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 A B S T R A C T

The Doyle–Fuller–Newman (DFN) model is a common mechanistic model for lithium-ion batteries. The reaction 
rate constant and diffusivity are key parameters that directly affect the movement of lithium ions, thereby 
offering explanations for cell aging. This work investigates the ability to uniquely estimate each electrode’s 
diffusion coefficients and reaction rate constants of 95 T Model 3 cells with a nickel cobalt aluminum oxide 
(NCA) cathode and silicon oxide–graphite (LiC6–SiOx) anode. The four parameters are estimated using Markov 
chain Monte Carlo (MCMC) for a total of 7776 cycles at various discharge C-rates. While one or more anode 
parameters are uniquely identifiable over every cell’s lifetime, cathode parameters become identifiable at mid- 
to end-of-life, indicating measurable resistive growth in the cathode. The contribution of key parameters to 
the state of health (SOH) is expressed as a power law. This model for SOH shows a high consistency with the 
MCMC results performed over the overall lifespan of each cell. Our approach suggests that effective diagnosis 
of aging can be achieved by predicting the trajectories of the aging parameters. As such, extending our analysis 
with more physically accurate models building on DFN may lead to more identifiable parameters and further 
improved aging predictions.
1. Introduction

Lithium-ion batteries are widely used in portable electronic devices 
as well as electric vehicles (EVs) due to their high energy density 
and long cycle life. To replace the expensive cycling experiments of 
batteries, various studies such as fast charging [1–3], aging analy-
sis [4–7], lifetime prediction [8,9], and fault diagnosis [10] have 
been conducted using electrochemical-based battery models. The elec-
trochemical models, represented by the Doyle–Fuller–Newman (DFN) 
model (also corresponding to the Porous Electrode Theory (PET) model 
or Pseudo-Two-Dimensional (P2D) model) [11–14], describe the cy-
cling behavior of battery with considerable accuracy by expressing the 
physical/chemical phenomena inside the cell, such as the electrochem-
ical reaction kinetics at the solid-electrolyte interface of the porous 
electrode and the lithium-ion transport through the electrolyte and 
solid particles, as governing equations. Building high-fidelity battery 
models is essential for enhancing the reliability of battery model-based 
analysis. To improve the fidelity of electrochemical models for real 
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cycling behavior, fitting the parameters of the DFN model to battery 
cycling data is a common procedure.

An important consideration for selecting the optimal model pa-
rameters during the parameter identification stage of adjusting the 
DFN model to be suitable for cycling experiments is the identifia-
bility analysis. In many practical applications, deriving the optimal 
point estimates and quantifying their uncertainties is of significant 
importance [15]. Practical identifiability pertains to whether the data 
contains enough information to specify the parameters uniquely. If 
parameters yield similar results over a broad range or exhibit mul-
timodal distributions, such parameters are considered unidentifiable. 
Previous studies have used linearized identifiability analysis to show 
that various combinations of effective transport and kinetic coefficients 
can result in discharge voltage curves that are almost similar. However, 
the high nonlinearity of the DFN model suggests that linearized models 
may lead to inappropriate conclusions. Therefore, recent studies apply 
fully nonlinear quantitative identifiability analysis to provide accurate 
parameter estimations [16,17].
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When conducting parameter estimation, both conventional opti-
mization approaches and machine learning (ML) have been employed 
to analyze and enhance the identifiability of DFN models. Although 
ML is commonly used for predicting state of health (SOH) and state 
of charge (SOC), it has also shown promising performance in pa-
rameter estimation [18]. Chun et al. [19] developed a deep rein-
forcement learning (DRL) approach that generates optimal current 
profiles, thereby enhancing the identifiability of a stoichiometric range 
and demonstrating its effectiveness across various battery conditions. 
Laue et al. [20] propose a three-stage parameter estimation procedure, 
consisting of open-circuit potential (OCP), C-rate tests, and electro-
chemical impedance spectra, to address issues related to identifiability 
during the parameter estimation of the DFN model. These results 
suggest that widely used OCP and C-rate tests are insufficient for 
complete parameterization, thus necessitating electrochemical exper-
iments like impedance spectroscopy. Deng et al. [21] developed a 
reduced-order physics-based model to address the issue of reduced 
efficiency in optimization-based parameter estimation due to the com-
plexity of the model and the multitude of parameters. They estimated 
parameters and compared their approach with a commercial battery 
simulator. To differentiate identifiable parameters, they used criteria 
based on calculating the determinant and condition number of the 
Fisher Information Matrix (FIM). Kim et al. [22] selected a subset of 15 
DFN model parameters through variance-based global sensitivity anal-
ysis and performed parameter estimation using discharge C-rate tests. 
In particular, they applied the Markov Chain Monte Carlo (MCMC) 
method to quantify parameter uncertainty and analyze identifiability. 
Bills et al. [23] performed an identifiability analysis on the degradation 
modes of 22 cells subject to an electric vertical takeoff and landing 
(EVTOL) aircraft profile. They track parameter trends across the cell 
lifetimes using a reduced-order model with median errors of 32.5 mV. 
Ramadesigan et al. [24] demonstrated that the behavior of aged cells 
can be described by decreased transport and kinetic rate coefficients. 
They used this approach to quantify the pathways and uncertainties for 
diffusion coefficients and rate constants.

Our previous works applied nonlinear identifiability analysis of 
electrochemical battery models to the single discharge voltage curve 
of a non-aged single cell (see Ref. [17] for PET model application and 
Ref. [16] for multiphase PET model (MPET) [25] application). Here 
we extend this work to a dataset with silicon oxide–graphite/nickel 
cobalt aluminum lithium-ion (NCA/LiC6–SiOx) cells from a disassem-
bled Tesla Model 3. Furthermore, this work applies identifiability anal-
ysis to describe the cycling behavior of both fresh and aged cells. 
Degradation diagnosis is divided into two approaches [26–28]: devel-
oping and incorporating degradation-related perturbation terms into 
the battery model, and tracking aging parameters. While degradation-
related perturbation terms have been directly integrated into battery 
models in past studies, this work also analyzes the evolutionary tra-
jectories of aging parameters. The a posteriori parameter distributions 
are estimated at every diagnostic cycle using MCMC. First, MCMC 
methods are presented and shown to provide global nonlinear iden-
tifiability trends for a small subject of parameters. Second, unknown 
physical properties of the NCA/LiC6–SiOx cell, which are estimated 
experimentally by inverting the model, are discussed. Third, the model 
specifications are established for the standardized cycling conditions 
of the fleet of NCA cells. Fourth, results are presented for the iden-
tifiability analysis and Bayesian estimation of each cycle with simple 
parameter fittings as a function of the SOH.

This article is organized as follows: Section 2 provides theoretical 
background on the DFN model and Bayesian parameter identification. 
Section 3 describes the parameterization for explaining the cycling 
behavior of the NCA cell. Section 4 presents the overall scheme for 
parameter identification and provides details on the NCA cell data. 
Section 5 represents the main results, which consist of identifiability 
and degradation diagnosis, and Section 6 summarizes the article.
2 
2. Methods

This section introduces the mathematical representation of the bat-
tery model and Bayesian inference used in the degradation diagnosis 
framework represented by Fig.  1. Section 2.1 provides detailed infor-
mation on the DFN model and simulation specification. Section 2.2 pro-
vides a mathematical description of Bayesian inference for parameter 
identification.

