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This paper considers the model predictive control of dynamic systems subject to stochastic uncertainties due to parametric
uncertainties and exogenous disturbance. The effects of uncertainties are quantified using generalised polynomial chaos
expansions with an additive Gaussian random process as the exogenous disturbance. With Gaussian approximation of the
resulting solution trajectory of a stochastic differential equation using generalised polynomial chaos expansion, convex finite-
horizon model predictive control problems are solved that are amenable to online computation of a stochastically robust
control policy over the time horizon. Using generalised polynomial chaos expansions combined with convex relaxation
methods, the probabilistic constraints are replaced by convex deterministic constraints that approximate the probabilistic
violations. This approach to chance-constrained model predictive control provides an explicit way to handle a stochastic
system model in the presence of both model uncertainty and exogenous disturbances.
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1. Introduction

In recent years, stochastic programming formulations for
model predictive control (MPC, aka receding horizon con-
trol) have been intensively studied in the context of many
different areas of application including robot and vehi-
cle path planning (Blackmore & Ono, 2009; Blackmore,
Ono, Bektassov, & Williams, 2010; Blackmore, Ono, &
Williams, 2011), network traffic control (Yan & Bitmead,
2005), chemical processes (Li, Wendt, & Wozny, 2000;
Schwarm & Nikolaou, 1999; van Hessem & Bosgra, 2004)
and economics (Couchman, Cannon, & Kouvaritakis, 2006;
Herzog, Dondi, & Geering, 2007; Zhu, Li, & Wang, 2004).
In such control problems, stochastic models are represented
in terms of stochastic differential equations (SDEs) with
the stochasticity resulting from exogenous disturbances,
plant/model mismatches and sensor noise.

Robust MPC formulations can be categorised as being
either deterministic or stochastic, based on the representa-
tion of the uncertainties. Deterministic robust MPC (e.g.,
see Bemporad & Morari, 1999; Campo & Morari, 1987;
Wang, 2002 and references therein) analyses the stability
and performance of systems against worst-case perturba-
tions with the resulting optimisations being min-max prob-
lems that are computationally demanding to solve directly
and so are typically replaced by approximate solutions that

are more amenable to implementation. The worst-case per-
turbations may have a vanishingly small probability of oc-
curring in practice, but any such information on probabili-
ties is not taken into account in a deterministic formulation.
Analysis or design based on worst-case uncertainties can
be too conservative to be applied in practice, may result in
an over-design of process equipment, or can result in in-
feasibility during real-time optimisation. From a practical
point of view, it is rare that an engineer knows exactly what
value for hard bounds to specify on the uncertainty (e.g.
knows that the hard bound on uncertainty in a parameter
should be exactly 10.6% instead of 11.3%), and a small per-
turbation in these bounds can mean the difference because
a closed-loop system being robust to the uncertainties or
being unstable.

Most parameter estimation algorithms generate mod-
els with probabilistic descriptions of the uncertainties. For
such models, robustness characterisations are intrinsically
stochastic and can be written in terms of a probability distri-
bution or a level of confidence in estimates with probabilis-
tic risk of incorrectness. Contrary to deterministic robust
MPC, stochastic robust MPC incorporates such probabilis-
tic uncertainties and probabilistic violations of constraints,
and allows for specified levels of risk during opera-
tion. Commonly used probabilistic analysis approaches are
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Monte Carlo (MC) methods, in which many simulations are
run with sampled random variables or random processes.
The effects of uncertainty on the closed-loop system are
quantified by simulating a large number of individual de-
terministic model realisations. While such MC approaches
are applicable to most systems, the computational cost can
be prohibitively expensive, especially in real-time optimal
control algorithms such as MPC. Apart from simulation-
based methods, convex relaxations and approximations for
a receding horizon method of the constrained discrete-time
stochastic control are considered in Cinquemani, Agar-
wal, Chatterjee, and Lygeros (2011), in which convexity
of the resultant optimisation is carried out in the basis of
robust optimisation (Ben-Tal & Nemirovski, 2002; Bert-
simas, Brown, & Caramanis, 2011) that includes robust
linear programmes and more generally robust convex pro-
grammes (see Ben-Tal, Ghaoui, & Nemirovski, 2009 for
details of robust convex optimisation). However, such ro-
bust optimisation formulations of chance constraints are
not applicable to the cases when the stochastic dynamical
system has nonlinear parametric uncertainties, whereas this
paper can manage the system model that is linear parameter-
varying Gaussian, for which the system matrices have non-
linear dependence of random variables and there are addi-
tive Gaussian random processes corresponding to external
disturbance and measurement noise.

The high computational cost of simulation-based meth-
ods has motivated the development of computationally ef-
ficient methods for uncertainty analysis that replace or ac-
celerate MC methods (Ghanem & Spanos, 1991; Maitre &
Kino, 2010; Xiu, 2010). The MPC formulation in this pa-
per uses generalised polynomial chaos (gPC) expansions,
which is a spectral method to approximate the solution of an
SDE that has stochastic parametric uncertainties and exoge-
nous disturbances. Polynomial chaos expansions were first
introduced for turbulence modelling with the uncertainties
being Gaussian random variables (Wiener, 1938), with later
extensions considering other types of common probability
distributions (Xiu & Karniadakis, 2002). Recently, many re-
searchers have demonstrated the use of (generalised) poly-
nomial chaos expansions as a computationally efficient al-
ternative to MC approaches for the analysis and control
of uncertain systems (Fisher & Bhattacharya, 2009; Hover,
2006, 2008; Kim, 2013; Kim & Braatz, 2012b; Nagy &
Braatz, 2007, 2010). In Fisher (2008) and Fisher and Bhat-
tacharya (2011), the gPC expansion is applied to formulate
optimal trajectory generation problems in the presence of
random uncertain parameters.

This article also presents several probabilistic collision
conditions that are functions of the mean and covariance
of the trajectory. We show that a gPC expansion that can
provide an approximation of the solution of an SDE, in
which both system parameters and exogenous disturbances
are stochastic, converges in the mean-square sense as the
number of terms in the expansion increases. The proposed

approximation results in a convex optimisation for the con-
trol policy that does not use any sampling and is amenable
to online computation.

