a fraction of the current time step information
is included in the concentration. This fraction is the filter
constant o.,, Where 0 < gy, < 1 and

(concentration passed);, = ag(calculated concentration),

+ (1 — age)(concentration passed); ;. (17)

This, which is a discrete-time first-order filter, will not affect
the linked simulation results for o, sufficiently close to 1. In
static codes, underrelaxation can be used to pass only part of
the information from the current step and underrelaxation may
affect the numerical stability of an algorithm, but will not affect

AIChE Journal



CeL

f
«_—(Finite Difference PETS Finite Difference PETSc¢—

Compare

|
1
« —

I Compare c f

fer c
= Monte Carlo Monte Carlo

fo, — Vector of computed closed loop fluxes
cc. — Vector of computed closed loop concentrations
f - Vector of computed fluxes

¢ — Vector of computed concentrations

Figure 7. Methodology for proving self-consistency in
the fluxes passed from the finite difference
code to the Monte Carlo code and in the con-
centrations passed from the Monte Carlo code
to the finite difference code.

the numerical accuracy of the results, provided that the algo-
rithm converges. Here the term “filter” is used because this is
a dynamic coupled simulation described by a dynamic filter
equation that is iterated with the dynamic simulation equations,
and the filter will affect the numerical accuracy of the simula-
tions. Also, this filter was introduced based on a control sys-
tem’s interpretation of the dynamically coupled codes, in
which a filter is introduced to suppress instabilities in a system
of coupled dynamic equations. As a general rule, the code is
more stable for lower agp.,.. The filter constant should be
selected to be just small enough to stabilize the linked codes.

A self-consistency check is performed, where an uncoupled
simulation is run without any filtering while using the com-
puted boundary conditions and compared to the filtered results.

Results and Discussion

This section contains the results of the simulations with the
linked 2-D continuum code and the Monte Carlo code, and the
linked 1-D continuum code and Monte Carlo code. The results
of the simulations with the linked 2-D continuum-Monte Carlo
code are provided first, followed by the simulations performed
with the linked 1-D continuum-Monte Carlo code, which are
used for verification. All simulations were run with galvano-
static control at —15 mA/cm?.

Deposition experiments, reported elsewhere, were carried
out with a rotating disk electrode for which the diffusion
boundary layer thickness, §,, can be computed as a function of
the rotation rate, w

8= 1.61D w2, (18)

where D, is the diffusion coefficient and v is the kinematic
viscosity. The diffusion boundary-layer thickness did not have
a significant effect on the simulations presented here because
concentration gradients in the system were small (i.e., &, =
0.01). In the system under investigation, a diffusion boundary
layer thickness of 50 wm was used as the base case, which
corresponds to a rotation rate of about 100 rpm.
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Externally linked 2-D finite difference code

Trenches of varying diffusion boundary-layer thickness were
simulated with various filter constant values to examine how the
filter constant value affects the accuracy. The simulation results
without filtering, corresponding to a filter constant value of 1, for
the externally linked codes are shown in Figure 3. In Figure 3a, it
may be seen that the trench fills in a conformal manner. Figure 3b
shows that the potential never really settles to a steady-state
potential; it is continually pushed more negative over time.

Numerical instability in the linked code is illustrated in
Figure 4, which shows the concentrations passed to the con-
tinuum code by the Monte Carlo code and the fluxes passed to
the Monte Carlo code by the continuum code. As time
progresses in the simulations, the code linkage becomes nu-
merically unstable and these quantities increase exponentially.
The concentrations passed have lower bounds of zero. We
suggest that such numerical instabilities are common when
dynamically linking multiscale codes, that is, codes of widely
varying time and length scales. Fluxes passed to the Monte
Carlo code blow up over time as the concentrations blow up
over time; the fluxes are computed as a function of the con-
centration information passed to the continuum code.

Simulations were performed for various filter constant val-
ues. The results from a simulation performed with a filter
constant of 0.2 are presented in Figure 5. This value of the filter
constant was selected because no numerical instability was
observed in the code linkage and the results will be later shown
to be self-consistent. A diffusion boundary layer thickness of
50 wm was used. Simulations with a filter constant of 0.1 and
0.2 are very similar (Drews, 2001), meaning that this small
change in filter constant does not significantly affect the sim-
ulation results. The trench fills in the same manner, with a
similar shaped void for a filter constant value of 0.1 and 0.2.
The steady-state potentials are very similar, with steady state
being attained after ~5 s of simulation. In Figure 6, the effect
of the filter on the concentrations and fluxes passed to the
continuum code is shown. Increasing the filter constant from
0.1 to 0.2 results in a higher amplitude of noise in the passed
quantities (Drews, 2001).

