

View

Online


Export
Citation

RESEARCH ARTICLE |  JANUARY 15 2026

Radial variations in residence time distribution for pipe
flows
Etienne Boulais  ; Richard D. Braatz  

Physics of Fluids 38, 012006 (2026)
https://doi.org/10.1063/5.0307692

Articles You May Be Interested In

Residence times of polydisperse dilute suspensions in sheared and extensional flows

Physics of Fluids (May 2022)

Residence time distributions in microchannels with assistant flow inlets and assistant flow outlets

Physics of Fluids (August 2023)

Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model

AIP Conf. Proc. (December 2010)  10 February 2026 05:24:32

https://pubs.aip.org/aip/pof/article/38/1/012006/3377436/Radial-variations-in-residence-time-distribution
https://pubs.aip.org/aip/pof/article/38/1/012006/3377436/Radial-variations-in-residence-time-distribution?pdfCoverIconEvent=cite
javascript:;
https://orcid.org/0000-0001-5539-1588
javascript:;
https://orcid.org/0000-0003-4304-3484
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0307692&domain=pdf&date_stamp=2026-01-15
https://doi.org/10.1063/5.0307692
https://pubs.aip.org/aip/pof/article/34/5/053317/2847005/Residence-times-of-polydisperse-dilute-suspensions
https://pubs.aip.org/aip/pof/article/35/8/083609/2907751/Residence-time-distributions-in-microchannels-with
https://pubs.aip.org/aip/acp/article/1325/1/257/848056/Analysis-Of-Residence-Time-Distribution-Of-Fluid
https://servedbyadbutler.com/redirect.spark?MID=188841&plid=3470650&setID=1044493&channelID=0&CID=1678023&banID=524321803&PID=0&textadID=0&tc=1&rnd=6042829272&scheduleID=3650763&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&mt=1770701072946800&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fpof%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0307692%2F20871901%2F012006_1_5.0307692.pdf&request_uuid=08ece462-4fce-4ab2-929e-f5bc34b63b6c&hc=4862d38a711df98d23472f740fcb7336574feccf&location=


Radial variations in residence time distribution
for pipe flows

Cite as: Phys. Fluids 38, 012006 (2026); doi: 10.1063/5.0307692
Submitted: 17 October 2025 . Accepted: 14 December 2025 .
Published Online: 15 January 2026

Etienne Boulais and Richard D. Braatza)

AFFILIATIONS

Department of Chemical Engineering, MIT, 77 Massachusetts Ave, Cambridge, Massachusetts 02139, USA

a)Author to whom correspondence should be addressed: braatz@mit.edu

ABSTRACT

Suspensions of low-diffusing particles in pipe flows exhibit a difference in age at different radial positions. Particles near the channel walls
have higher residence times than the cross-sectional average. We quantify this effect using Monte Carlo simulations and show the existence
of two different regimes: a “transitional” regime where delay compounds with channel length and a “far-field” regime where diffusion coun-
terbalances advection. The results presented therein can be used to quantify residence time distributions near the walls of the tube. This effect
is important to consider in experiments involving the kinetics of nanometer-scale particles using modern inline analytical tools. This work
also provides a radially resolved extension of classical Taylor dispersion results.

VC 2026 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (https://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0307692

I. INTRODUCTION

It is well-known that, in channel flows at high Peclet number, the
interaction of lateral diffusion with the parabolic flow profile causes a
broadening of concentration clouds. The problem was initially studied
by Taylor,1 who showed that the far-field cross-sectionally averaged
concentration cloud tends to a Gaussian profile with an effective diffu-
sivity scaled with Pe2; this was later refined by Aris,2 who corrected
Taylor’s initial estimate for the effective diffusivity. Following this pio-
neering work, a number of different authors studied the problem.
Applications of the model to the measurement of average velocities in
pipes have been discussed by Levenspiel and Smith.3 In a series of
papers, Gill and co-workers4,5 extended the results to cases of different
inlet conditions and velocity profiles. Chatwin6 studied the transient
behavior of the concentration cloud in the near-field and its conver-
gence to Taylor’s Gaussian profile. In the mid-2000s, some interest in
the problem was raised again in the context of microfluidic systems,7,8

and more recently, experimental work is connecting Taylor dispersion
with problems transport in biological systems.9