This paper is organised as follows. Section 2 presents
some mathematical background on gPC expansions. Sec-
tion 3 states a stochastic MPC formulation with a chance
constraint and Section 4 presents several probabilistic con-
ditions in terms of chance constraints in which the condi-
tions are functions of the mean and covariance of a random
variable. The main results are presented in Section 5 where
a gPC expansion is used in place of the exact solution of
an SDE in the MPC formulation, which enables the control
policy to be computed as the solution to a convex optimisa-
tion under the assumption that the computed approximate
solution in the presence of stochastic parametric uncer-
tainties and exogenous disturbances is Gaussian. Section
6 provides a numerical example to illustrate the proposed
approach for stochastic MPC of dynamic systems subject
to stochastic parametric uncertainty and exogenous dis-
turbance. Section 7 presents heuristic convex semi-chance
constrained MPC problems using gPC expansions and dis-
cusses several issues related to gPC expansion theory and
associated computations. Section 8 concludes the paper.

Notation

The following notation is used throughout this article:
(-, -) is the inner product in a Hilbert space H; Pr is the prob-
ability; E or (-) is the expectation or mean; Var or X, isthe
variance or covariance; N (a, b) is the Gaussian distribution
with the mean a and the variance b; U(S) is the uniform dis-
tribution with the support set S C R”; the symbol ~ means
“distributed as;” and erf(-) is the Gaussian error function.
For a given sequence of vectors x; € R", col(x;) refers to
[xlT, . ,)cg]T € R" where n = Zf=1 n;. The matrix with
diagonal blocks formed with matrices 41, ..., 4,, and the
other entries are all zeros is denoted by diag(4,, ..., 4,).
S" € R™*" refers to the set of real symmetric matrices and
its subsets S’} and S| | are used to denote the set of positive
semidefinite and definite matrices, respectively. We also use
A>0forAeS| and4 > 0forA eS|, .

2. Theoretical background
2.1 Characteristics of gPC expansions

Polynomial approximations are commonly used when im-
plementing functions on a computing system with the ba-
sic assumption being that a finite sum of polynomials can
accurately approximate a function of interest. For poly-
nomial approximations, orthogonal polynomials are often
used, with their properties reviewed below.

2.1.1 Orthogonality

Consider a measure space (X, M, u) where X is a
nonempty set equipped with a o-algebra M and a measure
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w. A set of orthogonal polynomials {¢,(x)} for x € M is
defined by the orthonormality relation

lifn=m,
0 otherwise.

(. ) 2 /X G0 ()b (x) = { (1)

2.1.2 Recurrence relation

Any set of orthogonal polynomials {¢,(x)} on the real line
satisfies a three-term recurrence formula (Ball, 1999)

Xp(x) = api1Pni1(x) + bpdu(x) + anpp_1(x) 2

forn=0,1, ... Along with ¢_,(x) = 0, this formula holds
consistently and ¢ is always a constant.

2.1.3  Parameterisation of random inputs

For any analysis of a stochastic system, the random inputs
must be specified and characterised appropriately.

2.1.3.1 Random variables. Consider the concatenated
parameter vector 6 : Q — ©® C R™ that is a random vector
defined on the events 2, where the set ® is assumed to be
known. The true parameter 0* that is a realisation of a ran-
dom variable 6 is assumed to be in the set, and the statistics
of the random variable 0 is known. For a given probabil-
ity distribution of a random parameter of a system, the
first step of analysis using a gPC expansion is to transform
the parameters to a set of independent random normalised
variables known as standard random variables (Isukapalli,
1999). Performing this step involves finding a diffeomor-
phism T & — O such that 8 = 7(¢) for ¢ € E and the state
of a stochastic model x has equivalent representations x(z,

t, 0(w)) = x(z, 1; {(@)).

2.1.3.2 Random process and the KL expansion. The
inputs of a system can also be random processes. The
Karhunen-Loeve (KL) expansion has been used to represent
the stochastic input quantities in stochastic systems and is
compatible with spectral methods for system identification
and analysis using gPC expansions; i.e. the KL expansion
provides a natural way to parameterise the random process
inputs so that such a parameterisation can be exploited in
the spectral analysis to construct basis functions. The de-
tails of KL expansions are not presented here due to limited
space; readers are referred to Ghanem and Spanos (1991),
Maitre and Kino (2010), Xiu (2010).

2.2 Universal approximation and convergence of
polynomial expansions

The Hermite polynomial chaos expansion has a univer-
sal approximation property for expanding second-order
random processes in terms of orthogonal polynomials

(Cameron & Martin, 1947), and second-order random pro-
cesses are processes with finite variance, which applies to
most physical processes (Xiu & Karniadakis, 2002).

Theorem 2.1 Cameron-Martin Theorem (Cameron &
Martin, 1947): For any functional f in a Hilbert measure
space (X, M, 1), there exist a set of polynomials {¢;} and
constants {a;} such that

lim. /X (FG) = fuPdux) =0, ()

where fN(x) = Z?]:O a;¢i(x) and a; is obtained from the

Galerkin projection a; = ﬁ‘f;f"‘g

The proof of this result is not trivial (interested readers
are referred to Cameron & Martin, 1947). The rate of con-
vergence depends on the smoothness of the function f'and
the type of orthogonal polynomial basis functions {¢; } used
for approximation, and this subject has been heavily stud-
ied (e.g., see Newman & Raymon, 1969; Xiu, 2010). The
limiting behavior of the approximation error || f — fN | is
O(N~P) where p denotes the differentiability of the function
f: X = Y and O(¢) (recall that O(¢) — 0 as € — 0). For
an analytic function f, the convergence rate is exponential,
ie. || f — fN|| is O(e~*") for some constant o > 0.

3. Problem statement

Consider a stochastic discrete-time linear parameter-
varying system:

Xi41 = A)x; + Bu(8)u, + By (8w, “)

where § € A denotes the concatenation of the paramet-
ric uncertaintiesand A : A — R"™", B, : A — R"™"™ and
By, : A — R™" are uncertain system matrices. Assume
that w € R is a Gaussian white-noise process with known
distribution, and the initial state xo and uncertainty § are
random variables with known probability density functions
(pdfs). Under this stochasticity of parameters and distur-
bance, the solution trajectory of system (4) is a random
process for which the main goal of analysis is to compute
or approximate the statistical properties and the main goal
of synthesis is to drive the random process x; to have a
desirable statistics.