2.1. DFN model

The DFN model describes the microscopic physicochemical behavior 
of a lithium-ion battery by considering it as a two-dimensional structure 
consisting of a negative/positive porous electrode and an electrolyte. 
The DFN has two dimensions: the 𝑥 direction, which moves across the 
length of the cell starting from the negative electrode through to the 
positive electrode, and the 𝑟 direction, the distance from the center of 
a porous electrode particle to its surface. The two porous electrodes are 
emersed in an electrolyte solution which conducts the flow of lithium 
ions (see Fig.  2).

Solid-phase concentrations in each electrode control volume follow 
Fickian diffusion, 
𝜕𝑐𝑠(𝑥, 𝑟, 𝑡)
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where 𝑗 is the ionic flux in the electrodes, 𝐷𝑠,𝑖 is the solid-phase 
diffusivity, 𝑅𝑝

𝑖  is the particle radius, 𝐷eff
𝑠,𝑖  is the effective solid diffusion 

coefficient, and the superscript 𝑖 refers to a section of the cell: {𝑛, 𝑝}
are the positive and negative electrodes respectively, 𝑠 is the separator 
section, and {𝑎, 𝑧} are the current collectors attached to the positive 
and negative electrodes respectively. The diffusion equation governs 
the electrolyte concentration, 
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where 𝜖 is porosity, 𝐷eff  is the effective electrolyte diffusion coefficient, 
𝑐𝑒 is the distribution of electrolyte concentration, 𝑎 is the surface area to 
volume ratio of the solid particles, and 𝑡+ is the transference number. 
The boundary conditions at the electrode-current collector interfaces 
are 
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and the interfacial flux terms are 
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(5)

where 𝐿 is the total length of the cell and 𝐿𝑖 is the distance measured 
from 𝑥 = 0 to the end of section 𝑖.

Interfacial ionic fluxes couple the two phases in the electrode sec-
tions modeled by Butler–Volmer reaction kinetics, 

𝑗(𝑥, 𝑡) = 2𝑘eff𝑖

√

𝑐𝑒(𝑥, 𝑡)
(
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(
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)

,

(6)

where 𝑘eff  is the effective rate constant, 𝑐max
𝑠  is the maximum solid 

concentration, 𝑐∗𝑠  is the solid particle surface concentration, 𝑇  is tem-
perature, 𝜂 is the overpotential, 𝐹  is Faraday’s constant, and 𝑅 is the 
ideal gas constant.
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Fig. 1. Schematic diagram of this work on degradation diagnosis using Bayesian parameter identification and identifiability analysis.
Fig. 2. Schematic of the DFN model for an NCA/LiC6–SiOx cell during discharge. The solid diffusion coefficients and reaction rate constants are listed under the 
sections whose physics they principally affect.
Partial differential equations for the solid and electrolyte potentials, 
𝛷𝑠 and 𝛷𝑒, respectively, are 
𝜕
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where 𝜎eff  and 𝜅eff  are the effective solid and electrolyte conductivi-
ties, respectively. Boundary conditions for 𝛷𝑠 incorporate the applied 
current 𝐼(𝑡), 
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The boundary conditions for 𝛷𝑒 mirror those for 𝑐𝑒, 
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with the reference potential grounded to 0V at 𝑥 = 0. For further details 
of the governing equations, see Ref. [13]. We solve the equations using 
PETLION [29], which is an efficient open-source DFN simulation tool 
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in the Julia programming language.2 PETLION discretizes the PDEs in 
space using the Finite Volume Method (FVM) and solves forward in 
time using the Method of Lines (MoL) [30]. The number of FVM control 
volumes (𝑁) and solver tolerances (𝛥abs: absolute value, 𝛥rel: relative 
value) affect the desired accuracy and computational complexity of 
the simulation. All solver settings are set to defaults (𝑁 = 10, 𝛥abs
= 10−6, 𝛥rel = 10−3), as increasing the number of control volumes 
and decreasing the tolerance significantly increased the computational 
budget without meaningfully improving accuracy [1].

2.2. Bayesian parameter identification and identifiability

Parameter identification through Bayesian inference is a method 
for quantifying the uncertainty about estimated parameters [31,32]. 
Bayesian inference, based on Bayes’ theorem, is explained by the re-
lationship between the posterior distribution P(𝜃|𝑌 ), prior distribution 
P(𝜃), likelihood P(𝑌 |𝜃), and marginal likelihood P(𝑌 ), 

P(𝜃|𝑌 ) = P(𝑌 |𝜃)P(𝜃)
P(𝑌 ) , (13)

where 𝑌  is a vector of voltage measurements 𝑦𝑗 . To estimate the most 
promising subset of parameters, the Maximum A Posteriori (MAP) is 
obtained by maximizing the posterior probability, 
𝜃∗MAP = argmax

𝜃
P(𝜃|𝑌 ) = argmax

𝜃
P(𝑌 |𝜃)P(𝜃), (14)

where P(𝑌 ) is a normalization constant which may be ignored when 
solving the maximization. In practice, it is common to instead minimize 
a negative log transformation of Eq. (14), 
𝜃∗MAP = argmin

𝜃
lnP(𝑌 |𝜃) + lnP(𝜃), (15)

which gives the same parameter value. If the prior distribution is a 
uniform or normal distribution with an infinitely large variance, the 
influence of the prior distribution can be neglected and the equation 
becomes the Maximum Likelihood Estimate (MLE), 
𝜃∗MLE = argmin

𝜃
lnP(𝑌 |𝜃). (16)

The MLE for a model with Gaussian error simplifies to the familiar sum 
of squared residuals, 

𝜃∗MLE = argmin
𝜃

𝑁𝑑
∑

𝑗=1

(

𝑦𝑗 − 𝑦𝑗 (𝜃)
𝜎𝜖

)2

. (17)

The uncertainty associated with the estimated parameters are quan-
tified through the confidence regions. The DFN model exhibits a highly 
nonlinear relationship between parameters and model predictions, 
which suggests that the confidence regions may not be a hyperellip-
soid [33]. Linearization approaches may produce highly inaccurate 
estimates for highly nonlinear systems [16,17]. Nonlinear systems can 
be handled by relating the optimal estimates of parameters derived 
from the log-likelihood function to the chi-squared distribution [34]. 
With the definition 

𝜒2(𝜃) =
𝑁𝑑
∑

𝑗=1

(

𝑦𝑗 − 𝑦𝑗 (𝜃)
𝜎𝜖

)2

, (18)

the nonlinear confidence region 𝑅𝛼 can be expressed as all 𝜃 that satisfy 
the inequality 

𝑅𝛼 =
{

𝜃 ∶ 𝜒2(𝜃) − 𝜒2(𝜃∗) ≤ 𝜒2
𝑁𝑝

(1 − 𝛼)
}

, (19)

where 𝜒2
𝑁𝑝

 is the chi-squared distribution with 𝑁𝑝 degrees of freedom, 
𝑁𝑝 is the number of parameters, and 𝛼 is the significance level (e.g., an 
𝛼 of 0.01 corresponds to a 99% confidence region).