Whereas most work is concerned with the temporal evolution of
the concentration of a cloud of tracer, in other words with the distribu-
tion of positions of individual particles at fixed times, the problem of
residence time distribution asks instead how particles’ ages are distrib-
uted at a set position in the system. Residence time distribution mea-
surements are common in chemical engineering applications,10 where
techniques for their determination are well-established, and easily

applicable to almost any continuous systems. Problems of residence
time distributions arise naturally in continuous systems, where mea-
surement equipment is distributed at set positions along a process
pipeline, sampling particles of different age at a set position rather
than sampling every position in the system at a set instant. The interac-
tion of Taylor dispersion with residence time distributions has been
much less studied than the concentration problem. Houseworth11 gave
some analytical scalings, as well as numerical results based on Monte
Carlo simulations for the near-field problem. However, the work only
considered cross-sectionally averaged quantities and did not report
variations of residence times in the radial direction.

Such variations of residence time in the radial direction become
important when studying complex kinetics involving colloids or nano-
particles evolving in pipe flow, for example, when probing the self-
assembly of lipid nanoparticles,12 polymeric particles,13 or other small
lipid vesicles.14 In such a system, because of Taylor dispersion, the rela-
tive age of particles at different radial positions in the tube will be quite
different. If the studied systems are far from equilibrium, these differ-
ences in residence time may translate to significant differences in parti-
cle properties (radius, morphology, charge, etc.), depending on the
kinetics under study.

In this paper, we show how residence times vary along the cross
section in both 2D semi-infinite channels and cylindrical tubes. We
show that particles near the wall have higher median residence times,
and quantify the effect using Monte Carlo simulations. This effect
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becomes important to consider when using noninvasive analytical
technologies to characterize particles in pipe flows, in cases where the
system’s penetration is finite and does not encompass the whole chan-
nel. For example, flow dynamic light scattering (DLS) systems15–17 are
used to characterize nanoparticles’ size distribution by interrogating a
small area near the edge of a channel. Other inline technologies include
microscopy systems with finite penetration depth near the tube’s sur-
face, optical coherence tomography systems,18 or spectroscopic sys-
tems,19 to name a few. In such situations, the particles interrogated are
not necessarily representative of the whole cross section but instead
have a certain delay over the rest, which we quantify in this article. We
show that the accumulated delay can be easily of the order of seconds
to minutes, depending on the experiment and solute–solvent proper-
ties. This effect can be especially significant when studying systems
that have kinetics comparable to that delay, for example, in applica-
tions related to industrial crystallization or nanoparticle growth.

II. THEORY

Taylor dispersion leads to a lateral broadening of concentration
profiles in pipe flows, due to the interaction of advection by the para-
bolic flow profile and diffusion in the lateral direction. The effect is
schematically illustrated in Fig. 1. The probability density P for a par-
ticle’s position is governed by the advection–diffusion equation

@P
@t

¼ Dr2P �~u � rP; (1)

where D is the diffusion coefficient and~u is the velocity field. For flow
in a cylindrical channel of circular cross section, the velocity follows

the parabolic flow profile~uðzÞ ¼ 2V 1� r2
a2

� �
, where a is the channel’s

radius and V is the flow’s average velocity. Equation (1) can be nondi-
mensionalized using the scalings

ẑ ¼ Dz
Va2

; t̂ ¼ Dt
a2

; g ¼ r
a
: (2)

In cylindrical coordinates, the equation becomes

@P

@ t̂
þ 2ð1� g2Þ @P

@z
¼ 1

Pe2
@2P
@z2

þ @2P
@g2

þ 1
g
@P
@g

þ 1
g2

@2P

@h2
; (3)

where Pe ¼ Va
D is the Peclet number. At high values of the Peclet num-

ber, the retrodiffusion term 1
Pe2

@2P
@z2 can be neglected. In addition, if only

the variation in the radial distance is of interest, the equation can be
averaged over the angular coordinate h to yield

@P�

@ t̂
þ 2ð1� g2Þ @P

�

@ẑ
¼ @2P�

@g2
þ 1
g
@P�

@g
; (4)

where P� ¼ 1
2p

Ð 2p
0 Pdh. Pe is absent from Eq. (4), which means that, in

the high Peclet regime, the problem only has to be analyzed once and
the results can then be applied to any channel radius, flow rate, or dif-
fusion coefficient through the scalings in Eq. (2).

