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Polymorphism, a phenomenon in which a substance can have more than one crystal
form, is a frequently encountered phenomenon in pharmaceutical compounds. Different
polymorphs can have very different physical properties such as crystal shape, solubility,
hardness, color, melting point, and chemical reactivity, so that it is important to ensure
consistent production of the desired polymorph. In this study, an integrated batch-to-
batch and nonlinear model predictive control (B2B-NMPC) strategy based on a hybrid
model is developed for the polymorphic transformation of L-glutamic acid from the meta-
stable a-form to the stable b-form crystals. The hybrid model comprising of a nominal
first-principles model and a correction factor based on an updated PLS model is used to
predict the process variables and final product quality. At each sampling instance during
a batch, extended predictive self-adaptive control (EPSAC) is employed as a NMPC tech-
nique to calculate the control action by using the current hybrid model as a predictor. At
the end of the batch, the PLS model is updated by utilizing the measurements from the
batch and the above procedure is repeated to obtain new control actions for the next
batch. In a simulation study using a previously reported model for a polymorphic crystal-
lization with experimentally determined parameters, the proposed B2B-NMPC control
strategy produces better performance, where it satisfies all the state constraints and
produces faster and smoother convergence, than the standard batch-to-batch strategy.
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Introduction

Most drug manufacturing processes include a series of
crystallizations in which the product crystals are character-
ized in terms of the crystal size and shape distribution. The
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control of polymorphism, also important is which occurs
when a molecule can have more than one crystal form.1–3

Each crystal form has different physical properties such as
crystal shape, solubility, hardness, melting point, and chemi-
cal reactivity, which makes polymorphism an important con-
sideration when manufacturing crystals for the food, special-
ity chemical, and pharmaceutical industries where products
are specified not only by chemical composition, but also by
performance.1 As a result, ensuring consistent production of
the desired polymorph is very important in those industries,
especially in drug manufacturing where safety is of critical
importance.

The vast majority of articles on crystallization control
have considered nonpolymorphic systems in which the con-
trol of some characteristic (e.g., weight mean size) of the
crystal size distribution was considered. Most studies have
investigated the computation of an optimal temperature pro-
file during cooling crystallization by minimizing/maximizing
an objective function based on an off-line process model.
Although simple to implement, it is well-known that such
optimal control policies can be very sensitive to variations in
kinetic parameters.4 While fixed-trajectory optimal tempera-
ture control algorithms have been developed to provide
robustness to parameter variations, such algorithms will
always have some degradation in nominal performance.5,6 In
recent years, concentration control algorithms have been
developed that are less sensitive to disturbances and varia-
tions in kinetic parameters.3,7,8 However, both the tempera-
ture and concentration control algorithms for crystallization
processes are inherently sensitive to shifts in the solubility
curve.8 Such shifts occur in practice, because of variations in
the contaminant profiles in the chemical feedstocks.

Due to plant-model mismatch, optimal control obtained
from an off-line process model is often suboptimal when
applied to the real process. Exploiting the repetitive nature
of most batch processes, batch-to-batch control uses results
from previous batches to iteratively compute the optimal
operating conditions for each batch. Batch-to-batch control
has been studied extensively in the past decade. Zafiriou
et al.9 proposed an approach for modifying the input
sequence from batch to batch to deal with plant-model mis-
match. Their approach is based on an analogy between the
iteration during numerical optimization of an objective func-
tion and successive batches during the operation of the plant.
Clarke-Pringle and MacGregor10 proposed a method to cor-
rect the manipulated variable trajectories from batch to batch
with application to the optimization of molecular weight dis-
tribution in a polymerization process. The method uses
errors between the measured and desired molecular weight
distributions at the end of a batch to update the manipulated
variable trajectories for the next batch. Lee and co-workers11

presented the quadratic criterion-based iterative learning con-
trol (Q-ILC) approach for tracking control of batch processes
based on a linear time-varying (LTV) tracking error transi-
tion model. Doyle and coworkers12,13 used batch-to-batch
optimization to achieve the desired particle size distribution
(PSD) target in an emulsion polymerization reactor. A sim-
plified theoretical model is used as predictor, but the predic-
tion is corrected using an updated PLS model that relates the
manipulated variables to the error from the theoretical model
prediction and the measured distribution. Xiong and Zhang14

presented a recurrent neural network-based ILC scheme for
batch processes where the filtered recurrent neural network
prediction errors from previous batches are added to the
model predictions for the current batch and the updated pre-
dictions used in optimization. Li et al.15 presented batch-to-
batch optimal control in which a batchwise recursive nonlin-
ear PLS algorithm updates the model after each batch.