In finite-horizon stochastic MPC, the goal is to deter-
mine a control policy = (ug, ..., ur) that solves the
optimisation

min J(i()s EX()! MT)
KT

s.t. X1 = A(8)x; + Bu(8)u; + By (S)wy,

i = Cx:, Prly: ¢ F,] = B,

u; e, forr=0,...,T,

wtwfwa (S""f(g, xONfX()? (5)
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where F, denotes the forbidden region for the output y; and
B is a lower bound of probabilistic collision avoidance.'

4. Feasibility of chance constraints: probabilistic
collision checking

This section presents four different ways of formulation of
chance constraints corresponding to probabilistic collision
avoidance. In particular, for a motion-planning problem for
amobile system, it is necessary to impose constraints on the
(controlled) state or output variables. Such constraints have
the form of a vector inequality n(x) <0, wherex € X C R”
refers to the state variables and the function 5 : R* — R,
Due to stochastic nature of the state variables, it is natu-
ral to introduce so-called chance constraints of the form
Pr[n(x) < 0] > a where « € (0, 1) denotes a level of confi-
dence. For a probabilistic collision avoidance problem, the
formulation of chance constraints depends on the represen-
tation of obstacles and mobile agents that have stochastic
uncertainty.

4.1 Obstacles as point masses in a
large work space

The probability of collision to obstacles at time ¢ and in the
work space W C R™, ny < 3, can be defined as (Lambert,
Gruyer, & Pierre, 2008; Toit & Burdick, 2011)

e [ [ an ). ©

where F,( -, -) is the joint cumulative distribution function
(cdf), the indicator function for collision is defined by

v ay o |1 for X(x") () Aa(x?) # 4,

Le(x™, x%) = { 0, otherwise, N

Xy(x") and X, (x%) are the regions occupied by the vehicle
and the obstacle whose global reference coordinates are x"
and x?, respectively. Equipped with this definition of proba-
bilistic collision, the chance constraint Pr[y; ¢ F,] > B in
(5) can be rewritten as P¢ < 1 — . Consider the obstacles
as point masses, which occurs when the volume of X, (x")
is much smaller than the work space W for all x” € W and
the volume of &, (x¢) is O for all x* € W.

Lemma 4.1 (Lemma 1 in Toit and Burdick, 2011): For
obstacles as point masses, suppose that x* ~ N (X', )
and x* ~ N(%%, X,) are independent Gaussian random
variables. Then P° < 1 — B can be rewritten as the con-
straint on (XV, Xy, X%, Xya):

& -2 1E -5 > -2In (

3 /det(2m zx)> ,

(7)
where Xy, = Xy + Xy and Vy, is the volume of the vehicle.

v

The constraint (7) is not convex in (xV, x*) even for
a fixed B, but is concave in (X", %) due to positive defi-
niteness of the inverse covariance matrix £, '. However, a
method of semidefinite programming (SDP) relaxation can
be used to check its feasibility and solve related optimisa-
tions approximately.

Convex relaxation: Suppose that xV is affine in the
control input u, i.e. X = Mu + b with an appropriate ma-
trix M and a vector b of compatible dimensions. Then the
inequality (7) can be rewritten as

Tell]er = ool

— Tr(QU) >y, U =0,
U]] = l, Rank(U): 1,

where Q > 0 and y can be appropriately computed from
(7). Suppose that a convex quadratic constraint of the form
utQu + qlTu + q10 < 0 with O > 0 is imposed on the
control input. Minimising the probability of collision under
that quadratic constraint can be represented as the optimi-
sation

max Tr(QU)
U

s.t. TH(QU) <0, U >0, Uy, = 1, Rank(U) = 1,
)]

where the symmetric matrix Q) satisfies the relation
T
[1] 9 [,i] =ulQu+ qlTu ~+ g10. It is well known that

u

removing the rank constraint Rank(U) = 1 in this particular
optimisation does not change the optimum value, i.e, the
corresponding SDP relaxation is exact (Nesterov, Wolkow-
icz, & Ye, 2000). Next, consider a similar problem with
the box-type constraints |i;] < 1 for i = 1, ...n, in the
place of the quadratic constraint on . Then minimisation
of the probability of collision can be represented as the
optimisation

max Tr(QU)

stU;<1,i=2,....n,+1, (10)
U>0, U)=1, Rank(U) = 1.

The associated primal SDP relaxation is the same as the
optimisation (10) without the rank constraint, and its sub-
optimality is bounded by

* *

Y <V < 5V (1)

Y]

where y* refers to the optimal value of (10) and ys*dp refers
to the optimal value of the primal SDP relaxation (Nesterov,
1998; Nesterov et al., 2000).
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4.2 Probabilistic safety regions

Instead of quantifying the probability of safety by 1 — P,,
consider the dual definition of probability of safety:

ps 2 / | / L0 ) dFo (20 x) . (12)

where x° is a global reference coordinate that characterises
a virtual safety region X;(x*) and the joint cdf F,; and
the indicator function /; follow similar definitions as in the
previous section. With this definition of probabilistic safety
regions, the chance constraint Pr[y, ¢ F,] > 8 in (5) can
be rewritten as P’ > B. Consider the obstacles as point
masses, which is a case when the volume of X, (x") is much
smaller than the work space W for all x” € W and the safety
region X;(x*) defines a point or a sequence of points in .

Lemma 4.2: For point-mass obstacles, suppose that x¥ ~
NP, Zw) and x5 ~ N(X5, £,5) are independent Gaus-
sian random variables. Then P; > B can be rewritten as the
constraint on (XV, Xy, X°, Xys):

@ - 'F@ - %) < 2 <éw/det(2n2x)) ,
) (13)
where ¥, = X + Xy and V,, is the volume of the vehicle.

The constraint (13) is convex in (x¥?, ¥*) for a fixed 8 €
[0, 1].

4.3 Obstacles as linear constraints
in a work space

Consider the concatenated system output y;. The forbidden
region for the system output can be defined as a union of N
linear inequality constraints that is a nonconvex polyhedral
set

F, 2

1

N
{y:hly=bi}. (14)
=1
Assume that y ~ N(3, ¥,) and define n; £ h]y, which is
a univariate Gausian random variable with mean 7; = th y
and variance ¥,, = h! Z,h;. The idea of risk allocation
proposed by Ono and Williams (2008) and Blackmore and
Ono (2009) can be used to derive a conservative convex
condition for the constraint (14).