2 Due to the Just-in-Time (JIT) compilation of the Julia language, the 
first execution of a single discharge cycle in PETLION takes about 11 s, but 
subsequent executions only take about 3 ms [29].
4 
MCMC is an efficient approach for uncertainty evaluation for highly 
nonlinear systems. MCMC employs the Metropolis–Hastings algorithm, 
which can sample from complex high-dimensional PDFs [35,36]. Pa-
rameters are initiated at an initial value, 𝜃0, and random perturbations 
are introduced to these parameters [37]. During each iteration 𝑡, an 
objective function 𝑓 (𝜃), such as the sum of squared residuals, is calcu-
lated. The suggested parameter 𝜃′ is then accepted or rejected based on 
an acceptance ratio, serving as the criterion for determining whether to 
adopt the next parameter set.

3. Parameterization: Physical properties of NCA cell

The first step to performing an identifiability analysis for the NCA 
cells is accurately modeling the cell. The properties of the electrolyte 
are estimated as a function of electrolyte concentration and tempera-
ture. The cells have a small amount of silicon oxide in the anode, which 
differentiates them from conventional chemistries in the literature. To 
address this, the OCV functions for each electrode are regressed in 
cycling experiments of half-cells containing positive and negative elec-
trodes with C/50 charge and C/60 discharge. Then, the half-cell OCVs 
are regressed against the full-cell OCV using nonlinear optimization 
to estimate the stoichiometry limits. The estimated functions for the 
properties of the electrolyte and electrode are presented in detail in 
Sections 3.1 and 3.2, respectively.

The DFN model parameters used for the pristine cell simulation are 
listed in Table  1. The reaction rate constants and diffusion coefficients 
at each electrode are estimated through identifiability analysis, and the 
other parameters are considered constants throughout the cell lifetime.

3.1. Electrolyte

The electrolyte conductivity 𝜅 and diffusivity 𝐷 are tabulated as 
functions of electrolyte concentration 𝑐𝑒 and temperature 𝑇  using the 
Advanced Electrolyte Model [38] for an EC/EMC/DMC electrolyte mix. 
Empirical equations for 𝜅(𝑐𝑒, 𝑇 ) and 𝐷(𝑐𝑒, 𝑇 ) are fit using response 
surface methodology [39] (see Tables  2 and 3), 

𝜅(𝑐𝑒, 𝑇 ) =
3
∑

𝑖=0

1
∑

𝑗=0
𝑎𝑖𝑗 (𝑐𝑖𝑒𝑇

𝑗 ), (20)

𝐷(𝑐𝑒, 𝑇 ) =
4
∑

𝑖=0

2
∑

𝑗=0
𝑎𝑖𝑗 (𝑐𝑖𝑒𝑇

𝑗 ). (21)

3.2. Electrode

The anode is graphite doped with a silicon oxide, producing a 
bimodal particle radius distribution with peaks in different regions for 
graphite and silicon oxide particles [40,41]. That is, although even 
small amounts of silicon oxide dopant in graphite lead to significant 
structural differences, for simplicity of calculations, we assume the 
anode is homogeneous, as a single particle with a radius of 16 μm.

The positive and negative OCVs are estimated with charge and 
discharge cycles at 0.1 and 0.2 mA, respectively (about C/60 and C/50). 
The OCVs are fit with empirical equations as a function of solid lithium 
concentration, 

𝑈𝑛(𝛩𝑛) = 𝑎0 + 𝑎1 exp
(

𝛩𝑛 − 𝑏1
𝑐1

)

+
4
∑

𝑖=2
𝑎𝑖 tanh

(

𝛩𝑛 − 𝑏𝑖
𝑐𝑖

)

, (22)

𝑈𝑝(𝛩𝑝) =
8
∑

𝑖=1
𝑎𝑖 exp

(

−
(𝛩𝑝 − 𝑏𝑖

𝑐𝑖

)2)

, (23)

𝛩𝑖 = 𝑐∗𝑠,𝑖∕𝑐
max
𝑠,𝑖 , (24)

where 𝑈𝑖 is open-circuit voltage, 𝛩𝑖 is the stoichiometry, and 𝑐∗𝑠,𝑖 is 
solid-phase surface concentration. The coefficients for the empirical 
equations representing the open-circuit voltages of the negative elec-
trode (𝑈𝑛) and positive electrode (𝑈𝑝) are detailed in Tables  4 and 5, 
respectively.
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Table 1
Description of the parameter set of the NCA/LiC6–Si cell.
 Parameter Unit Description Cathode current 

collector
NCA Separator LiC6–Si Anode current 

collector
 

 𝐷𝑠,𝑖 m2/s Solid-phase diffusivity – 8.716 × 10−14 – 1.018 × 10−13 –  
 𝑘𝑖 m5∕2/(mol1∕2s) Reaction rate constant – 4.438 × 10−10 – 6.837 × 10−12 –  
 𝑙𝑖 m Thickness 1.0 × 10−5 6.4 × 10−5 1.0 × 10−5 8.3 × 10−5 1.0 × 10−5  
 𝜖𝑖 – Porosity – 0.230 0.359 0.147 –  
 𝐷𝑖 m2/s Electrolyte diffusivity – 5.0 × 10−10 5.0 × 10−10 5.0 × 10−10 –  
 𝑅𝑝

𝑖 m Particle radius – 1.1 × 10−5 – 1.6 × 10−5 –  
 𝑐init𝑒,𝑖 mol/m3 Initial concentration in the electrolyte – 1200 1200 1200 –  
 𝑐max

𝑠,𝑖 mol/m3 Maximum solid-phase concentration – 54,422 – 28,967 –  
 𝜌𝑖 kg/m3 Density 2700 2500 1100 2500 8940  
 𝐶𝑝,𝑖 J/(kg K) Specific heat 897 700 700 700 385  
 𝜆𝑖 W/(m K) Thermal conductivity 237 2.1 0.16 1.7 401  
 𝜎𝑖 S/m Solid-phase conductivity 3.55 × 107 100 – 100 5.96 × 107  
 𝜖𝑠,𝑖 – Active material fraction – 0.745 – 0.828 –  
 Brugg – Bruggeman coefficient – 1.5 1.5 1.5 –  
 𝑡+ 0.455 Transference number – – – – –  
 𝐸𝐷𝑠

𝑖
𝑎 J/mol Solid-phase diffusion activation energy – 5000 – 5000 –  

 𝐸𝑘𝑖
𝑎 J/mol Reaction constant activation energy – 5000 – 5000 –  

 𝛩max
𝑖 – Maximum stoichiometry limits – 0.160 – 0.923 –  

 𝛩min
𝑖 – Minimum stoichiometry limits – 0.859 – 0.014 –  

 𝑇amb 298.15 K Ambient temperature – – – – –  
 𝐹 96485 C/mol Faraday’s constant – – – – –  
 𝑅 8.314472 J/(mol K) Universal gas constant – – – – –  
Table 2
Coefficient (𝑎𝑖𝑗) for electrolyte conductivity (𝜅(𝑐𝑒, 𝑇 )) in Eq. (20).
 𝑗 = 0 𝑗 = 1  
 𝑖 = 0 −5.182×10−1 1.696 × 103  
 𝑖 = 1 −6.518×10−3 3.034 × 10−5 
 𝑖 = 2 1.446 × 10−6 −1.049×10−8  
 𝑖 = 3 3.047 × 10−10 0  