Increasing the filter constant to 0.50 and 0.75 resulted in
numerical instability that was very similar, but not as severe, to
that observed when the passed concentrations were not filtered
(Drews, 2001). The potential is maintained at a steady-state
value for most of the simulation, but begins to emulate the
trend seen in the unfiltered potential-time curve after ~35 s of
simulation time. That is, the system is continuously pushed
more cathodic until the trench pinches off. This suggests that
the trends seen in the potential-time curves are in response to
the code linkage instability.

Self-Consistency Checks. When quantities are filtered in
simulations, it is possible that the filtering can affect the phys-
ical results predicted by the simulations. In the case of the
linked Monte Carlo—finite difference codes, the concentrations
passed from the Monte Carlo code to the finite difference code
are filtered, which suppresses the numerical instability in the
code linkage, provided that the amount of filtering is large
enough. It was shown previously that if the amount of filtering
was not high enough (i.e., the filter constant was small), then
the numerical instability in the linkage would still be encoun-
tered, albeit noticeable at later times in the simulation.
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Figure 8. (a) Concentrations passed from the Monte Carlo code with filtering (closed-loop), and (b) concentrations

passed from the Monte Carlo code (open-loop).

Concentration self-consistency in the concentrations passed from the Monte Carlo code to the finite difference code. In Figure 8b, some of
the concentrations after 35 s of deposition attain the minimum allowed value of 0 M.

The desired amount of filtering is such that the filtering is
large enough to eliminate the numerical instability in the code
linkage, but small enough that accurate physical outcomes are
simulated. Previously it was shown that by monitoring the
information passed between the codes, one can determine
whether the numerical instability arises in the code linkage. A
method to assess the potential effects of the filtering on the
accuracy of the simulation results is to perform self-consis-
tency simulations. The methodology with which the self-con-
sistency simulations were performed with these codes is shown
in Figure 7.

The filtered concentrations and fluxes that are exchanged
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between the Monte Carlo code and finite difference code are
recorded at all times during the simulation where the codes are
linked together. Then the code linkage is broken so that the
codes can be run independent of the other code, but take as
input the output from the other code.

For the self-consistency check of the fluxes (the self-
consistency check for the concentrations is performed in the
exact same manner), the closed loop (note that the terms
“closed loop” and “open loop” are used in the control sense)
fluxes are fed into the Monte Carlo code and a simulation is
performed with these fluxes. The concentrations that would
be passed to the finite difference code are recorded at each
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Figure 9. (a) Fluxes passed from the finite difference code with filtering (closed-loop), and (b) fluxes passed from the

finite difference code (open-loop).

Flux self-consistency in the fluxes passed from the finite difference code to the Monte Carlo code. In F7i§ure 9b, some of the fluxes after 35 s

of deposition attain the maximum possible flux, which corresponds to a boundary condition of 0 M Cu~

time step that a new flux is read into the Monte Carlo code.
These concentrations are then fed into the finite difference
code without being filtered, and the fluxes that are computed
by the finite difference code are recorded and compared to
the closed-loop fluxes initially fed into the Monte Carlo
code. If the fluxes that are computed from the open-loop
simulations just described do not drift away from the values
of the fluxes computed from the closed-loop simulation,
then the fluxes are self-consistent. The fluxes computed
from the open-loop simulations will be noisier than the
closed-loop fluxes because the noise in the simulations is
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passed from the Monte Carlo code.

compounded in the Monte Carlo and then the finite differ-
ence simulation. The results from the concentration and flux
self-consistency checks are shown in Figures 8 and 9, re-
spectively.

1-D internal continuum code

The same simulations that were run with the 2-D continuum
code were run with the 1-D continuum code. For a given trench
width, the trenches all pinched off at almost the identical time,
regardless of the diffusion boundary-layer thickness used. The
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Figure 10. (a) Final trench fill image, and (b) potential-time and current-density-time (inset) curves for a 0.50-pm trench at
—15 mA/cm?, with a 50-um diffusion boundary layer; continuum code is the 1-D finite difference code.

potential-time curves are almost identical for varying diffusion-
layer thickness, which is similar to the experimentally observed
results observed on flat-surface rotating-disk electrode experi-
ments. Furthermore, the continuum diffusion profiles showed that
the bulk concentration was maintained at the upper continuum
boundary. However, this concentration was not maintained just at
the boundary; often the bulk concentration was seen much further
inside the diffusion layer. Additionally, the time step for calling
the continuum code had to be made very small in order to
maintain numerical stability in the continuum code.