Lemma 4.3 (Lemmas 1, 2, and 3 in Blackmore and Ono,
2009): Consider a chance constraint Pr[y ¢ F,]1 > B or
the equivalent condition Pr[y € F,] <1 — B where F, is
defined in (14). Then the feasibility of the constraint

Prln; > bl <€, ¢ €0, 1), and Y e =1-p (15)

L

implies the feasibility of the constraint Pr[y ¢ F,]1> B.

Furthermore, Prn; > b;] < ¢ < 1(1 — erf(%)) <

€;, and the constraint (15) is convex in (1);, €;) for B > 0.5.

Alternatively, consider the forbidden region for the sys-
tem output defined as an intersection of N linear inequality
constraints that is a convex polyhedral set

N
Fo& My hly <bi}. (16)
i=1

In this case, the nonconvex chance constraint Pr[y ¢ 7] >
B can be replaced by the relaxation

Pr[ﬁi>bi]26,‘, 6,‘6(0,1), fori=1,..., N, (17)

where €; are appropriately defined functions of 8.

Lemma 4.4: With the condition €; > 0.5 incorporated into
the constraint (17), the combined constraint is convex in
(i €).

Proof: Pr[n; > b;] is a concave function in #; > b;, and
for €; > 0.5, the feasibility of the constraint (17) necessarily
requires 7; > b;. Thus, if (77}, €}) and (777, €?) are feasible
solutions of the constraint (17) and eij >0.5,j=1,2, then
(71}, €") is also a feasible solution for all A € [0, 1] where

the superscript A refers to the A-convex combination of the
feasible solutions with the superscripts 1 and 2. O

Imposing additional linear constraints on €; does not
change the convexity of the combined constraint. For ex-
ample, additional constraints €; > £(8) could be introduced
in which £:= —[0.5, 1) is a nondecreasing function. How-
ever, the most practically useful functional form for the ¢
is not obvious. One functional form that may be useful
is £(B) = ¥/B, in which case 8 > 0.5" would satisfy the
constraint €; > 0.5.

5. Efficient approximation of feasibility
of probabilistic constraints

The previous section presented methods for formulating
chance constraints for probabilistic collision avoidance un-
der stochastic uncertain circumstance and model uncer-
tainty. Under the assumption that the state (or output)
variables are jointly Gaussian random variables, the resul-
tant chance constraints involve imposing constraints on the
mean and covariance of the state. However, the state of the
system model (4) is not Gaussian and even computations
of its mean and covariance can necessitate sampling-based
evaluation such as Monte Carlo simulation. This section
presents and analyses methods for approximate uncertainty
propagation in a stochastic dynamical system (4) that are
based on generalised polynomial chaos expansions. The
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methods provide numerically tractable computations of the
mean and covariance of the controlled state variables for
which closed-forms of the approximate mean and covari-
ance can be obtained and the associated chance constraints
can be efficiently evaluated.

5.1 Approximation of uncertainty propagation

Consider the concatenated parametric uncertainty 6 :=
[x4,8T]". Suppose that there exists a diffeomorphism
T:E—>O®=AxXsuchthat 0 = T(¢) and { € E is
a standard random variable. For application of the spectral
method based on gPC expansions, assume that the solution
of the SDE (4) has the form

p—1
X X 321 = Z‘Pz(C)X: (18)
i=0

which is an approximation of the true solution x with p basis
functions from the set {¢;}. Obtaining the approximate so-
lution X involves determining the time-varying determinis-
tic coefficients X'. To do this, substitute the approximation
% into x of the SDE (4) and solve for the X! by intrusive or
non-intrusive projections onto the probability space of the
random variable ¢ whose cdf is given by F;. In particular,
applying Galerkin projection (Maitre & Kino, 2010) results
in another SDE

Xt+l - GXXI + Guut + wata (19)

where X, :=col(X!) € R"”, the initial condition X} =
(@i(2), x0(¢)), and the matrices G.) are computed from the
inner product (1) defined on a measure space (2, M, Fy)
for the Galerkin projection. The concatenated variables of
interest over the time-horizon satisfy the equation

Xo.r = HxXo + Hyuo.r + Hywo.r, (20)

where Xo.7 := col(Xy, ..., X7) and the matrices H(, have
closed forms in terms of the matrices G, in (19). From the
assumption of Gaussian white noise w,, the concatenated
coefficients X, is a Gaussian random process resulting in a
Gaussian random variable Xj._r with mean and covariance

Xor = HxXo + Hyuor + HyWor,
Yxor = HxZx,Hy + Hy Xy, H

Wo.r “Fw *

2

The following proposition shows that the mean and co-
variance of the approximate solution x, have closed-forms
with respect to the mean and covariance of the coefficients
of a generalised polynomial chaos expansion given in (21).

Proposition 5.1: The concatenated approximation of the
solution X7 satisfies

E[Xo.r] = KxXo + K,uo.r + Ko7, (22)

where the matrices K are functions of Gy and H), and
there exists an affine surjectivemap Q : ST+ — §uT+)
such that

Sty = QAT x,,)- (23)

Proof: The proof is straightforward. Consider an approx-
imate solution using a polynomial expansion (18). Due to
independence of the random parameter 6 and the random
process w, its expectation is E[%;] = E[¢(¢)" ® 1,]JE[X,]
where the first expectation is computed w.r.t. the ran-
dom vector ¢ and the second expectation is computed
w.r.t. the random process w;. Since the coefficient X,
is linear and has affine dependence on the control in-
put u, and the external disturbance w,, the concate-
nated approximate state E[Xo.r] is of the form given
in (22). Similarly, the variance of the approximate state
E[£,%] can be rewritten as E[(¢(¢)" @ L)X, X[ (¢(0)" ®
1)'] or equivalently, E[X,$(0)¢(0)"X!] = E[X,dX]]
where ® £ E[¢(0)$(¢)'] and X, 2 [X°, ..., X/ '] €
R™P. From orthonormality of the basis functions, let ®
= I, without loss of generality. The (k, £) element of the

matrix E[£,#7] = E[X, X[ Tis 07 X/ X/, and X/ X/,
is an element of the matrix E[X, X]. Therefore, E[£, %] is
an affine function of E[X,X[], which is equivalent to the
concatenated covariance matrix X3, being an affine func-
tion of Xy, . The corresponding mapping is a projection
that is surjective. O

The random process X, is Gaussian such that the mean
and covariance given by (21) exactly characterise the proba-
bility distribution of X; for all 7, whereas the approximation
X; to the solution x; is not necessarily Gaussian, due to the
additional randomness of the parameters (xy, §). However,
the mean and covariance of x; can be approximated by the
mean and covariance of X, given by (22) and (23). More
precisely, the next proposition shows the convergence of
the approximation error in the mean-square sense.