With the ability of model predictive control (MPC) to
respond to disturbances occurring during the batch and
batch-to-batch control to correct bias left uncorrected by the
MPC, combining both methods to obtain better control per-
formance is possible. This integrated control strategy can
combine information from the past error tracking signals
with that from the current batch to adjust the manipulated
variable trajectories more effectively in real time. If distur-
bances occur, the integrated control method is expected to
more rapidly counteract the effect of disturbances than
batch-to-batch control only. Lee and coworkers16–18 pro-
posed a batch MPC (BMPC) technique for tracking control
by incorporating the capability of real-time feedback control
into Q-ILC. Chin et al.19 proposed a two-stage control
framework by combining the Q-ILC and BMPC methods to
separately handle the real-time disturbance and the batchwise
persisting disturbance, respectively.

The aforementioned integrated control strategies16–19 rely
on LTV models, which can have poor extrapolative capabil-
ity. Motivated by this and the benefits of the integrated con-
trol strategy, an integrated batch-to-batch and nonlinear
MPC (B2B-NMPC) control algorithm is proposed that
employs a hybrid model consisting of the nominal first-prin-
ciples model and a correction factor obtained from an
updated PLS model. A major benefit of the hybrid model is
the ability to harness the extrapolative capability of the first-
principles model, whereas the PLS model provides a means
for simple model updating. The NMPC algorithm is based
on extended predictive self-adaptive control (EPSAC)20–23 to
perform on-line control to handle the constraints effectively,
whereas the batch-to-batch control refines the model by
learning from the previous batches. In a simulation study,
the proposed control strategy results in improved constraint
handling and faster and smoother convergence compared
with the standard batch-to-batch control strategy. The next
section summarizes the process description for polymorphic
crystallization of L-glutamic acid. This is followed by the de-
velopment of the batch-to-batch control strategy based on
the aforementioned hybrid model. The integration of NMPC
into the batch-to-batch control is presented next. Finally,
simulation results are presented for the implementation of
the control strategies to the polymorphic transformation of L-
glutamic acid from the metastable a-form to the stable b-
form crystals. Then conclusions are presented.

Description of Polymorphic Crystallization
Process

This section summarizes the polymorphic crystallization
model for metastable a-form and stable b-form crystals of L-
glutamic acid, which was recently developed by the
authors.24 The conservation equations for the crystals are
population balance equations:
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@fseed;i
@t

þ @ Gifseed;i
� �

@L
¼ 0; (1)

@fnucl;i
@t

þ @ Gifnucl;i
� �

@L
¼ BidðL� L0Þ; (2)

where fseed,i and fnucl,i are the crystal size distributions of the i-
form crystals (i.e., a- or b-form crystals) obtained from seed
crystals and nucleated crystals [#/m4], respectively, Bi and Gi

are the nucleation [#/m3s] and growth rate [m/s] of the i-form
crystals, respectively, L and L0 are the characteristic size of
crystals [m] and nuclei [m], respectively, and d(�) is the Dirac
delta function. The mass balance on the solute is

dC

dt
¼ � 3� 103

qsolv
qakvaGala;2 þ qbkvbGblb;2
� �

; (3)

where the nth moment of the i-form crystals [# mn�3] is given
by

li;n ¼
Z 1

0

Lnðfnucl;i þ fseed;iÞdL; (4)

C is the solute concentration [g/kg], qsolv is the density of the
solvent [kg/m3], qi is the density of the i-form crystals [kg/m3],
kvi is the volumetric shape factor of the i-form crystals
(dimensionless) as defined by vi ¼ kviL

3 where vi is the volume
of the i-form crystal [m3], and 103 is a constant [g/kg] to
ensure unit consistency. The kinetic expressions are

Ba ¼ kbaðSa � 1Þla;3 ða-form crystal nucleation rateÞ;
(5)

Ga ¼
kgaðSa � 1Þga if Sa � 1

kdaðSa � 1Þ otherwise

�

ða-form crystal growth=dissolution rateÞ; ð6Þ

Bb ¼ kbb;1ðSb � 1Þla;3 þ kbb;2ðSb � 1Þlb;3
ðb-form crystal nucleation rateÞ; ð7Þ

Gb ¼ kgb;1ðSb � 1Þgb exp � kgb;2
Sb � 1

� �

ðb-form crystal growth rateÞ; ð8Þ
where Si ¼ C/Csat,i and Csat,i ¼ ai,1T

2 þ ai,2T þ ai,3 are the
supersaturation and the saturation concentration [g/kg] of the i-
form crystals, respectively, and T is the solution temperature
[�C]. The kinetic parameters kba, kga, and kda correspond to the
nucleation [#/m3s], growth [m/s], and dissolution [m/s] rates of
a-form crystals, respectively, whereas kbb,j and kgb,j corre-
spond to the jth nucleation [#/m3s] and growth [m/s] for j ¼ 1
and dimensionless for j ¼ 2 rates of b-form crystals,
respectively, and gi is the growth exponential constant of the
i-form crystals, which may have a value between 1 (for
diffusion-limited growth) and 2 (for surface integration-
limited growth).25 The Arrhenius equation was used to account
for the variability of the crystal growth rate with temperature:

kga ¼ kga;0 exp � Ega

8:314 T þ 273ð Þ
� �

; (9)

kgb;1 ¼ kgb;0 exp � Egb

8:314 T þ 273ð Þ
� �

; (10)

where kgi,0 and Egi are the pre-exponential factor [m/s] and
activation energy [J/mol] for the growth rate of i-form crystals,
respectively. The nominal values for the model parameters are
given in Table 1. To solve the system equations (1–10), the
JSHWENO discretization method detailed in Hermanto et al.26

was employed.
Two on-line measurements considered in this study are

the crystallizer temperature and solute concentration. The
temperature measurements are readily available using ther-
mocouples. Several on-line techniques are available for
measuring solution concentration such as conductivity or
attenuated total reflection Fourier transform infrared spec-
troscopy.27,28 The final product quality for the polymorphic
transformation of a- to b-form crystals is characterized in
two different ways. One objective is to maximize the third-
order moment of b-form crystals:

P1 ¼ lb;3ðtf Þ; (11)

which is the same as maximizing the yield of b-form crystals
and tf is the batch time. The second objective is to minimize
the nucleated crystal mass to seed crystal mass ratio of b-form
crystals:

P2 ¼
lnuclb;3 ðtf Þ
lseedb;3 ðtf Þ

: (12)

The optimization is subject to the model equations and the
inequality constraints:

Tmin � TðtÞ� Tmax; (13)

Csat;bðtÞ�CðtÞ\Csat;aðtÞ; (14)

Cðtf Þ�Cmaxðtf Þ; (15)

where Tmin ¼ 25� C and Tmax ¼ 50� C are the minimum and
maximum allowed temperatures. The inequality constraint
(14) aims to avoid the nucleation and growth rate of a-form
crystals and the dissolution of b-form crystals during the
polymorphic transformation. The end-point inequality con-
straint (15) ensures that the minimum yield required by
economic considerations is satisfied.

Table 1. Model parameters for the Polymorphic
Crystallization of L-glutamic acid

Parameters Values Parameters Values

ln kba 17.233 qsolv 990
ln kga,0 1.878 qa 1540
ga 1.859 qb 1540
ln Ega 10.671 kva 0.480
ln kda �10.260 kvb 0.031
ln kbb,1 15.801 aa,1 8.437 � 10�3

ln kbb,2 20.000 aa,2 0.03032
ln kgb,0 52.002 aa,3 4.564
ln kgb,2 �0.251 ab,1 7.644 � 10�3

gb 1.047 ab,2 �0.1165
ln Egb 12.078 ab,3 6.622
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Batch-to-Batch (B2B) Control Strategy

The batch-to-batch control strategy is based on a hybrid model
consisting of a first-principles model and a PLS model. This
approach exploits the improved extrapolative ability of a first-
principles model while the inevitable modeling error is corrected
through a PLS model using data from previous batches. For any
process variables of interest (such as the product quality and con-
strained variables) at the kth sampling instance of the jth batch,
zjk, its prediction can be decomposed into two factors:

zjk ¼ zjfp;k þ Dzjpls;k; (16)

where zjfp;k is obtained from the first-principles model with
nominal model parameters and Dzjpls;k is the correction
obtained from the PLS model using the quadratic PLS
(QPLS)29 technique.