Table 3
Coefficient (𝑎𝑖𝑗) for electrolyte diffusion coefficients (𝐷(𝑐𝑒, 𝑇 )) in Eq. (21).
 𝑗 = 0 𝑗 = 1 𝑗 = 2  
 𝑖 = 0 1.864 × 10−8 −1.392×10−10 2.633 × 10−13 
 𝑖 = 1 0 3.133 × 10−14 −1.126×10−16  
 𝑖 = 2 0 −7.301×10−17 2.615 × 10−19 
 𝑖 = 3 0 5.120 × 10−20 −1.832×10−22  
 𝑖 = 4 0 −1.151×10−23 4.111 × 10−26 

Table 4
Coefficients (𝑎𝑖, 𝑏𝑖, and 𝑐𝑖) for negative open-circuit voltage (𝑈𝑛(𝛩𝑛)) in Eq. 
(22).
 𝑎𝑖 𝑏𝑖 𝑐𝑖  
 𝑖 = 0 −48.99 – –  
 𝑖 = 1 29.98 5.700 × 10−3 −5.093×10−2  
 𝑖 = 2 161.9 −1.057×10−1 9.687 × 10−2 
 𝑖 = 3 −2.833×10−1 4.447 × 10−2 4.235 × 10−2 
 𝑖 = 4 −47.77 −18.95 7.041  
 𝑖 = 5 −65.06 2.268 × 10−3 1.160 × 10−3 

Table 5
Coefficients (𝑎𝑖, 𝑏𝑖, and 𝑐𝑖) for positive open-circuit voltage (𝑈𝑝(𝛩𝑝) in Eq.
(23).
 𝑎𝑖 𝑏𝑖 𝑐𝑖  
 𝑖 = 1 1.456 × 10−1 7.961 × 10−1 6.035 × 10−2 
 𝑖 = 2 4.205 × 10−1 9.489 × 10−1 4.229 × 10−2 
 𝑖 = 3 1.008 6.463 × 10−1 1.034 × 10−1 
 𝑖 = 4 1.350 7.378 × 10−1 9.513 × 10−2 
 𝑖 = 5 2.526 2.953 × 10−1 2.019 × 10−1 
 𝑖 = 6 2.636 5.372 × 10−1 1.758 × 10−1 
 𝑖 = 7 3.285 8.922 1.414 × 10−1 
 𝑖 = 8 172.1 −1.344 7.371 × 10−1 
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4. Problem description

Section 4.1 introduces detailed procedures for parameter identifica-
tion and identifiability analysis. Section 4.2 provides a description of 
the selected aging parameters and a detailed description of the NCA 
dataset.

4.1. Bayesian estimation and identifiability procedure

The analysis of nonlinear identifiability has three steps: (1) estimat-
ing the posterior distribution of 𝜃 using the Metropolis–Hastings algo-
rithm, (2) distinguishing between practically identifiable and unidenti-
fiable parameters based on the probability densities, and (3) further 
categorizing the identifiable combinations through a gridded mesh 
showing the confidence regions. Once the parameter space is compre-
hensively mapped, a set of identifiable parameter groups is defined, 
which includes all identifiable and locally identifiable parameters.

The parameter space can be reduced by fixing unidentifiable pa-
rameters to an estimate or to physically meaningful upper and lower 
bounds. Likewise, equations considered insignificant because of the 
unidentifiable parameters can be excluded from the model to enhance 
computational efficiency. For instance, in the case of a very thin porous 
electrode that is not diffusion-limited, the effects of diffusion within the 
porous electrode could be disregarded in the model. Alternatively, a 
less restrictive approach would involve incorporating prior values from 
the literature.

Practical identifiability is confirmed through the results obtained 
from Bayesian estimation. A parameter is deemed practically iden-
tifiable if a sufficiently large number of chains indicate that it is 
bounded. Conversely, if the chains include parameter values that can 
be arbitrarily large or small, then the parameter is practically uniden-
tifiable; further investigation is needed to determine whether there are 
any identifiable combinations. All identifiable combinations encompass 
every practically identifiable parameter.

Locally identifiable parameters that contribute to identifiable combi-
nations are first evaluated using their probability densities. A parameter 
is likely part of the identifiable combinations if its probability density 
exhibits (1) a large peak and (2) a lower magnitude plateau at extreme 
values. The significant peak arises from identifiable combinations that 
include the parameter, while the plateau corresponds to the identi-
fiable combinations that exclude it, indicating that the parameter is 
unidentifiable. Parameters with a uniform distribution do not belong 
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Fig. 3. (a) Generation of high-fidelity battery models through parameterization and comparison with real experiments and (b) comparison of cycling behavior 
of an aged cell and pristine cell.
to any identifiable combination sets. A detailed explanation of the 
methodology regarding identifiability, along with a simple example, is 
specified in previous work [16,17].

4.2. Model specifications

This article considers the key transport and kinetic parameters, 𝜃 =
[𝐷𝑠,𝑝, 𝐷𝑠,𝑛, 𝑘𝑝, 𝑘𝑛]⊤, where 𝐷𝑠,𝑝 and 𝐷𝑠,𝑛 are the solid-phase diffusion 
coefficients of lithium in the cathode and anode respectively, and 𝑘𝑝
and 𝑘𝑛 are the electrochemical reaction rate constants for the cathode 
and anode respectively. In addition, transport and kinetic parameters 
were identified as key parameters in global sensitivity analysis using 
Sobol’ indices (see Appendix  B). These parameters lump the effects of 
multiple true material properties together [11]. The parameter identi-
fication is performed on a logarithmic basis of 𝜃, which is a standard 
approach to improving numerical convergence for parameters that can 
vary by orders of magnitude.

The cycling data used for the identifiability analysis consisted of a 
representative sample of 95 cells, selected from a total of 363 cylindri-
cal 21700 NCA cells extracted from a Tesla Model 3 provided by van 
Vlijmen et al. [42]. Diagnostic cycles consisting of a reset cycle, hybrid 
pulse power characterization (HPPC), and reference performance test 
(RPT) cycles at three discharge C-rates (C/5, 1C, and 2C) are performed 
every 100 cycles for the whole lifetime of the 95 cells to measure the 
capacity fade (see Ref. [42] for a detailed description of the NCA cell 
dataset). Only the RPT cycles among the diagnostic cycles are used 
for the identifiability analysis. The discharge voltage curve used for 
parameter identification is represented with high fidelity in battery 
simulations by applying the DFN model parameters identified in Sec-
tion 3 (Fig.  3a). As cycling continues, the capacity irreversibly decreases 
(Fig.  3b). Four parameters (𝐷𝑠,𝑝, 𝐷𝑠,𝑛, 𝑘𝑝, 𝑘𝑛) are estimated through the 
discharge curves from all RPTs of each cell, and the trajectory of each 
parameter is tracked as aging progresses.

5. Results and discussion

5.1. Parameter identifiability

Visualizing the nonlinear confidence region can help interpret iden-
tifiability trends. A nonlinear confidence region depicts the error (e.g.,
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the sum of squared residuals, chi-squared statistic, root-mean-squared 
error (RMSE)) as a function of the 𝑁𝑝-dimensional parameter space. 
Typically, the parameter space is gridded with sufficiently fine dis-
cretizations to show detailed resolution of the confidence region. Con-
fidence regions of linear or linearized models depict hyperellipsoid 
confidence regions centered on 𝜃∗ [17,43], but nonlinear confidence 
regions are not restricted to hyperellipsoid shapes. Highly nonlinear 
models (such as PET-based battery models) have been shown to ex-
hibit banana-shaped confidence regions in which an infinite number of 
parameter values give either the same or nearly the same quality of fit.