III. MONTE CARLO SIMULATIONS

In order to study the interplay of residence time distribution and
radial position of the particles, we implement the Monte Carlo method
described in Ref. 11. The trajectory of individual particles is simulated
in a series of discretized steps. Each time step is subdivided into an
advection step, where the axial position of the particle is updated

ẑ iþ1 ¼ ẑ i þ uðgÞDt̂ ; (5)

and a diffusion step, where the particle is allowed to move along the
tube’s cross section

giþ1 ¼ f ðgi;Dt̂Þ; (6)

where the new radial position giþ1 has to be chosen using an appropri-
ate probability distribution. If small enough timesteps are used, then
the diffusion step is approximately decoupled from the advection step.
In that case, the probability distribution cðgiþ1;Dt; giÞ for the new
radial position of the particle giþ1, given the current position gi, is
given by the impulse response of the diffusion equation

@c
@t

¼ @2c
@g

þ 1
g
@c
@g

; (7)

with boundary condition @c
@g ¼ 0 at g ¼ 1 and initial condition

c giþ1; 0; gið Þ ¼ 1
gi
dðgiþ1 � giÞ; (8)

which corresponds to an infinitely thin ring source located at radial
position gi, where dðxÞ is the Dirac delta function. The solution to this
problem is well-known and can be found in handbooks on partial dif-
ferential equations20 or in classic treatises on diffusion.21 For a given
time step Dt, we find that

c giþ1;Dt; gið Þ ¼ 2 1þ
X1
N¼1

exp �a2NDt̂
2

� � J0ðgiaNÞ J0ðgiþ1aNÞ
J20 ðaNÞ

 !
;

(9)

which can be integrated to yield the cumulative probability function

S giþ1;Dt;gið Þ¼g2iþ1þ2giþ1

X1
N¼1

expð�a2NDt̂Þ
aN

J1ðgiþ1aNÞJ0ðgiaNÞ
J20 ðaNÞ

 !
;

(10)

where J0 and J1 are Bessel functions of the first kind,22 and the con-
stants aN are the positive zeros of the Bessel function J0. The function
S can be numerically inverted to obtain

gi ¼ gðS; gi�1;Dt̂Þ: (11)

As a cumulative probability function, S is uniformly distributed
between 0 and 1. Given a random number generated from a uniform

FIG. 1. Schematic of the temporal evolution of a thin plug under the conditions of
Taylor dispersion. A noninvasive probing technique may only probe an area near
the channel walls, illustrated by the red square. Particles in that area may differ in
residence time from particles near the center of the channel.
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distribution between 0 and 1, gðS; gi�1;Dt̂Þ yields a value for the next
radial position, following the correct statistical distribution. To avoid
having to invert S at every step, which would be unnecessarily slow, we
precompute an interpolant for g on a fine grid covering all possible val-
ues of S and gi�1.

We simulate two different initial conditions. The first one is an
infinitely thin area source (or plug) with uniform distribution on the
cross section at ẑ ¼ 0, which is done by taking

g0 ¼
ffiffiffi
S

p
; (12)

where S is a random number uniformly distributed between 0 and 1.
The square root accounts for the radial distortion of the area element
in cylindrical coordinates. We also simulate a uniform flux of particles
along the cross section, where more particles appear near the middle
of the channel due to the higher flow rate there. Given a random num-
ber S, the initial radial position of a particle is then11

g0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

ffiffiffi
S

pq
: (13)

The constant flux condition is more representative of a situation
where a well-mixed solution is fed into the pipe than the somewhat
artificial constant concentration condition. In both cases, the results
are qualitatively similar. We present all graphs for both initial condi-
tions in Appendix A.

A. 2D channel

In addition to cylindrical channels, we also analyze the problem
for unidirectional flow in a semi-infinite gap between two plates. This
problem can come in handy when studying microfluidic channels and
chambers which, because of the way they are fabricated, are often cor-
rectly modeled as semi-2D systems.23 The procedure for analyzing the
semi-infinite system is exactly the same as for a cylindrical one. In that
case, the nondimensional advection–diffusion equation (neglecting
longitudinal diffusion) takes the form

@P�

@ t̂
þ 3
4
ð1� ŷ2Þ @P

�

@ẑ
¼ @2P�

@ŷ2
; (14)

where ŷ is the dimensionless vertical position, with walls situated at
ŷ ¼ 61. The diffusive step in the Monte Carlo algorithm is done the
same way as before, this time using the simpler form of the diffusion
equation