Generally, the PLS method reduces the dimension of the pre-
dictor variables X [ Rn�nx and response variables Y [ Rn � ny,
where n, nx, ny denote the respective numbers of datasets, input,
and output variables, by projection to directions that maximize
the covariance between input and output variables. The decom-
positions of X and Y into their score and loading matrices are

X ¼ SOT þ E ¼
Xnlatent
h¼1

sho
T
h þ E; (17)

Y ¼ UQT þ F ¼
Xnlatent
h¼1

uhq
T
h þ F; (18)

where S [ Rn�nlatent and U [ Rn�nlatent are the score matrices for
X and Y, respectively, O [ Rnx�nlatent and Q [ Rny�nlatent are the
loading matrices for X and Y, respectively, E and F are
matrices of residuals, sh, oh, uh, and qh are the hth columns of
matrices S, O, U, and Q, respectively, and nlatent is the number
of the specified latent variables. In the conventional PLS
approach, the score vectors sh and uh are related linearly. In
contrast, in QPLS the vectors are related quadratically by

uh ¼ c0h þ c1hsh þ c2hs
2
h þ eh; (19)

where cjh is the jth regression coefficient, eh is the residual
vector, and s2h is the vector in which each element is the square
of the corresponding element of sh.

The first step to obtain Dzjpls;k is to prepare the matrices X and
Y from the historical database. Each row of the matrix X consists
of the input variables (i.e., temperature in this article) at sampling
instances 0 to k � 1 for a particular batch, while each row of the
matrix Y contains the deviation between a real process variable
(i.e., solute concentration at each sampling instance k and product
quality at the end of each batch) and that predicted by the first-
principles model in the same batch. Note that the solute concen-
tration prediction is used to handle solute concentration con-
straints (14) and (15). There are two common approaches to deter-
mine the number of datasets (n) kept in the database. The first
approach is to keep the datasets from all past batches (n increases
every batch) and the other approach is to keep only the datasets
from the latest n batches (i.e., the moving window approach).

The second step to obtain Dzjpls;k is to decompose both
database matrices into their corresponding score and loading

vectors. The regression coefficients are obtained by the
QPLS algorithm as detailed elsewhere.29 In this study, nlatent
is chosen as the maximum number such that the explained
variances in matrices X and Y do not exceed 99%.

For a new input vector xpls, the output correction term
Dzjpls;k is obtained as follows:
(1) Arrange the elements in the row vector xpls in the

same manner as for the database matrix X.
(2) For h ¼ 1,…,nlatent, calculate the contributions to the

output vector yplsh as follows:
(a) Obtain the input score vector ŝh corresponding to the
new input vector from

ŝh ¼ xplsoh

oThoh
:

(b) Calculate the output score vector ûh from

ûh ¼ c0h þ c1hŝh þ c2hŝ
2
h;

where each element of ŝ2h is the square of the
corresponding element of ŝh.
(c) Obtain the residuals vector e from

e ¼ xpls � ŝho
T
h ;

and set xpls ¼ e for the next dimension h ¼ h þ 1.
(3) Calculate the output correction term from

Dzjpls;k ¼
Xnlatent
h¼1

ûhq
T
h :

In the batch-to-batch control strategy, the objective func-
tion to be minimized before the jth batch is

Figure 1. The decomposition of variables in EPSAC.
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JB2B ¼ min
U

Wp P� Pdð Þ2þDUTWDU DU þ dUTWdUdU
h i

;

(20)

subject to process model and inequality constraints (13–15),
and

U ¼ uj0; u
j
1;…; ujN�1

h iT
;

DU ¼ uj1 � uj0; u
j
2 � uj1;…; ujN�1 � ujN�2

h iT
;

dU ¼ uj0 � uj�1
0 ; uj1 � uj�1

1 ;…; ujN�1 � uj�1
N�1

h iT
;

and P and Pd are the predicted and desired final product
quality, given by either (11) or (12), ujk is the input value at the
kth sampling instance of the jth batch, N is the total number of
samples in one batch,Wp is a scalar weight on the final product
quality, and WDU and WdU are weight matrices used to
penalize excessive changes in the input variable, which occur
within a batch and between batches, respectively. In (20), Pd is
equal to 0 if the objective is to minimize P. To maximize P, the
minus of the summation term inside the square bracket is
minimized in addition to setting Pd ¼ 0. The differential
evolution (DE)30,31 method was used to numerically solve the
minimization problem before every batch, where P was
computed using the simulation method described in the previous
section. DE belongs to the class of evolution strategy optimizers
(e.g., genetic algorithms, particle swarm optimization). DE
generates a new individual from the population by taking vector
differences between other randomly selected members of the
population, which avoids the use of any separate probability
distributions. DE was used because, it is easy to implement and is
one of the faster stochastic optimization algorithms.

Integrated Batch-to-Batch and NMPC
(B2B-NMPC) Control Strategy

The main shortcoming of batch-to-batch control strategy
lies in its open-loop nature, where the correction is not made
until the next batch. As a result, its capability to handle con-
straints for the current batch solely depends on the accuracy
of the corrected model from the previous batch. When the
corrected model is not accurate, which is likely the case in
the first few batches, the constraints can become violated

when the input values are implemented. If on-line measure-
ment of some process variables are available, it is possible
and beneficial to integrate nonlinear model predictive control
(NMPC) into the batch-to-batch control strategy. Both con-
trol strategies complement each other such that the NMPC
can perform on-line control to handle the constraints effec-
tively, whereas the batch-to-batch control strategy refines the
model by learning from the previous batches.