Proposition 5.2: Consider the solution trajectory x, of the
system (4) and its approximation X, using a gPC expansion
given by (18) whose coefficients X, solve (19). Assume that
the random variables (xy, §) are independent of the random
process w; and X, is a second-moment process.” Then || x; —
X |l = ms. 0 pointwisely in t as p — oo, where || - || can be
any vector p-norm.

Proof: An approximation X, can be explicitly rewritten as
Zf:_()l #i(¢(x0, 8)) X! (wo,—1). From Theorem 2.1, for any
realisation of the random variable wq,_; € W', where W
is the support of w, and € is greater than zero, there exists
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peN such that [ lx — Y/ ¢i(0)Xi(wor 1)l
du;(¢) <€ for all p> p, where p, is the probability
measure of ¢. The € is a function of wg,_;. Due to the
linear dependence of x; and Xf on wq.;—1, which follows
from (4) and (19), € = ew,,_,wo,—1 where € > 0 is an
arbitrary constant that is independent of wq,_ . This
implies that the mean-square approximation error is
bounded above:

J. L

T
< G/ wo;t,1w0:t—ldﬂw(w0:t—l) <eM,
Wl

2

d e (0)d poy (wo:r—1)

p—1
X = Y $iO)X(wos 1)
i=0

where 1, is the corresponding probability measure of the
random variable wq.,_; and M < oo whose boundedness
follows from the second-moment assumption of the random
process w,. Since € > 0 is arbitrary, the convergence is
ensured. O

Furthermore, if the system matrices are analytic func-
tions of the random variables (x¢, §) then the convergence
rate of the approximation error ||x; — x| to 0 in mean-
square is exponential, which follows from the solution tra-
jectory x, being an analytic function of (xy, §) under those
assumptions.

5.2 Gaussian approximation and convexifications
of chance-constrained MPC: information
theoretic justification

For a Gaussian random process y; (or x;), Section 4 shows
that the chance constraint corresponding to probabilistic
collision avoidance Pr[y; ¢ F,] > B can be rewritten as
conditions in terms of its mean y, and covariance X, . In
particular, conditions (13), (15) and (17) are jointly convex
in y, (or x;) and the other decision variables (¢;), under some
mild assumptions.

However, the solution x; of the system dynamics (4) and
its spectral approximation x, given in (18) are not gener-
ally Gaussian random processes that make the optimisation
(5) difficult to solve in the sense that the chance constraint
does not have a closed-form expression and its feasibil-
ity is hard to check. To avoid the use of any sampling or
simulation-based methods to evaluate the feasibility of the
chance constraint Pr[y, ¢ F,] > B, the approximate solu-
tion X; is substituted in the place of x, and Gaussian fitting of
the random variables under consideration is applied. More
specifically, assume that £; ~ N (f,, 2,), for which there
are closed-form expressions given by (22) and (2_3).3 A the-
oretical justification of this assumption £, ~ N(%;, £z, ) can
be made from the principle of maximum entropy (Cover &
Thomas, 2006, Chap. 12). Maximum entropy can be used
to determine or approximate a probability distribution that
incorporates only known information. If only the first and

second moments of X, are used to approximate its probabil-
ity distribution then the maximum entropy distribution has
the form N ()?,, 3 ), i.e. a Gaussian distribution. Further-
more, since X, converges to x; in the mean-square sense as
the number of basis functions increases, the approximate
probability distribution N'(%;, ;,) can be made arbitrarily
close to the probability distribution of x, that maximises
entropy subject to the constraints corresponding to the first
and second moments.

Proposition 5.3: Consider the solution trajectory x; of the
system (4) and its approximation X, using a gPC expansion
given by (18) whose coefficients X; solve (19). Assume that
the random variables (xy, §) are independent of the random
process w; and X; is a second-moment process (for notation
convenience, the subscript t is dropped from here on). Sup-
pose that a probability density f* solves the optimisation

m}a}x —[ f(x)log f(x)dx
s
s.t. f(x) >0, /f(x)dx =1, (24)
s

/f(x)x"dx =M;, i=1,2,
N

where S denotes the support for the random variable x,
and M| and M, correspond to the given first and second
moments, respectively. Then an approximate Gaussian dis-
tribution fz £ N(X, ;) obtained from the solution of (19)
converges to f* as p — o0 in the Li-norm sense, i.e.,

lim f () — fr)ldx = 0.
p—> fg¢

Proof: Due to limited space, consider the scalar case (the
extension to the multivariable case is straightforward).
From the principle of maximum entropy, a unique f* has
the form of e’ 2" that corresponds to a Gaussian
distribution. Similarly, fz is a unique maximum entropy
distribution that solves the optimisation (24) with given
approximate moments ]\;l,-, i = 1, 2, in the place of M;
and can be rewritten as e’ *1¥+2*" for some constants
A j»J =0, 1, 2. Since convergence in mean-square im-
plies convergence in distribution and M; can be arbitrar-
ily close to M; as p — oo from Proposition 5.2, this im-
plies that lim,_, o, max; [A; — A i1 = 0. Therefore, for any
arbitrary constant € > 0, there exists p € N such that
min{e, e™¢} < fz(x)/f*(x) < max{e¢, e~ ¢} uniformly in
x € Sforall p > p. This implies that f, converges to /* in
the £;-norm sense as p — o0. U

Remark 1: The above Gaussian approximation is a sub-
optimal way to estimate the probability distribution of x;,
which produces convex chance constraints that are more
computationally tractable by ignoring the extra information
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in the higher-order moments of x,. This method of approxi-
mation has the same characteristics as the extended Kalman
filter (EKF) and unscented Kalman filter (UKF) that are
widely used in practical applications although there are no
theoretical guarantees that those estimation methods will
always work well or even converge.