@c
@t

¼ @2c

@ŷ2
; (15)

with Green’s function20

c ŷ iþ1;Dt; ŷ i
� �¼ 1þ2

X1
N¼1

cosðNpŷ iþ1ÞcosðNpŷ iÞexp �N2p2Dtð Þ

(16)

and cumulative probability distribution

S ŷiþ1;Dt; ŷ i
� �¼ ŷ iþ

2
p

X1
N¼1

1
N
sinðNpŷ iþ1ÞcosðNpŷ iÞexp �N2p2Dtð Þ:

(17)

Initial conditions in the case of the 2D channel geometry are
much simpler. For a uniform area source, the initial vertical position
ŷ0 is simply obtained by generating a uniform random number. For
uniform flux, we use the cumulative probability distribution (for the
top half-channel)

Sðŷ0Þ ¼
3
2

ð ŷ 0
0

1� n2
� �

dn; (18)

S ¼ 3
2

ŷ0 �
1
3
ŷ30

� �
: (19)

Solving for ŷ0 and generating a uniform number between 0 and 1
for S give the proper constant flux distribution in the top half channel.

IV. RESULTS
A. 2D channel geometry

We begin by analyzing the 2D channel geometry, which is some-
what simpler than the cylindrical channel. Results for the cylindrical
case are presented in Sec. IVB. We simulate the trajectory for 1 � 106

particles with a time step of Dt̂ ¼ 0:001 and record both their vertical
position ŷ and their age t̂ as they cross set axial distances ẑ in the chan-
nel. For each axial position, the distribution of ŷ and t̂ can then be
plotted in a 2D histogram, examples of which are given in Fig. 2.

This 2D histogram contains information on both the vertical con-
centration profile (the sum along the t̂ direction is proportional to the
time-integrated concentration profile) and the residence time distribu-
tion (obtainable by summing along the ŷ direction) for different axial
distances in the tube. However, this type of plot also contains addi-
tional information on the interplay of vertical position, concentration,
and residence times, seen through the correlations of the t̂ and ŷ distri-
butions. In order to visualize some of this interplay, we generate an
equivalent of the residence time distribution Eð̂tÞ curve that only
counts particles whose vertical position ŷ is above a certain threshold
(corresponding to the particles that are a given distance from the walls
of the channel). This is shown in Fig. 3 for a penetration depth of 0.1.
We can see that the age of the particles near the wall is, unsurprisingly,
slightly higher than those over the entire cross section, which is to be
expected due to the lower velocities near the wall.

To compare how this lag evolves with increasing channel length,
we compute the median particle age for each distribution, correspond-
ing to the time s for which ðs

0
Eð̂tÞdt̂ ¼ 1

2
: (20)

This median time is plotted in Fig. 4(a) for both the entire chan-
nel cross section and for the particles for which jŷ j > 0:9. We observe
that the median age of the particles near the wall initially increases rel-
ative to the whole channel, but then stabilizes and grows at the same
pace. This effect is illustrated in Fig. 4(b), which plots the difference
between the median age of particles near the wall and those in the
entire channel. The resulting curve exhibits two distinct regimes, one
for low values of ẑ where the delay due to the lower average velocity
near the wall compounds more or less linearly, and a second one at
high ẑ where a maximum lag is reached, and the difference in median
age between the two distributions remains constant. This region can
be interpreted as the one where an equilibrium is reached between the
delay caused by lower average velocities near the walls and diffusive
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motion exchanging particles between the wall region and the middle of
the channel.

As an additional feature of Fig. 4(b), we see that the difference in
delay initially “overshoots” the equilibrium value, before slowly settling
back down at higher values of ẑ . We hypothesize that this is due to dif-
ferences in local equilibration time scales in different regions in the
domain, which leads regions near the wall to settle faster than the rest
of the channel, initially biasing the delay toward higher values. This
effect can also be seen in Fig. 5(b). We next investigate the variation of
this delay in the vertical direction, which is illustrated in Fig. 5. Figure

5(a) shows the difference in median residence time between the whole
channel and particles for which ŷ > k for different values of k (k ¼ 0
corresponding to the entire distance between the channel’s center and
the wall). In each case, the qualitative behavior is the same as observed
previously, with lag compounding approximately linearly, then reach-
ing a transition region, then settling on a constant value at higher val-
ues of ẑ . In Fig. 5(b), we compare the difference in median residence
time between the whole channel and a thin slice k0 � ŷ < k1. We can
see that, on average, particles for which jŷj > 0:5 are lagging behind
the cross-sectional average, while particles for which jŷj < 0:4 have a
smaller median age than the cross-sectional average. The switch
between positive and negative lag happens between 0:3 � ŷ < 0:4 and
0:4 � ŷ < 0:5 curves.