In this integrated B2B-NMPC control strategy, the formulation
of the hybrid model remains the same, except that the definition
of the matrix X in the PLS model includes both the input and
measured process variables (that is, the temperature and solute
concentration measurements) available at sampling instances 0 to
k � 1. Contrary to B2B control strategy, solute concentration
measurements are included in matrix X to improve the model
prediction accuracy, as the new input vector xpls can utilize the
online solute concentration measurements in this case. Note that
the matrix X only includes data from the previous batches (that
is, excluding data from the current batch) because inclusion of
data from the current batch in the database would need the corre-
sponding output Y of the current batch, which is not available.

The NMPC strategy is based on EPSAC,20–23 in which the
main idea is to approximate nonlinear process variables by itera-
tive linearization around future trajectories so as to converge to
the same optimal solution. In the subsequent discussion of
EPSAC, the superscript j indicating the current batch index is
mostly dropped to simplify notation. In EPSAC, the future
sequence of the input variable ukþ i is defined by (see Figure 1):

ukþi ¼ ub;kþi þ dukþi; i ¼ 0; 1;…;Nu � 1; (21)

where ub,kþ i is the predetermined future control scenario,
dukþ i is the optimizing future control actions, Nu is the control
horizon, and

Dul;k ¼ duk;

dukþm ¼
Xm
j¼0

Dul;kþj:

The future trajectory of any process variables of interest (zkþ i)
can be treated as being the cumulative result of two effects:

Table 2. The Parameters Describing the Size Distributions
of Seed Crystals

Seed form Mass [g]
Mean crystal
size [l m]

Standard deviation
of crystal size [l m]

a 10.0 100.0 10.0
b 1.0 100.0 10.0

Table 3. Perturbations in the Process Parameters for the
Robustness study

Cases ln kbb,1 ln kbb,2 ln kgb,0 ln kgb,2 gb ln Egb

1 15.758 19.961 53.200 �0.280 1.100 12.060
2 15.842 20.036 50.883 �0.240 1.019 12.070

Case 1 has slow nucleation and fast growth rate parameters for the b-form
crystals and Case 2 has fast nucleation and slow growth rate parameters for
the b-form crystals.

Table 4. Tuning Parameters for the B2B Control Strategy*

Values for objective J1 Values for objective J2

Wp,1 ¼ 1 Wp,2 ¼ 1
ðWDU;1Þi;i ¼ 2[1 þ

15(i � 1)] � 10�5

ðWDU;2Þi;i ¼ 3[1 þ 0.5(i � 1)]

� 10�5

WdU;1 ¼ 3 � 10�5 I WdU;2 ¼ 5 � 10�6 I
W� ¼ 10I W� ¼ 10I
W� ¼ 10[1,1,…,1]T W� ¼ 10[1,1,…,1]T

*WDU;1 and WDU;2 are diagonal N � N matrices.

Table 5. Tuning Parameters for the B2B-NMPC Control
Strategy*

Values for objective J1 Values for objective J2

Wp,1 ¼ 1 Wp,2 ¼ 1
(WDU,1)i,i ¼ [1 þ 15(i � 1)]

� 10�5
(WDU,2)i,i ¼ 9[1

þ 0.7(i � 1)] � 10�5

WdU,1 ¼ 1.5 � 10�5 I WdU,2 ¼ 6 � 10�6 I
W� ¼ 10I W� ¼ 10I
w� ¼ 10[1,1,…,1]T w� ¼ 10[1,1,…,1]T

*WDU,1 and WDU,2 are diagonal (N � k) � (N � k) matrices.
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zkþi ¼ zb;kþi þ zl;kþi; (22)

where zb,kþ i is calculated using the hybrid model (16) with
predetermined sequence ub,kþ i, and

zl;kþi ¼ giDul;k þ gi�1Dul;kþ1 þ � � � þ gi�Nuþ1Dul;kþNu�1: (23)

is determined by the optimized future control actions, where gj
is the jth step response coefficients.