Using the Gaussian approximation, the design problem
reduces to finding a control policy w7 (or ug.r) that solves
the optimisation

mln J(XOs E)(o! MT)

wr

s.t. Xor = KxXo + Kuuor + Kyibor,
2:Jeo:r = Q(EXO:T)’
Ror ~ NGor, Tipp) Yor = (B_C)xo.r,
(yO:T’ 2:,\'o:r) € ]:(:3) or (yO:Ta Eyo;rs 6) € ]:(:3)’

Uuo.r € Z/[TJrl s

(25)

where the matrices K and Xx,,, and the injection map
are precomputed, ®;_,C £ diag(C, ..., C), and the con-
straints F(8) can be one of the sets:

{(v. Zy) : Equation(13), ¥' =y, &, = £,};  (26)
{(y, X, €): Equation(15), 1 =y, ¥, = Ey} ;0 (27

{(y, Xy, €): Equation(17), 1 =y, ¥, = X, € > 0.5},
(28)

where € = col(¢;), 8 > 0.5 is required for the second feasible
solution set to be convex in (y, €), and the first and the
third sets are convex in y and (y, €), respectively. With
the standard performance specification that the objective
function Jis convex quadratic in w7 and the set/ is a convex
polytope, the optimisation (25) is a convex quadratically
constrained quadratic program (QCQP) when F(8) is given
by (26) and a convex nonlinear program when F () is given
by (27) or (28).

6. A demonstration example

This section compares the accuracy of the proposed gPC-
based MPC formulations for a numerical example. Con-
sider the parametric uncertain linear time-invariant system

_[0.9+ 18 0.1 0.25 — 028 1
x’“‘[ 0.1 0.85] it |:()_75+p282 “tlos |

with initial condition xo = [20, 10]T, p; = 0.001 and
02 = 0.05 are weights on normalised standard random vari-
ables §; ~ N(0, 1) and 8, ~ N(0, 1), respectively, and the
exogenous process noise w; ~ A(0, 0.001) is assumed to
have autocorrelation E[w,w;] = 0 forall ¢ # 5. This example

12

10 |

Obstacle
sl
N

T2
4k

0 2 4 6 8 10 12 14 16 18 20
T

Figure 1. A controlled trajectory produced by the proposed
stochastic MPC formulation. For description of the forbidden re-
gions at each step of receding horizon control design to avoid
obstacle collisions, the linear inequality constraints (14) are used.
To do this, only partial linear constraints are imposed at each
computation of receding horizon control input, whereas the full
description of the obstacle in this example is indeed an intersection
of linear constraints.

computes the control inputs by solving the optimisation
(31), for which the covariance constraints are imposed
based on the 99% level of confidence for collision avoid-
ance, and comparing the probability of collisions obtained
from different methods presented in the paper. Consider O,
= diag{100, 100} and R, = 1 for all #, a prediction horizon
of T'= 4, and input constraint u, € [ — 0.5, 0.5]. The con-
straints are constructed from the obstacle shown in Figure 1.
The resultant controlled system trajectory generated by a
system model with fixed parameters § = [0.01,0.05] and
randomly chosen exogenous disturbances w; is shown in
Figure 1, which avoids the obstacle as desired. Figure 2
shows Monte Carlo simulations with 5000 samples of (4,
w), which indicates that the stochastic MPC algorithm was
effective in avoiding the obstacle while allowing the closed-
loop trajectory to become rather close to the obstacle so as
to optimise the closed-loop performance objective. Figure 3
compares the computed probabilities of collision using the
methods presented in this paper with the probabilities quan-
tified by the Monte Carlo simulations. At each time the
probability of collision obtained by the gPC expansion is
very close to the value computed using either Monte Carlo
applied to the original system or Monte Carlo applied to the
convex relaxation. The approximate probabilities of colli-
sion follow nearly identical trends to the true probabilities
while enabling the optimal control problem at each time
instance of MPC to be computed from a convex program
that can be solved in polynomial-time.*

To further assess the accuracy of the gPC expansion,
let Z™¢(¢) and XY°(¢) be the computed covariance of the
controlled system trajectory obtained from Monte Carlo
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Obstacle

B ) 5 10 15 20
1

Figure 2. Monte Carlo simulations. The red dots correspond to
simulated states at each 4th sampling instance for 5000 samples.
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Figure 3. A comparison of the computed probability of colli-
sion during the first 20 [sec] of simulation for the true system and
the approximation using a gPC expansion, estimated using Monte
Carlo (MC) simulations where the error bars were obtained from
1000 Monte Carlo simulations with different sets of 5000 sam-
ples. The blue circle refers to the MC simulation result and the
red box refers to the collision probability that is obtained from the
MC simulations with the convex relaxation (15). For both compu-
tations, the corresponding error bars were generated at the 95%
confidence level. The widths of the computed confidence inter-
vals were smaller than 1077, which is negligible compared to the
collision probability. The black star refers to the collision proba-
bility obtained from the presented gPC method that incorporates
the convex relaxation (15).

simulations with 5000 samples of (§, w) and the polyno-
mial chaos expansion with a specified order of Hermite
polynomials, respectively. Table 1 compares the worst-case
deviation of maxo<;<eo || Z™() — ZY°(¢)||r, where || - |Ir
denotes the Frobenius norm, for different degrees of Her-
mite polynomials. The approximation error of the covari-
ance matrix is small and, as expected from the theoreti-
cal analysis, the error in the state covariance matrix de-
creases as the number of terms in the polynomial expansion
increases.

Table 1 Covariance approximation errors for different degrees
of Hermite polynomial expansions.

Degree of Hermite

polynomials Jnax IZ7@) — )l r
15t ~1.0001 x 1073
ond ~6.0878 x 107
3rd ~5.3627 x 107
4th ~2.8365 x 107

7. Discussions and further remarks

7.1 Approximate solution using spectral methods
with the KL expansions

This paper considers two sources of uncertainties: (1) para-
metric uncertainty and (2) exogenous disturbance. Uncer-
tainty propagations induced by parametric uncertainty are
approximated by using a gPC expansion and additive ex-
ogenous disturbances affect the coefficients of the resultant
gPC expansion. Another possible approach to the same
problem is to use a KL expansion to approximate the ran-
dom process wy, i.e. replace the random process w; by its
principal component approximation with random variables
and solve a larger dimension deterministic ordinary dif-
ferential equation (ODE) to approximate the true solution
x;. This approach requires higher online computational ex-
pense as the dimension of a deterministic ODE increases,
even though the system data for such an ODE can be
precomputed.