B. Cylindrical channel

We next simulate the evolution of particles in a cylindrical chan-
nel. 2D histograms for different channel lengths are shown in Fig. 6.
The older age of particles near the wall is particularly visible in this
case, with the histogram’s shape having a slight diagonal slant. Figure 6
shows count-based histograms, and lower values of g have lower parti-
cle counts due to the smaller annular area available at low radius. We
plot the effect for different depths, as illustrated in Fig. 7. The curves
are qualitatively similar to the rectangular case.

V. PRACTICAL EXAMPLES

The results shown here have practical implications in real sys-
tems, and in some cases, there is a risk of committing significant errors
if they are not considered. As an example, one of the impetus behind
this study was the characterization of experiments in the study of
nanoparticle growth using flow dynamic light scattering (DLS)17 sys-
tems. A typical experiment may involve suspension of nanoparticles of
radius of about 10 nm. The diffusion coefficient of these nanoparticles
can be approximated using the Stokes–Einstein relation

D ¼ kBT
6plr

; (21)

FIG. 2. 2D histogram of vertical position ŷ and age t̂ of particles crossing different channel lengths ẑ . 2D channel geometry with constant flux source.

FIG. 3. Residence time distribution Eð̂t Þ curve at ẑ ¼ 0:4 for the entire channel
cross section (blue), as well as equivalent curve counting only particles for which
jŷ j > 0:9 (red). The red curve amounts for a smaller number of particles, but for
comparison both curves are normalized to have unit area. 2D channel geometry
with constant flux source.
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FIG. 4. (a) Median residence time for par-
ticles at different axial distances down the
channel for entire cross section (blue) and
for particles with jŷ j > 0:9 (red). (b)
Difference in median residence time
between both curves. 2D channel geome-
try with constant flux source.

FIG. 5. Difference in dimensionless median
time for different penetration depths jŷ j < k
(a), as well as for different slices k1
� jŷ j < k2 (b). 2D channel geometry with
constant flux source.

FIG. 6. 2D histograms for cylindrical channel geometries with constant flux source.
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where kB is Boltzmann’s constant, T is the absolute temperature, l is
the solvent’s dynamic viscosity, and r is the particle’s radius. This yields
D � 2 � 10�11 m2= s at room temperature for a solvent with viscosity
comparable to that of water. We have shown in Sec. IVB that the cut-
off between the regions of compounding lag and the region of constant
additional delay corresponds to roughly ẑ � 0:1 for a cylindrical chan-
nel. Plugging our typical values into Eq. (2), this would correspond to
a dimensional length of ztransition ¼ 25m for a flow rate of
Q ¼ pa2V ¼ 100 ll/min. If we were to then interrogate particles in
the 10% of the channel nearest to the wall, these would have a dimension-
less median residence time difference of t̂ � 0:033 with the cross-
sectional average [taken from Fig. 7(a)], which for typical tubes with
r � 500 lm would here correspond to an enormous dimensional lag of
t � 12 500 s. In this model experiment, if the tube length was
shorter than the transition length of 25m (which it most likely
would be), the difference in measured age of the particles would
be a more or less linear function of the tubing length used, up to
the maximum of t � 12 500 s at 25 m. For example, an experiment
with 1 m of tubing would see a difference in particles’ median age
between the wall region and the entire cross section of roughly
500 s. This is important to consider, as it means that the length of
tubing used in an experiment can become a variable that signifi-
cantly affects the measured results.

Further complicating the situation, if the measurement was taken
less than 500 s after the start of the experiment, then the difference in
the median age of the particles between the region near the edge of the
wall and the cross-sectional average would be a transient value that
would depend both on channel length and on the moment the mea-
surement was taken (see Appendix B). In experiments that are probing
kinetics of nanoparticles using finite penetration depth analytical tech-
niques, Taylor dispersion is going to severely bias the results, such that
the particles near the wall are not representative of the entire cross
section.