Considering a batch process with the control horizon iden-
tical to the prediction horizon, which covers from the next
sampling instance to the end of batch time denoted by Np ¼
Nu ¼ N � k, the future process variable of interest in the
prediction horizon can be conveniently represented as

Z ¼ Zb þGlDUl; (24)

where

Z ¼ zkþ1; zkþ2;…; zN½ �T ;
Zb ¼ zb;kþ1; zb;kþ2;…; zb;N

� �T
;

DUl ¼ Dul;k;Dul;kþ1;…;Dul;N�1

� �T
;

Gl ¼

g1 0 � � � 0

g2 g1 � � � 0

..

. ..
. . .

. ..
.

gN�k gN�k�1 � � � g1

2
66664

3
77775:

Figure 2. The results of applying the B2B control strat-
egy for Case 1 and objective J1 for batches 1,
7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B control,
dashed line: optimal control.

Figure 3. The results of applying the B2B-NMPC con-
trol strategy for Case 1 and objective J1 for
batches 1, 7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B-NMPC
control, dashed line: optimal control.
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The objective function optimized at every sampling instance
is*

JB2B�NMPC¼ min
U

Wp P� Pdð Þ2þDUTWDU DUþdUTWdUdU
h i

;

(25)

subject to process model and inequality constraints (13–15), and

U ¼ ujk; u
j
kþ1;…; ujN�1

h iT
;

DU ¼ ujk � ujk�1; u
j
kþ1 � ujk;…; ujN�1 � ujN�2

h iT
;

dU ¼ ujk � uj�1
k ; ujkþ1 � uj�1

kþ1;…; ujN�1 � uj�1
N�1

h iT
;

and WDU and WdU are weight matrices used to penalize
excessive changes in the the input variable that occur within
each batch and between batches, respectively.

Using the representation in (24), P, DU, and dU in (25)
can be written as

P ¼ Pb þGplDUl; (26)

DU ¼ DUb þ DUl; (27)

dU ¼ Ub þMDUl � Uprev; (28)

where Pb is the product quality calculated using the hybrid
model with predetermined future inputs Ub ¼ [ub,k, ub,k þ 1, …,
ub,N � 1]

T, Gpl is the step response coefficient matrix for the
product quality, DUb ¼ [Dub,k, Dub,k þ 1, …, Dub,N � 1]

T is the
change in the predetermined future inputs, Uprev ¼ [uj�1

k , uj�1
kþ1,

…, uj�1
N�1]

T is the input sequence from the previous batch, and
M is a lower triangular matrix with all elements equal to one.
This allows the minimization problem (25) to be written as

JB2B�NMPC ¼ min
DUl

DUT
l CDUl þ wTDUl; (29)

where

C ¼ WpG
T
plGpl þWDU þMTWdUM;

w ¼ 2 Wp Pb � Pdð ÞTGplþDUT
bWDUþ Ub� Uprev

� �T
WdUM

h iT
:

Similarly, the inequality constraints (13–15), represented as
H(U) � 0, can be written as

Hb þGhlDUl � 0; (30)

where Ghl is the step response coefficient matrix correspond-
ing to the constraints and Hb is calculated using the hybrid
model (16) with predetermined future inputs Ub. The soft-
constraint approach32 was used, which modifies the optimiza-
tion to

Figure 4. Comparison of the product quality P1 obtained
by the B2B (*) and B2B-NMPC (") control
strategies for Case 1 and objective J1.

The insets show the constraint violations for the B2B con-
trol strategy in batches 5 to 8.

Figure 5. The results of applying the B2B control strat-
egy for Case 2 and objective J1 for batches 1,
7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B control,
dashed line: optimal control.

*The maximization of a product quality objective is converted into the equivalent
minimization by multiplying by minus one.
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J�sc;B2B�NMPC ¼ min
P

PTKPþ sTP; (31)

subject to

Hb

0

� 	
þ Ghl �I

0 �I

� 	
P � 0; (32)

where

P ¼ DUT
l �T

� �T
; K ¼ C 0

0 W�

� 	
;

s ¼ wT wT
�

� �T
;

� is a vector of slack variables, W� is a diagonal matrix of
positive weight, and w� is a vector of positive elements.

In summary, the procedure for implementation of the inte-
grated B2B-NMPC control strategy at the kth sampling
instance in the jth batch is
(1) Prepare the database matrices X and Y for the PLS

model as follows:
• If j ¼ 1, the database matrices X and Y for the PLS
model can be obtained from the historical batch data.
Alternatively, input sequences around the nominal tra-
jectory, which is the optimal input sequence for the
nominal first-principles model, are implemented to the
process and the resulting measurements are used to con-
struct the database.
• If j [ 1, update the database matrices by including
the previous batch measurements dataset into the data-
base. In this study, the moving window approach is
adopted, where the dataset from the earliest batch is
removed each time a new dataset is included.