Fig.  4 describes an example confidence region based on the function 
of the cathode diffusion coefficient 𝐷𝑠,𝑝 and the rate constant 𝑘𝑝. Both 
𝐷𝑠,𝑝 and 𝑘𝑝 are practically unidentifiable because the darkly shaded 
extends towards +∞. The parameters appear to be locally identifiable. 
The numerical optimization for the initial guesses converges to a point 
on the minimum curve that is a local minimum for 𝑘𝑝 for fixed 𝐷𝑠,𝑝, 
and also a point on the minimum curve that is a local minimum for 
𝐷𝑠,𝑝 for fixed 𝑘𝑝. As shown in Fig.  4, the confidence region as a function 
of the two parameters shows that the two parameters are not globally 
identifiable. The two extremes of the minimum curve, where 𝑘𝑝 → ∞
and 𝐷𝑠,𝑝 → ∞ respectively, show very different sensitivities on 𝑘𝑝 and 
𝐷𝑠,𝑝. The sensitivity to a parameter for the parameter identification 
objective can be very large or close to zero, depending on the values of 
other parameters. This observation has strong parameter identification 
implications and implies that relying only on local sensitivities can lead 
to misleading results.

As 𝑁𝑝 increases, gridding the confidence region becomes pro-
hibitively expensive as the number of model evaluations grows with the 
order of power 𝑁𝑝. The same identifiability trends can be interpreted 
through MCMC after a sufficient number of iterations, which exhibits 
better scaling. Fig.  5 shows the development of the posterior distri-
bution from MCMC after various samples following a burn-in of 500, 
2000, and 5000 samples. At 5000 samples (Fig.  5cf), the approximate 
posterior distributions closely resemble the true posterior distributions 
(where the true distribution was estimated by running MCMC for 
106 iterations). The same local identifiability trends found with the 
gridded confidence region can also be interpreted with the posterior 
distributions from MCMC. Both parameters are practically unidentifi-
able from the posterior distribution because the distributions plateau 
towards +∞. The parameters are also locally identifiable because of 
the prominent peak near their lower bounds.
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Fig. 4. MCMC sampling of the 2-dimensional confidence region: (a) 500 samples, (b) 2000 samples, (c) 5000 samples.
Fig. 5. Estimation of the posterior distribution by sampling the parameter space. After a few hundred iterations, the approximate posterior distributions resemble 
the true distributions with some noise. The true PDF was estimated by sampling the confidence region for 1,000,000 iterations: 𝑘𝑝 through (a) 500 samples, (b) 
2000 samples, (c) 5000 samples, and 𝐷𝑠,𝑝 through (d) 500 samples, (e) 2000 samples, (f) 5000 samples.
A parameter identifiability analysis is performed for the diagnostic 
cycle of every cell using the C/5, 1C, and 2C discharge curves. These 
trends change as the battery degrades (Fig.  6). For a pristine cell, 𝐷𝑠,𝑛
is the only identifiable parameter as its PDF is completely contained 
within an enclosed region, 𝑘𝑛 is practically unidentifiable as its upper 
bound approaches infinity despite the large peak near the lower bound 
(i.e., locally identifiable), and both cathode parameters 𝐷𝑠,𝑝 and 𝑘𝑝
are practically unidentifiable. These identifiability trends are consistent 
with previous articles for LCO discharge curves [17,24]. After cycling 
and degrading the cell, the identifiable parameters are now 𝐷𝑠,𝑛, 𝐷𝑠,𝑝, 
and 𝑘𝑛 while 𝑘𝑝 remains practically unidentifiable. The mean of each 
identifiable parameter tends to decrease as a function of the cycle 
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number. The confidence interval of each identifiable parameter tightens 
as capacity fade increases.

The diffusion and kinetic coefficients are directly related to the 
movement of Li+ ions in the cell. Large values of 𝐷𝑠,𝑖 and 𝑘𝑖 cor-
respond to faster movement of lithium inside the solid particles and 
in intercalation, respectively, and small values correspond to slow 
movement of lithium. In particular, it was demonstrated through an 
impedance model that both solid-phase and electrolyte diffusivity con-
tribute significantly to degradation [44]. Therefore, the inverse of 
these coefficients, 1∕𝐷𝑠,𝑖 and 1∕𝑘𝑖, can be interpreted as resistances to 
lithium flow in these cell sections. Unidentifiable parameters, whose 
upper bound approaches infinity, have zero resistance, and identifiable 
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Fig. 6. Changing identifiability trends as the cell degrades. For a pristine cell, only 𝐷𝑠,𝑛 is identifiable. At end-of-life, 𝐷𝑠,𝑛, 𝐷𝑠,𝑝, and 𝑘𝑛 become identifiable while 

𝑘𝑝 remains unidentifiable.
Table 6
Best estimation (𝜃∗) and bounds of log10 𝐷𝑠,𝑛, log10 𝐷𝑠,𝑝, and log10 𝑘𝑛 for a single cell at selected cycles. Practically unidentifiable parameters have upper bounds 
of +∞.
 C-rate SOH (%) Cycle (RPT cycle) log10 𝐷𝑠,𝑛 log10 𝐷𝑠,𝑝 log10 𝑘𝑛
 𝜃∗ Lower bound Upper bound 𝜃∗ Lower bound Upper bound 𝜃∗ Lower bound Upper bound 
 

C/5

96.89 3 (1) −13.4123 −13.4691 −13.3386 −11.7891 −14.1016 +∞ −11.2356 −11.4084 −10.7117  
 92.03 353 (5) −13.8416 −13.8578 −13.8201 −13.8258 −14.2561 +∞ −11.0996 −11.4488 −10.5916  
 85.15 773 (9) −14.1272 −14.1349 −14.1198 −14.0647 −14.3874 +∞ −11.0947 −11.4921 −10.4708  
 73.11 1193 (13) −14.3990 −14.4027 −14.3932 −14.4715 −14.6339 −14.1988 −10.9684 −11.4155 −10.2678  
 60.44 1508 (16) −14.5986 −14.6011 −14.5959 −14.6047 −14.7392 −14.4277 −11.1708 −11.5224 −10.7465  
 

1C

94.00 4 (1) −12.9504 −12.9833 −12.9032 −13.2378 −13.6134 +∞ −11.0926 −11.4292 −10.7501  
 89.02 354 (5) −13.2537 −13.2737 −13.2276 −9.5828 −13.7458 +∞ −11.6549 −11.7986 −10.9207  
 80.55 774 (9) −13.5330 −13.5443 −13.5213 −13.6734 −13.9970 +∞ −11.3667 −12.0971 −10.7626  
 56.37 1194 (13) −13.9357 −13.9441 −13.9196 −14.3648 −14.4676 −14.2102 −11.5877 −12.0410 −11.2227  
 38.12 1509 (16) −14.2170 −14.2235 −14.2116 −14.4165 −14.5365 −14.2574 −11.8804 −12.3274 −11.4914  
 