In the numerical example presented above, the Peclet number is
� 1:6� 105. Peclet numbers of the order of 105 to 107 for microfluidic
systems24 or up to 108 or 109 for larger-scale systems25 are typical, and
fall well within the “large Peclet number” ranges necessary for our
approximations to hold.

VI. IMPLICATIONS FOR EXPERIMENTAL SYSTEMS

The results presented herein point to further avenues of experi-
mental research. A simple experimental reproduction of our numerical
results could be obtained by studying crystallization of a slightly super-
saturated solution of a salt in a long tube under flow. Picking a known
simple, well-characterized crystallization process would allow a simple
correlation of particle size to residence times. Particle size distributions
can be measured near the channel walls at different times using a tech-
nique such as flow DLS.17 The measured populations could then be
compared to a ground truth obtained by either comparing with known
kinetics, or experimentally by running a parallel experiments where
the solution is periodically dumped in a vial (thus removing the spatial
heterogeneity in populations) and characterized using either tradi-
tional DLS or other methods. If different methods are used for charac-
terizing the “near-wall” and cross-sectionally averaged samples, care
has to be taken when comparing number-based, volume-based, or
intensity-based particle size distributions.26 In our group’s experi-
ments, complex lipid nanoparticles are synthesized using standard
impinging jet mixing,25 and we know that the particles thus formed
continue ripening and growing in the tubing, with characteristic time-
scales of the order of seconds (see Appendix C). Continuous monitor-
ing of such processes is an important problem in modern
pharmaceutical applications, and the use of noninvasive systems which
sample a small area near the tube’s edge will thus have a tendency to
sample particles which are older and thus larger than the cross-
sectional average. Additionally, if such measurements are made as a
way of probing unknown kinetics (which is the case with complex
nanoparticle synthesis), not accounting for the spatial variation in resi-
dence time distribution will lead to a tendency to overestimate reaction
rates, as we are underestimating measured residence times. In complex
systems such as lipid nanoparticles where the kinetics are not well-
understood, and likely involve population-dependent effects such as
particle fusion,27 the quantitative effect of this inhomogeneity is likely
quite complex and could only be studied using complete population
balance modeling.28 Hence, it is important to first study simpler crys-
tallization systems for experimental validation of the work presented
here.

FIG. 7. Median time difference for different
penetration depths in a cylindrical channel
with constant flux source.
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VII. OTHER EFFECTS

The results presented here apply to dilute systems, in which the
particles are much smaller than the characteristic dimensions of the
channel. As the ratio of particle radius to channel dimension increases,
and as concentration becomes larger, it may become important to con-
sider interactions between particles and walls, as well as particle–parti-
cle interactions. Given the immense breadth of existing nanoparticle
flow systems, a complete enumeration of all possible interactions
would go beyond the scope of this article. We list here some common
ones and point the reader to further reviews on simulations of nano-
flows29 for more details.

Even in the absence of explicit wall forces (for example, electro-
static or van der Waals forces), the flow-induced coupling between the
particle and the wall may affect the trajectory of nanoparticles in a
number of ways. It is well-known from ideal flow theory (see, for
example,30 Secs. 137 and 138) that flow of a spherical particle near a
wall induces a net force on the particle whose direction depends on the
direction of movement of the sphere. Variations in drag as a spherical
particle move directly toward a wall in Stokes flow are also felt as a net
force away from the wall.31 Small inertial effects can also induce lift
forces, which tends to deflect particles away from walls in channel
flows.32 Such lift forces are now known to also arise from symmetry-
breaking effects, such as irregular particle shapes or deformable bound-
aries.33 Such particle–wall effects could easily be integrated by modify-
ing the lateral diffusion step in our Monte Carlo simulation to account
for an additional bias when the particle is near the wall. The addition
of a net force away from the wall would have the effect of making the
residence time distribution slightly more uniform throughout the
channel. In the pure convective system, infinite residence times can be
obtained if one gets arbitrarily close to the wall. In regular Taylor dis-
persion, the interplay of diffusion and advection (even when diffusivity
is very small) removes these infinite residence times, as the boundary
layer near the wall is diffusively mixed with the interior of the channel.
An added bias in diffusion toward the center of the channel would
work in this same direction and slightly reduce the net difference in
residence times between the wall region and channel interior.