7.2 Heuristic convexification methods for chance
constraints with stochastic parametric
uncertainty

Here the convexification methods are illustrated for the
prototypical stochastic MPC problem

T

Lglrlfll E |:I_ZI x;Ttht + u,T_1Rz—1uz—1:|

st X1 = A@®)x, + B(O)uy, (29)
Pra[Hx; > b] < €,

Umin,s = Uy = Umax,zs

with the stochastic uncertainties § (the incorporation of the
external noise perturbation is straightforward as described
in the theoretical sections of this paper but not included in
this example to shorten the presentation). The constraints
are defined over the time interval [1, 7] for x; and [0, 7 — 1]
for u,, and this time interval consideration is omitted here
for notational convenience and will always be clear from
the context. The optimisation (29) is further simplified
by replacing the chance constraint Pra[H;x; > b;] < ¢ by
HE[x;] < b, — B; where B8, > 0 is an additional decision
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variable. By doing this, optimisation (29), in which the dy-
namic constraint is an SDE, reduces to the deterministic
optimisation

T

T
omin (X 0X; + ul Reyui) =y YU
L t=1

st. X,41 = FX, + Gu,,
coH, X! + B < b, i > 0,

Umin,¢ <u; < Umax,1 5

(30)

where x; in the constraint of optimisation (29) is approxi-
mated by %, in (18), 0, = E [(¢(2) ® L,)T Q/(¢(2) ® 1)],
co2(1,¢0(2)), #()=col(¢;), y > 0is auser-defined weight
in the optimisation that corresponds to the maximisation of
the feasibility of the chance constraint Pra[ H,x; > b;] < ¢,
and ¢(B,) is an incentive for decision variables to maximise
the feasibility of the chance constraint Pra[H,x; > b;] <
€;; a typical choice can be Z;":l Bi.i or max;fB, ; that is
linear in B, where B;; is the ith entry of B .>The con-
strained optimisation (30) is a convex QP that can be solved
efficiently.®
For a different formulation of constraints, consider con-
straints on the deviation of the solution trajectory from the
expectation:
T
min > X[ 0. X, +u R,y
r=1

uo:r—1

st. Xiv1 = FX, + Guy,
cOH,X? < by,
(XD'WX] = (coX7,)* < o)

i

(€2))

Umin,t = Ur = Umax,t,

where Q, and ¢, are the same as defined before,
W=diag(||¢;]1*), and X! denote the concatenation of co-
efficients of the polynomial expansion for the ith state.
The constant vector ¢y and matrix W can be assumed
to be normalised to be 1, and I, without loss of gen-
erality. The constrained optimisation (31) is a convex
QCQP that can be solved efficiently. More precisely, it
is not hard to see that optimisation (31) can be rewritten
as

min Qo(u) s.t. Q(u) <0, i=1,....m,,  (32)

where u £ up.7_; and Q; are convex quadratic forms
for all i = 0, 1, ..., m,. From Megretski and Treil
(1993),7if the constraints Q; < 0 are regular, i.e. satisfy a
constraint qualification such as Slater’s condition (Boyd &
Vandenberghe, 2004, Section 5.2.3), then the static optimi-

E[z]
U_3 Bounds on Var[z]
O Bounds on E[z,]
»%  True x;

Figure 4. A schematic cartoon of constrained state trajectories
with semi-chance constraints.

sation (32) has the same optimum as the optimisation
maxmin Qo(u) + ) _ % Qi(u) (33)

for which fixing arbitrarily large A; > 0 results in the same
optimal solution u#* as obtained from solving the constrained
optimisation (32).

The conceptual picture of a constrained trajectory in
Figure 4 shows how the constraints in (31) can be used to
impose desired bounds on the controlled trajectory.

7.3 The use of concentration-of-measure
inequalities for probabilistic validation
certificates of joint chance constraints

This section shows that the Boole inequality can be incorpo-
rated into some well-known concentration-of-measure in-
equalities to provide probabilistic validation certificates for
joint chance constraints. Consider the constraint H TX < b,
or equivalently hl.TX <b;fori=1,..., m where Xis aran-
dom vector and /4; denotes the ith column of the matrix
H. The associated probabilistic constraint can be written
as Pr[H"X > b] = Pr[U",{h] X > b;}]. The Boole in-
equality gives an upper bound on this probabilistic violation
of constraints:

m m
Pr|: [hfXx > b,»}i| <Y Pr[afX >b]. (34
i=1 i=1
Suppose that b; > 0 for all i = 1, ..., m without loss
of generality. Some concentration-of-measure inequalities
can be used for upper bounds on the right-hand side of (34)
(Boucheron, Bousquet, & Lugosi, 2004):

sihTx

e The Chernoff’s bound: Pr[r]X > b;] < %
wheres; > O foralli=1,..., m.
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e The generalised Markov inequality:
Pr[hlX > b;] < %}Z)}O] where ¢; : R — R, for
alli=1,..., m.

e The Chebyshev inequality:

T T )
Pr[|h]X — E[A]X]| > 1] < Var([};i X) _ WIVar(Oh

2
I

Here we use the Chebyshev inequality.

Proposition 7.1: If the random vector X satisfies the con-
Straints on its expectation and variance

hIX < bi, hIVar(X)h; <t?e;, i=1,....,m (35)

then the inequality H'X < b + t is satisfied with at
least probability 1 —3"!" | €;, ie, Pr [HTX <b+ t] >
=301 .

Figure 5 illustrates the outer polytopic certificate (col-
ored in red) for the associated chance constraint PrfHT X >
b] < ewith) " | € < €. The polytope colored in blue cor-
responds to the constraints on the expectation of the trajec-
tories. Such certificates can be computed from the results
in Prop. 7.1.

From (21) and the results in Prop. 5.1, gPC expansions
can provide closed forms for the expectation and variance of
the controlled predicted state and output trajectories. This
implies that any chance constraints of polyhedral inequali-
ties can be certificated by deterministic polyhedral inequal-
ities that are obtained from incorporating gPC expansions

A\
\ Vv T

Figure 5. A cartoon of the outer bound that can be obtained from
the Boole inequality and concentration-of-measure inequalities.

into the Boole inequality and the Chebyshev inequality of
the form presented in Prop. 7.1.