2C

93.07 5 (1) −12.5907 −12.6521 −12.4817 −12.7455 −13.2445 +∞ −11.5614 −11.8172 −11.2223  
 86.38 355 (5) −13.0125 −13.0387 −12.9654 −13.0800 −13.4779 +∞ −11.8226 −12.2882 −11.3668  
 76.83 775 (9) −13.2886 −13.3021 −13.2669 −13.5018 −13.7450 −13.0584 −11.8137 −12.3387 −11.3409  
 46.50 1195 (13) −13.7453 −13.7592 −13.7078 −14.0299 −14.1465 −13.9412 −13.1056 −13.3861 −12.8286  

 24.40 1510 (16) −14.0743 −14.1210 −13.9907 −14.5462 −14.6372 −14.4453 −13.5577 −13.8075 −13.3000  
parameters have a unique, non-zero resistance. The series resistance of 
identifiable parameter groupings (e.g., {𝐷𝑠,𝑝, 𝑘𝑛

}

) have a meaningful 
and identifiable total resistance relationship, e.g., 

𝑅tot ∝
𝛼

𝐷𝑠,𝑝
+

𝛽
𝑘𝑛

, (25)

where 𝛼, 𝛽 are positive fitting constants [17]. The changing identifiabil-
ity trends (Fig.  6) can be interpreted by changing resistances in the cell 
— anode resistances are dominant in early life but, as the cell degrades, 
cathode resistances become measurable (i.e., identifiable). Numerous 
studies have investigated the loss of active material (LAM) in each 
electrode and loss of lithium inventory (LLI) during cycling [45–48]. 
Studies have shown not only LLI but also anode LAM (LAMNE) act 
as the dominant degradation mechanism, with the anode acting as 
the limiting electrode. As battery usage increases, the cathode LAM 
(LAMPE) can become the primary degradation mechanism, causing a 
knee-point in the capacity fade curve (Table  6). See Appendix  C for the 
relationship between LAM, LLI, and parameters.
8 
5.2. Degradation diagnosis

A past study [24] found that, for the same set of four parameters 
considered in this article plus electrolyte diffusivity 𝐷, capacity fade 
could be predicted for future cycles while only regressing 𝐷𝑠,𝑛 and 
𝑘𝑛. Large uncertainties observed for 𝐷𝑠,𝑝, 𝐷, and 𝑘𝑝 were addressed 
by fixing their values to be constants, and reductions in the estimated 
𝐷𝑠,𝑛 and 𝑘𝑛 with cycle number were observed to follow a power law. 
Although the approach in [24] accurately predicted future voltage 
discharge curves for one cell, the above nonlinear identifiability results 
indicate that empirical fits only to anode parameters may not apply to 
a broad range of cells that exhibit competing degradation mechanisms.

At all levels of degradation, 𝑘𝑝 is unidentifiable (non-rate limiting) 
and may be replaced with a sufficiently large constant value (𝑘𝑝 =
10−7 m5∕2∕mol1∕2s). At low to moderate levels of degradation, 𝐷𝑠,𝑝 and 
𝑘𝑛 are locally identifiable. By adding a weak Gaussian prior to log10 𝐷𝑠,𝑝,

𝑃 (log 𝐷 ) =  (−15.2, 12), (26)
10 𝑠,𝑝
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Table 7
Fitted equations for the set of diffusion and kinetic parameters as a function 
of SOH in units of % (see Fig.  7).
 Fitted Discharge Fitted equation  
 parameter, 𝜃̂(SOH) C-rate  
 C/5 −14.75 + 0.6757 atanh(2.067(SOH − 50)) 
 log10 𝐷̂𝑠,𝑛(SOH) 1C −14.04 + 0.6581 atanh(2.119(SOH − 50)) 
 2C −13.71 + 0.6368 atanh(2.190(SOH − 50)) 
 C/5 −16.11 + 2.684(SOH)  
 log10 𝐷̂𝑠,𝑝(SOH) 1C −15.33 + 2.504(SOH)  
 2C −15.03 + 2.561(SOH)  
 C/5 −12.18 + 1.135(SOH)  
 log10 𝑘̂𝑛(SOH) 1C −14.36 + 3.409(SOH)  
 2C −15.68 + 4.502(SOH)  

we shift the median of the posterior distributions of 𝐷𝑠,𝑝 and 𝑘𝑛
towards their lower bounds without greatly affecting the error. Then, 
we regress the remaining identifiable set, {𝐷𝑠,𝑛, 𝐷𝑠,𝑝, 𝑘𝑛}, for each cycle. 
The MCMC results for each cycle (Fig.  7) are fit to empirical equations 
using weighted least squares, where the weight is the reciprocal of the 
variance. log10 𝐷𝑠,𝑛 is by far the most well-behaved across all C-rates 
and levels of degradation with low uncertainty, while log10 𝐷𝑠,𝑝 and 
log10 𝑘𝑛 have more variation. This observation can also be explained 
in terms of the diffusion model. Solid particle diffusion, described 
by Fick’s law (Eq. (1)), can lead to high computational demands. 
Therefore, reduced-order models such as the two-parameter polynomial 
approximation [49] expressed by 
𝜕𝑐avg𝑠 (𝑥, 𝑡)

𝜕𝑡
= −3

𝑗(𝑥, 𝑡)
𝑅𝑝
𝑖

, (27)

𝑐∗𝑠 (𝑥, 𝑡) − 𝑐avg𝑠 (𝑥, 𝑡) = −
𝑅𝑝
𝑖

𝐃eff𝑠,𝑖

𝑗(𝑥, 𝑡)
5

(28)

can be applied at low or moderate C-rates (e.g., less than 2C). An in-
crease in 𝑅𝑝

𝑛 is regarded as a parameter that results from the irreversible 
growth of the Solid Electrolyte Interphase (SEI) layer [50,51]. The 
notion that the growth of the SEI layer dominates other degradation 
mechanisms supports the high contribution of 𝐷𝑠,𝑛 [52].

Starting at large SOH, log10 𝐷𝑠,𝑛 quickly slopes downwards be-
fore entering a linear regime in SOH. The fit across SOH is well-
approximated with an arctangent function (Table  7). The trends for 
log10 𝐷𝑠,𝑝 and log10 𝑘𝑛 are noisier than the log10 𝐷𝑠,𝑛 trend. The differ-
ence in uncertainty is likely log10 𝐷𝑠,𝑛 encodes the dominant degrada-
tion mechanism, while the individual cell-to-cell variation appears in 
the optimized parameters for log10 𝐷𝑠,𝑝 and log10 𝑘𝑛. At large discharge 
capacities, log10 𝐷𝑠,𝑝 has a large level of uncertainty at its upper bound, 
which is consistent with the identifiability analysis for pristine and 
mid-life cells (Fig.  6) where 𝐷𝑠,𝑝 is unidentifiable at low levels of 
degradation. The mean of log10 𝐷𝑠,𝑝 is closer to its lower bound due 
to the weak prior in Eq. (26), which nudges the posterior distribution 
closer to the lower bound. As the cells reach about 60%–70% SOH, 
𝐷𝑠,𝑝 becomes identifiable. Broadly, 𝐷𝑠,𝑝 and 𝑘𝑛 decrease as degradation 
increases, representing greater internal resistances in the cell. The 
relationships for log10 𝐷̂𝑠,𝑝(SOH) and log10 𝑘̂𝑛(SOH) are approximated 
with linear fits (Table  7).