(2) Obtain Ub as follows:
• if k ¼ 0 and iter ¼ 1, Ub is chosen to be the input
trajectory implemented in the previous batch,
• if k [ 0 and iter ¼ 1, Ub is set as the Uoptimal

obtained in the previous sampling instance of the cur-
rent batch,
• if iter[ 1, the updated Ub from the previous iteration
is used,
where iter is the iteration count for updating Ub at the
kth sample instance of the jth batch.

(3) Obtain Pb and Hb by using Ub as the input to the
hybrid process model. In this study, it was assumed that the
constrained variables are measured so that the bias between
the predictions and the measurements of the constrained var-
iables at the current sampling instance k were added into the
future predictions. If the constrained variables are not meas-
ured, then employ state estimation such as extended Kalman
filter (EKF) or unscented Kalman filter (UKF) to estimate
the constrained variables.

Figure 6. The results of applying the B2B-NMPC con-
trol strategy for Case 2 and objective J1 for
batches 1, 7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B-NMPC
control, dashed line: optimal control.

Figure 7. Comparison of the product quality P1 obtained
by the B2B (*) and B2B-NMPC (") control
strategies for Case 2 and objective J1.

The inset shows the constraint violations for the B2B con-
trol strategy in batch 2.
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(4) Obtain the step response coefficient matrices Gpl and
Ghl by introducing a step change in du. Generally, the prod-
uct quality measurement is only available at the end of the
batch. Consequently, the PLS correction can only be calcu-
lated at the end of batch (i.e., for sampling instance N). To
obtain Gpl, the PLS correction for sampling instance N is
added to the prediction of product quality at sampling
instance k to N 2 1.
(5) Obtain P* ¼ [DU�

l , �
*]T from the solution to the minimi-

zation (31) and (32), then update the elements of Ub by

unewb;kþj ¼ uoldb;kþj þ
Xj

i¼0

Dul;kþi;

where uoldb;kþj and unewb;kþj are the elements of Ub before and after
updating, respectively, and j ¼ 0,…,N � 1 þ k.

(6) If err ¼ Gpl

Ghl

h i
DU�

l




 





 


 is greater than a specified toler-
ance (1 �10�4 was used in this study), iter ¼ iter þ 1, and
repeat from Step 2. Otherwise set Uoptimal ¼ Ub and imple-
ment the first element of Uoptimal to the process.
(7) If the end of the current batch is reached, repeat from

Step 1 and go to the next batch.

Simulation Results and Discussion

In the polymorphic transformation, both a- and b-form
crystals were seeded according to a Gaussian distribution
with parameter values given in Table 2. The initial solute
concentration C0 and maximum final solute concentration

Figure 8. The results of applying the B2B control strat-
egy for Case 1 and objective J2 for batches 1,
7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B control,
dashed line: optimal control.

Figure 9. The results of applying the B2B-NMPC con-
trol strategy for Case 1 and objective J2 for
batches 1, 7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B-NMPC
control, dashed line: optimal control.
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Cmax(tf) are 20 g/kg. The batch time tf was 3 hours and the
sampling interval was 10 minutes.

Description of specific control implementations

The optimization of two different product qualities P1 and
P2 was considered, which are associated with objectives J1
and J2, respectively. The process is assumed to be subject to
two cases of parameter perturbations given in Table 3. The
tuning parameters for the B2B and B2B-NMPC control strat-
egies for both objectives are given in Tables 4 and 5, respec-
tively. For all cases and objectives, the initial database (i.e.,
for the first batch) used for the PLS model comprised of his-
torical operating data from ten batches. These batches
included temperature trajectories around the nominal trajec-
tory (see Supporting Information Figures S1–S4) obtained by

optimizing the nominal first-principles model, the corre-
sponding deviation between the measured concentration and
the predicted concentration by the first-principles model, and
the deviation values in final product quality. For the subse-
quent batches, the moving window approach was adopted to
update the database, where up to 15 of the latest batches
were kept in the database. For all cases and objectives, the
temperature-time trajectory was parameterized as a first-
order spline with 18 time intervals. The optimal trajectories
shown as dashed lines in Figures 2–7 were obtained by opti-
mizing the first-principles model with the set of perturbed
parameters treated as known.

Figure 10. Comparison of the product quality P2

obtained by the B2B (*) and B2B-NMPC (")
control strategies for Case 1 and objective
J2.

Figure 11. Comparison of the product quality P2

obtained by the B2B (*) and B2B-NMPC (")
control strategies for Case 2 and objective J2.