7.4 Computation of first-time excursion
Dprobabilities

An important problem in reliability analysis of stochastic
dynamical systems is to compute the cumulative probability
that the system output variables exceed a given threshold
for a given time interval [0, 7] (Au & Beck, 2001; Greytak
& Hover, 2011):

Pi(T) 2 Pr [U {3t €[0,T]: yi(t) > bi(t)}:| . (36)

i=1

where b;(f) denote some specified time-varying threshold
levels. The probability (36) is called the first-time excursion
probability. 1t is straightforward to show that computation
of P¢(T) is a problem of checking the feasibility of chance
constraints on the (controlled) system output and the afore-
mentioned polynomial chaos expansion methods of control
input design for stochastic MPC problems can be directly
applied.

In particular, similar to the probability of violation in
(34), the Boole inequality can be used to provide an upper
bound on the probability of first-time excursion (36):

P(T) <Y Prl(Ft [0, T]: yi(t) > b}l (37)

i=1

for which the probability Pr[{3r € [0, T] : y;(¢) > b;(¢)}]
can be approximated by using the methods presented in
Sections 5, 7.2, or 7.3.

7.5 Affine feedback control policy

The aforementioned methods for computation of a subop-
timal control policy use the new measurements to compute
a control action as well as to initialise the state-transition
constraint in the optimisations at each step of prediction.
In the presence of model/plant mismatch and external dis-
turbances, the predicted control trajectory at time k can
significantly deviate from the true controlled trajectory and
the variance of the trajectory can increase such that the op-
timisation is feasible only for a short-time horizon, which
is undesirable in terms of closed-loop stability. This situ-
ation can be avoided by incorporating a feedback control
in each step of solving the optimisation, as has been done
in many deterministic robust MPC formulations (e.g. see
Kothare, Balakrishnan, & Morari, 1996). For example, the
affine control law u; = K;z; + v, can be inserted into the
optimisation, where z; is an estimated state or measured
output. For a precomputed K, (or a stationary control gain
K), the resultant problem is exactly same as the open-loop
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feedback control in which v, is the only decision variable
in each step of optimisation. If K; is considered as an ad-
ditional decision variable in each step of optimisation, then
the resulting optimisation will retain the same degree of
convexification as for u, considered before.

7.6  Time-varying uncertain parameters

Consider the system dynamics given in (4) where the uncer-
tain parameter vector § € A (or 8 = (8, x) € O, if the initial
condition is considered to be uncertain) is assumed to be
an unknown constant vector. In the aforementioned MPC
formulations, the uncertain parameters were assumed to be
fixed only in the prediction step. The approaches can also
be applied to slowly time-varying uncertain parameters, i.e.
when the prediction horizon multiplied by the sampling in-
terval is less than the time interval of significant parameter
variation. A more accurate study of time-varying uncer-
tain parameters can be performed by considering a large
dimensional space of uncertain parameters. In particular,
for the time-varying uncertain parameter vector §, € A,
consider the stacked vector 8o.7_1 = [8), ..., 81 € AT
where the superscript” denotes the transpose and 7" denotes
the prediction horizon. Then the approximation based on
a polynomial chaos expansion is represented in terms of
the stacked uncertain parameter vector 8y.7—;. This ap-
proach requires more basis functions for the corresponding
spectral representation, but the time-dependent coefficients
corresponding to the uncertain parameters in future can be
set to zeros, which reduces the computation of projections
to determine the coefficients of the gPC expansion.

8. Conclusions and future work

This paper considers a new approach for stochastic MPC
problems in the presence of both parametric model uncer-
tainty and exogenous stochastic disturbances. To approxi-
mate the solution of a stochastic differential equation and
solve the corresponding stochastic MPC problem, a spectral
method known as generalised polynomial chaos expansion
is applied and constraints corresponding to the probabil-
ity of safety/collision are imposed on the approximately
predicted controlled trajectories, based on the model of a
stochastic differential equation. The first and second mo-
ments of the approximate solution were exploited to esti-
mate the probability distribution of the true solution. Under
these technical assumptions, the chance constraints were
replaced by convex constraints for the mean and covari-
ance of the trajectory that are analytically computed from
the gPC expansion. It was also shown that concentration-
of-measure inequalities combined with the Boole inequal-
ity can provide conservative probabilistic certificates for
chance constraints of polyhedral inequalities, for which ap-
plications of the gPC expansions are straightforward. Fur-
ther studies to follow are to apply the presented methods to
more complicated case studies and compare the heuristic

convexification methods discussed in Section 7 to convex
nonlinear programmes presented in Section 4, to study the
trade-off between complexity and accuracy.

Notes

1. F, and B can be time-varying, where the forbidden region
might correspond to moving objectives and time-varying S
can be used to assign different risk of collision in different
time sequences in the predicted motions.

2. Consider the time interval [0, 7] in which X, is a second-

moment process.

3. The computation of deterministic constant matrices K., and

Y xop (o Xz, ) can be performed off-line.

4. In particular, the computational complexity using a standard

interior-point method (Boyd & Vandenberghe, 2004) is at
most O(¢(M*log M) where M = npT (n is the dimension of
the state variables, p is the number of basis functions for a
gPC expansion, T is the length of prediction horizon), and
£ denotes the number of probabilistic polyhedral constraints.
The average computation time at each sampling instance was
~0.36 CPU seconds for n = 2, p = 3, and 7 = 5. This com-
putation time includes the computation of the optimisation
data, i.e., the time for computing matrices associated with
the objective function and constraints, as well as the time for
solving the resulting constrained optimisation. Optimisation
is performed by the CVX toolbox (Grant, Boyd, & Ye, 2009)
on a MacBook Pro laptop (2.53 GHz Intel Core 2 Duo, 4GB
DDR3).

5. Tobe a convex program, || 8,]|,» cannot be used, since it results

in a concave function term in the objective function in a
minimisation problem.

6. By efficiency, it is meant that there is a numerical algorithm

whose convergence is guaranteed and that provides an infea-
sibility certificate. Convex programs are such cases.

7. They applied a method of relaxation called the S-procedure

(Yakubovich, 1971). Our case is a special case in which
all the quadratic forms are convex, whereas Megretski and
Treil (1993) considered more general cases where some of
quadratic forms might be nonconvex. They proposed a suf-
ficient condition for the set of quadratic form constraints to
be lossless, i.e., the resultant relaxation obtained from the
S-procedure gives an exact optimum.
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