The degrees of freedom of optimizing the parameters for every cycle 
scale with the number of cycles (about 2500) multiplied by the number 
of regressed parameters (3) – about 7500 degrees of freedom for each 
C-rate. In contrast, the degrees of freedom for the fitted parameters are 
significantly smaller — only 7 for the three equations for each C-rate 
(see Table  7). It is expected that the sets of optimized parameters, 𝜃∗, 
will have uniformly smaller errors than those using the fitted parameter 
relationships, 𝜃̂(SOH). Fig.  8 shows the error histograms for the three 
discharge C-rates with 𝜃∗ and 𝜃̂(SOH). On average, the RMSEs increase 
by 35% when using 𝜃̂(SOH) compared to 𝜃∗, which is acceptable 
given the significantly smaller degrees of freedom with 𝜃̂(SOH). Still, 
𝜃̂(SOH) is unable to capture significant variation in particular cells 
and cycles — the RMSE standard deviations for 𝜃̂(SOH) increase by a 
factor of 2–3 compared to 𝜃∗.  The fitted parameters produce greater 
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errors as the capacity fade increases, whereas the optimized parameters 
produce errors that do not greatly change with capacity fade. One 
possible explanation is that greater cell-to-cell variation appears as the 
cells become degraded, leading to greater deviation from the mean as 
capacity fade increases.

5.3. Beyond the DFN model

The DFN model provides a satisfactory coarse-grained description 
of real data because it includes more physics than the commonly 
used equivalent circuit models or single-particle models. However, we 
acknowledge that the DFN model still causes discrepancies with real 
data because it does not consider a number of physical aspects of the 
batteries for simplicity:

1. Staging phase separation in graphite, which leads to non-uniform
lithium concentration distributions (in both MPET simulations 
and experimental imaging [25,53,54]) that bear little resem-
blance to the assumed shrinking core of the DFN model, except 
when diffusion dominates at high rates [55].

2. Lithium plating and SEI growth [54,56–58], the dominant side 
reactions in graphite anodes, and oxidation-induced cation
disordering [59,60], an important degradation mechanism for
layered-oxide cathodes, which are only indirectly modeled by 
re-fitting parameters with aging.

3. Coupled ion-electron transfer (CIET) kinetics of lithium interca-
lation [61,62], which can differ significantly from Butler–Volmer 
kinetics in the DFN model at extremes values of state of charge 
(perhaps explaining the larger activation overpotential in ex-
periments compared to DFN simulation near the end of C/5 
discharge in Fig.  3a).

4. Hybrid porous electrode theory [63], which accounts for sig-
nificant electrochemical differences between silicon oxide and 
graphite in the composite anode, leading to nonuniform charg-
ing of the two components in both space and time during each 
cycle.

5. The Many-Particle DFN [64], which captures concentration het-
erogeneity and provides a high-fidelity description of the diffu-
sion process, can represent voltage relaxation.

Future work could generalize our analysis to capture some of the 
missing physics using Hybrid MPET, which has recently been applied to 
similar electrode materials [63]. This could lead to different, more real-
istic values of the model parameters, as well as potentially improved ag-
ing predictions, albeit at the cost of greater computational complexity.

6. Conclusion

In this article, the trajectories of the diffusion coefficient and the 
reaction rate constant at each electrode over the lifetime are identified 
via Bayesian inference, and their functional relationship with the SOH 
is analyzed. A nonlinear identifiability analysis was performed using 
data across the lifetime of 95 NCA/LiC6-SiOx cells from a disassembled 
Tesla Model 3. 7776 diagnostic cycles were evaluated for C/5, 1C, and 
2C discharges. Bayesian inference was performed with the DFN model 
and diffusion/kinetic parameters at each electrode using the MCMC 
algorithm. Histograms produced from MCMC are used to establish 
parameter confidence intervals. At low levels of degradation, only the 
anode solid diffusion coefficient could be uniquely identified from volt-
age discharge curves, indicating early anode-dominated degradation. At 
about 60%–70% SOH, the cathode diffusion coefficient and the anode 
reaction rate constant become identifiable, indicating that anode and 
cathode degradation pathways become significant and measurable later 
in  life. Capacity fade is predicted by empirical models with two or 
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Fig. 7. MCMC results and simple fitting of every cycle for C/5, 1C, and 2C discharge rates of the diagnostic cycles with a weak Gaussian prior for log10 𝐷𝑠,𝑝. The 
highlighted region is the uncertainty for each parameter, which is smoothed using an exponentially weighted moving average. Each dot is the logarithm of MAP 
at a particular SOH for all cells. Fitted parameter equations are generated to describe all MAPs well and are reported in Table  7.

Fig. 8. Histogram of RMSEs from optimizing the parameters for each cycle, 𝜃∗, and with a simple fitted relationship for each parameter, 𝜃̂(SOH) (see Table  7). 
The mean and standard deviation are slightly larger using 𝜃̂(SOH) compared to 𝜃∗.
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three parameters regressed on the optimal set of parameters, producing 
average errors of 23mV.

In future works, we focus on identifying additional identifiable pa-
rameters that significantly contribute to aging and track their trajecto-
ries. This could provide deeper insights into lifetime prediction and the 
mechanisms of aging. Also, by thoroughly investigating various degra-
dation modes such as LLI and LAM, and integrating the perturbation 
terms related to these modes into the parameter identification-based 
degradation diagnosis procedure, our approach will offer more com-
prehensive and quantitative information regarding degradation. The 
proposed framework for parameter identification-based aging mecha-
nism analysis framework can be applied to various battery models and 
chemistries. The identifiability and trends of the diffusion and kinetic 
rate constants may vary, so it is essential to validate the methodology 
for new experimental conditions.
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Appendix A. Model validation: Degradation diagnosis

The accuracy of the DFN model in describing the cycling behavior 
of aged cell along the trajectory of log10 𝐷𝑠,𝑛, log10 𝐷𝑠,𝑝, and log10 𝑘𝑛 is 
depicted in Fig.  A.1.

Appendix B. Global sensitivity analysis: Sobol’ indices

The significance of transport and kinetic parameters as key indi-
cators for diagnosing battery health is quantitatively assessed using 
Global Sensitivity Analysis (GSA). Sobol’ indices are a widely used 
metric for analyzing parameter sensitivity in engineering applications 
where the system is not assumed to be linear or monotonic [65,66]. 
Sobol’ indices quantitatively express the contribution of a specific 
parameter (i.e., partial variance) to the total variance of the system.