Figure 12. The results of applying the B2B control
strategy for Case 2 and objective J2 for
batches 1, 7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sonding temperature trajectories. Solid line: B2B control,
dashed line: optimal control.
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Comparison results and discussion

For the first product quality objective P1 to maximize the
yield of b-form crystals, the optimal concentration trajecto-
ries for both cases are very close to the solubility curve of
a-form crystals, which is one of the constraints. This is due
to the slow growth rate of b-form crystals relative to the dis-
solution rate of a-form crystals. As a result, the optimal so-
lution is to maximize the supersaturation with respect to the
solubility of the b-form crystals while operating between the
two solubility curves. Consequently, the nature of the opti-
mal solution requires a control strategy that handles con-
straints well. For Case 1, the respective concentration and
temperature trajectories for the B2B and B2B-NMPC control
strategies in batches 1, 7, 14, and 20 are given by Figures 2

and 3. Both control strategies converge to optimality gradu-
ally and result in temperature and concentration trajectories
very close to optimal at batch 20. Figure 4 compares the
product quality P1 obtained by both control strategies for
batches 1 to 20. The product quality P1 obtained by the
B2B-NMPC control strategy has both faster and smoother
convergence than for the B2B control strategy, which has a
slight oscillation observed in batches 13 to 18. In addition,
the B2B-NMPC control strategy satisfied all of the con-
straints for every batch, whereas the B2B control strategy
violated one of the constraints during batches 5 to 8 (see
Figure 4). For Case 2, the concentration and temperature tra-
jectories for both control strategies in batches 1, 7, 14, and
20 are shown in Figures 5 and 6, where the convergence of
both control strategies to optimality is shown. The trend in
product quality shows similar observations as in Case 1 (see
Figure 7), with the B2B-NMPC control strategy resulting in
a faster convergence and satisfying all constraints, whereas
the B2B control strategy violated one of the constraints in
batch 2.

The product quality objective P2 is more sophisticated
than P1. For P1, the objective is to maximize the yield of the
b-form crystals, which occurs by operating at maximum
supersaturation to maximize the nucleation and growth rates
of the b-form crystals. In contrast, P2 is equivalent to maxi-
mizing the yield of the b-form crystals while minimizing
their nucleation, which results in a tradeoff that needs to be
maintained between the nucleation and growth rates of b-
form crystals. As a result, the trajectories that optimize J2
for both cases do not lie on either of the solubility curves.
For Case 1, Figures 8 and 9 show the concentration and tem-
perature trajectories for the B2B and B2B-NMPC control
strategies, respectively. Although there is some difference
between the temperature trajectories obtained by both control
strategies and the optimal temperature trajectory in batch 20,
the corresponding product quality P2 obtained by both con-
trol strategies are very close to optimal (within 0.2%, see
Figure 10). This comparison also suggests that the product
quality P2 is less sensitive to some variations in the tempera-
ture around the optimal temperature trajectory. As for P1,
the B2B-NMPC control strategy converged at a faster rate
than the B2B control strategy (see Figure 10).

Figure 11 shows that the product quality P2 in batch 20
obtained by the two control strategies for Case 2 are very
close to optimal (within 0.1%), despite the differences in the
concentration and temperature trajectories produced by the
two control strategies and the corresponding optimal trajec-
tories (see Figures 12 and 13). In addition, the convergence
of the product quality P2 obtained by the B2B-NMPC con-
trol strategy is much faster and smoother than that obtained
by the B2B control strategy.

Conclusions

An integrated NMPC and batch-to-batch (B2B-NMPC)
control strategy based on a hybrid model was developed for
batch polymorphic crystallization processes. The perform-
ance of the proposed control strategy for optimizing two
control objectives was evaluated for two cases of plant-
model mismatch. The first objective aimed to maximize the
yield of b-form crystals, whereas the second objective was

Figure 13. The results of applying the B2B-NMPC con-
trol strategy for Case 2 and objective J2 for
batches 1, 7, 14, and 20.

(a)–(d) concentration trajectories with the shading showing
the feasible region for the concentration; (e)–(h) the corre-
sponding temperature trajectories. Solid line: B2B-NMPC
control, dashed line: optimal control.
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to minimize the ratio of nucleated crystal mass to seed crys-
tal mass of b-form crystals. In a simulation study, the B2B-
NMPC control strategy produced better performance com-
pared to the standard B2B control strategy for all cases and
objectives considered. In addition to satisfying all of the
constraints, the convergence of the product quality obtained
by the B2B-NMPC control strategy was consistently faster
and smoother than that obtained by the B2B control strategy.
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