Trench fill images for the three diffusion boundary-layer thick-
nesses show that the trenches fill almost identically, in a conformal
manner, regardless of the diffusion boundary-layer thickness. The
results for the simulation with a 50-wm diffusion boundary layer
thickness are shown in Figure 10. The potential-time and current
density-time curves show that the trenches pinch off between
about 44 and 46 s for all three diffusion boundary-layer thick-
nesses. The steady-state potential is about the same for all three
diffusion boundary-layer thicknesses. In Figure 11, the trench void
fraction evolution is shown to be linear as a function of time for all
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three trenches, and the final void fraction is almost identical for all
three trenches.

These simulations show that the 1-D model can predict the
experimentally expected results of changing the diffusion
boundary-layer thickness. That is, the trenches pinch off at the
identical time and the steady-state potential is nearly identical
for a given trench width, regardless of the diffusion boundary-
layer thickness. The parameters used for the simulation shown
in Figure 10 are identical to those used in the simulation shown
in Figure 3. Comparison of Figures 3 and 10 show that the void
in Figure 10 is much smaller than the void in Figure 3. The
potentials at which the system is pushed to maintain the set
point current density with the 2-D code are much more ca-
thodic than with the 1-D code. Based on past work (Pricer et
al., 2002a), it is natural to expect that since the system is run at
a higher potential, the surface will be rougher, making it more
facile to pinch-off the trench, with a higher void space that
results from higher cupric-ion adsorption at the mouth of the
trench. The trench simulated with the 2-D code pinches off
slightly faster than the trench simulated with the 1-D code.
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Figure 11. Trench void fraction as a function of time for
a 0.50-um trench at —15 mA/cm?, with 29-
pm, 50-um, and 78-um diffusion boundary
layers (DBL); continuum code is the 1-D finite
difference code.

Conclusions

Coupled Monte Carlo—continuum simulations of trench fill-
ing in a copper electrodeposition process are shown to be
similar whether the continuum code is a 2-D externally linked
code, or a 1-D internally linked code. While the simulations are
similar, the two-dimensional code provides the ability to pre-
cisely control the diffusion boundary-layer thickness and,
therefore, maintain the top boundary condition on the contin-
uum domain precisely. Furthermore, the 2-D externally linked
code is necessary to accurately simulate the effect of diffusion-
limited additives in a trench. Numerical instability incurred
between linked codes was corrected with the use of a first-order
filter. The amount of concentration filtering is determined such
that the filtering eliminates the numerical instability, while at
the same time maintaining self-consistency. The filtering ap-
proach is applicable to other linked codes in which one code is
updated more slowly than the others. Also, in cases of numer-
ical instability induced by a mismatch of length scales, spatial
filtering should be considered as an approach to suppressing the
numerical instability. In any case, a self-consistency check
should be performed to assess the effect of the filtering on the
multiscale linked simulations.

One approach that could help to eliminate some of the
numerical instability issues encountered here would be to cou-
ple the codes such that the domains of the Monte Carlo and
continuum codes overlap (Broughton et al., 1999; Aktas and
Aluru, 2002). A drawback of this approach is that it would be
more difficult to keep the codes that simulate different time and
length scales separate and modular as they are in this work.
This modularity is important if multiscale simulation is going
to become a dominant paradigm in chemical engineering ap-
plications.
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Notation

¢ = vector of computed concentrations, M
¢, = vector of computed closed-loop concentrations, M
¢; = concentration of species /, M
¢, = vector of concentrations passed at time step k, M
¢, = vector of filtered concentrations at time step k, M
C, = bulk cupric ion concentration, M
D = cupric ion diffusion coefficient in bulk electrolyte, cm?*/s
D, = cupric ion surface diffusion coefficient, [nm?/s]
E = energy (barrier), J/molecule
f = vector of computed fluxes, mol/nm?-s
fer = vector of computed closed-loop fluxes, mol/nm?>-s
f; = frequency of action i, [s™']
f. = vector of fluxes passed at time step k, mol/nm>-s
F = Faraday’s constant, C/equivalent
i; o = nominal plating current density, Alem?
k = Boltzmann’s constant, J/K
k,., = reaction-rate constant, nm/s
= equilibrium constant for homogeneous reaction, M or M?

e
Lg = trench depth, cm
L, = mesoparticle length, nm
n = number of charge equivalents, equivalents
N, = Flux of species i, mol/(cm?-s)
R = ideal gas constant, J/(mol-K)
s¥ = stoichiometry of species / in reaction k
t = deposition time, s
tyc = Monte Carlo time step, s
T = temperature, K
w = trench width, cm
z;, = ionic charge of species i

Greek letters

Ay, = filter constant
o = charge-transfer coefficient
8, = diffusion boundary-layer thickness, wm
solution-phase potential, mV
7 = overpotential, V
v = kinematic viscosity, cm?/s
p; = probability array
o = RDE rotation rate, rad/s
&, = dimensionless diffusion parameter
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