Here, Polynomial Chaos Expansion (PCE) was employed for vari-
ance calculation. PCE can compute variance more sample-efficiently 
than Monte Carlo simulation. Additionally, because of the orthogonal-
ity of the polynomials, the statistical information is simply calculated 
from polynomial coefficients, allowing the variance to be computed 
with simple numerical calculations. In this work, total Sobol’ indices 
were used to calculate the overall contribution, including interac-
tions with other parameters. See Ref. [1,66] for more information of 
PCE-based GSA.
Fig. A.1. Validation of degradation diagnosis results in a single cell. Applied to five different RPT cycles, each corresponding to Table  6. For example, the 
discharge voltage curve at the 1st RPT of C/5 corresponds to 96.89% SOH, where the best estimation (𝜃∗) of log10 𝐷𝑠,𝑛, log10 𝐷𝑠,𝑝, and log10 𝑘𝑛 are −13.4123, 
−11.7891, and −11.2356, respectively.

mailto:braatz@mit.edu
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Table B.1
Details of the model parameters for the global sensitivity analysis. Boundaries are determined based on the reference values of 
each parameter specified in Table  1.
 Parameter Unit Description Boundaries Note  
 𝐷𝑠,𝑝 m2/s Cathode solid-phase diffusivity [−60%, +20%] [24]  
 𝐷𝑠,𝑛 m2/s Anode solid-phase diffusivity [−60%, +20%] [24]  
 𝐷𝑒 m2/s Electrolyte solid-phase diffusivity [−60%, +20%] [24]  
 𝑘𝑝 m5∕2/(mol1∕2s) Cathode reaction rate constant [−60%, +20%] [24]  
 𝑘𝑛 m5∕2/(mol1∕2s) Anode reaction rate constant [−60%, +20%] [24]  
 𝑙𝑎 m Cathode current collector thickness [−20%, +20%] Assumed  
 𝑙𝑝 m Cathode thickness [−20%, +20%] Assumed  
 𝑙𝑠 m Separator thickness [−20%, +20%] Assumed  
 𝑙𝑛 m Anode thickness [−20%, +20%] Assumed  
 𝑙𝑧 m Anode current collector thickness [−20%, +20%] Assumed  
 𝜖𝑝 – Cathode porosity [−20%, +20%] Assumed  
 𝜖𝑠 – Separator porosity [−20%, +20%] Assumed  
 𝜖𝑛 – Anode porosity [−20%, +20%] Assumed  
 𝑅𝑝

𝑝 m Cathode particle radius [−20%, +60%] [24], Eq. (28) 
 𝑅𝑝

𝑛 m Anode particle radius [−20%, +60%] [24], Eq. (28) 
 𝜎𝑝 S/m Cathode solid-phase conductivity [−20%, +20%] Assumed  
 𝜎𝑛 S/m Anode solid-phase conductivity [−20%, +20%] Assumed  
 Brugg𝑝 – Cathode Bruggeman coefficient [−20%, +20%] Assumed  
 Brugg𝑠 – Separator Bruggeman coefficient [−20%, +20%] Assumed  
 Brugg𝑛 – Anode Bruggeman coefficient [−20%, +20%] Assumed  
 𝑡+ – Transference number [−20%, +20%] Assumed  
 𝛩max

𝑝 – Cathode maximum stoichiometry limits [−20%, +20%] Assumed  
 𝛩min

𝑝 – Cathode minimum stoichiometry limits [−20%, 1.0] Assumed  
 𝛩max

𝑛 – Anode maximum stoichiometry limits [−20%, 1.0] Assumed  
 𝛩min

𝑛 – Anode minimum stoichiometry limits [−20%, +20%] Assumed  
Fig. B.1. Global sensitivity analysis using Sobol’ indices. See Table  B.1 for the parameters used in the sensitivity analysis and their boundaries.
The boundaries for each parameter used to calculate the Sobol’ 
indices are detailed in Table  B.1. For non-aging scenarios, these bound-
aries are determined by accounting for the measurement uncertainty 
and variability of each parameter [1,67,68]. For aging analysis, which 
involves identifying parameter trajectories, this boundary determina-
tion is complicated. In this work, the boundaries for the diffusivity (𝐷) 
and kinetic rate (𝑘) were assumed to be identical to the uncertainty 
range of the parameters estimated in our previous work [24]. Simi-
larly, the same criterion was applied to the particle radius (𝑅𝑝), as it 
exhibits an inverse relationship with diffusivity in the diffusion model 
(Eq. (28)). For all other parameters, a 20% margin was assumed around 
their respective reference values. 
12 
Fig.  B.1 shows the total Sobol’ indices for three discharge C-rates. 
Parameters with a Sobol’ index exceeding 0.1 were identified as key 
parameters. The key parameters for each discharge case are:

• C/5: 𝐷𝑠,𝑛, 𝑘𝑛, 𝑙𝑝, 𝑙𝑛, 𝑅𝑝
𝑛, 𝜃max𝑛 , 𝜃max𝑝 , 𝜃min𝑝

• 1C: 𝐷𝑠,𝑝, 𝐷𝑠,𝑛, 𝑘𝑛, 𝑙𝑝, 𝑙𝑛, 𝑅𝑝
𝑝, 𝑅𝑝

𝑛, 𝜃max𝑛 , 𝜃max𝑝 , 𝜃min𝑝

• 2C: 𝐷𝑠,𝑝, 𝐷𝑠,𝑛, 𝑘𝑛, 𝑅𝑝
𝑝, 𝑅𝑝

𝑛, 𝜃max𝑛 , 𝜃max𝑝 , 𝜃min𝑝

Excluding the 𝑘𝑝, which was not identifiable in this work, 𝐷𝑠,𝑝, 𝐷𝑠,𝑛, 
and 𝑘𝑛 were identified as key parameters in at least two of the three 
discharge cases.
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Fig. C.1. The trajectories of log10 𝐷𝑠,𝑛, log10 𝐷𝑠,𝑝, and log10 𝑘𝑛 at C/5 discharge for five randomly selected cells according to LLI, LAMPE, and LAMNE identified 
through DVA. (a) LLI, (e) LAMPE, and LAMNE according to RPT cycle. (a) LLI, (b) LAMPE, and (c) LAMNE according to the RPT cycle. log10 𝐷𝑠,𝑛 trajectories 
according to (d) LLI, (e) LAMPE, and (f) LAMNE. log10 𝐷𝑠,𝑝 trajectories according to (g) LLI, (h) LAMPE, and (i) LAMNE. log10 𝑘𝑛 trajectories according to (j) LLI, 
(k) LAMPE, and (l) LAMNE.
Appendix C. Aging mechanism: LAM and LLI

The aging modes of batteries are commonly classified into LAM and 
LLI [46,69]. In this section, the relationship between the parameter 
trajectories and LAM and LLI is discussed. First, LAM in each electrode 
is defined using electrode capacities: 

LAMPE(%) =

(

1 −
𝐶aged𝑝

𝐶 fresh𝑝

)

× 100, (C.1)

LAMNE(%) =

(

1 −
𝐶aged𝑛

𝐶 fresh𝑛

)

× 100, (C.2)

where 𝐶𝑝 is the electrode capacity of the cathode, and 𝐶𝑛 is the 
electrode capacity of the anode. Second, LLI is defined as the amount 
13 
of cyclable lithium ions: 

LLI(%) =
⎛

⎜

⎜

⎝

1 −
𝑛agedLi

𝑛freshLi

⎞

⎟

⎟

⎠

× 100, (C.3)

𝑛Li =
3600
F

(

𝛩max𝑝 𝐶𝑝 + 𝛩max𝑛 𝐶𝑛

)

. (C.4)

For the same dataset, LAM and LLI were identified through dif-
ferential voltage analysis (DVA), an approach that reconstructs OCV 
to identify aging modes [70]. Fig.  C.1 shows LLI, LAMPE, and LAMNE
according to the RPT cycles for five randomly selected cells that have 
different cycle lives. Furthermore, the parameter trajectories for each 
aging indicator are compared.
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