As concentration increases, particle–particle interactions may
also need to be considered. These may include fluid mediated interac-
tion between neighboring particles,34 flocculation,35 repulsion due to

steric stabilization,36 and eventual Van der Waals or Debye forces37

between particles. At higher concentrations, effects such as shear-
induced migration38 or shear-induced aggregation39 may need to be
considered. The variety of possible particle–particle effect is very broad,
and which ones need to be considered will be heavily problem-
dependent. Some of these effects may be integrated into our model by
the addition of biasing force, or modified transport coefficients that
empirically account for chosen effects. However, in some cases, the
presence of complex particle–particle or concentration-dependent
effects may break our methodology, in which we are tracking particles
one at a time. To account for these more complex effects (for example,
particle fusion), fully coupled advection–reaction–diffusion models40

or population balance models28 may need to be used. Finally, we have
been using simple constant diffusivity computed using the well-known
Stokes–Einstein equation. This may break down when studying non-
spherical particles, as well as when studying systems where particle size
varies a lot over time, and the diffusivity coefficient has to depend on
time.

VIII. CONCLUSION

In conclusion, we have shown how residence time distributions
of particles vary across the vertical distance in rectangular channel
flows, as well as radial distance in cylindrical pipe flows. We have
shown that particles near the wall accumulate “lag” up to a certain crit-
ical distance, after which diffusion counterbalances advection, and the
particles have a constant delay when compared with the cross-
sectional average. This effect becomes important in high Peclet num-
ber flows, with delays easily adding up to the order of minutes or even
hours in typical scenarios. The results presented are of particular
importance in experiments probing kinetics (for example, studying the
growth mechanisms of nanoparticles) using measurement tools with
finite penetration depths, for example, flow DLS systems.
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APPENDIX A: ADDITIONAL RESULTS

The results in the main text were for an initial condition of
constant flux through the cross section at ẑ ¼ 0. Here, we present
those same results for an infinitely thin plug of constant concentra-
tion at ẑ ¼ 0. Results are shown for a 2D semi-infinite (Fig. 8) and
cylindrical (Fig. 9) channels.

APPENDIX B: TRANSIENT EXAMPLE

Section V provided examples of dimensional delays for par-
ticles near a wall in typical experiments. Such delays can easily add
up to minutes or hours, once steady state has been achieved. If mea-
surements are taken before that steady state is achieved, the delay
will be shorter. Figure 10 shows an example of how that delay
evolves for a set position within a cylindrical tube (here, ẑ ¼ 0:02).
For short times, no particle is recorded (when convection has not

brought in the first particles), then the difference in median times
between the center and edge of the channel compounds until the
whole tail has passed. In cases where the delays add up to hours,
this means that the difference between the particles near the wall
and the cross-sectional average might not just be a function of how
far along the tube the measurement apparatus is, but also of how
long has elapsed since the experiment started. Considering these
effects is important when probing particle kinetics that are of a
comparable timescale as the delays induced.

FIG. 9. Difference in dimensionless median
time for different penetration depths jŷ j < k
(a), as well as for different slices k1
� jŷ j < k2 (b). Cylindrical channel. Initial
condition: uniform concentration plug.

FIG. 10. Difference in residence time between the region near the wall (g > 0:9)
and the cross-sectional average in a cylindrical pipe at ẑ ¼ 0:02 for short times
(constant flux initial condition).
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APPENDIX C: LIPID NANOPARTICLE EXAMPLE

In Fig. 11, we show the evolution of lipid nanoparticle radius
in a typical nanoparticle synthesis experiment over timescales of
seconds to minutes. We can observe that the radius changes signifi-
cantly, growing monotonically over these timescales. Such results,
even in the absence of more complete mechanistic models for
growth, indicate that higher residence times in such a system are
likely to be correlated with higher measured particle radius. We
expect similar trends for many nanoparticle synthesis processes.

Drug-free lipid nanoparticles containing ALC-0315 as the ion-
izable lipid were prepared following the method described in Ref.
41. The lipid concentration in ethanol was 5mg/ml, and sodium
acetate aqueous buffer (pH 5.5) concentration was 100mM.
The lipid nanoparticles were formulated at a total flow rate of
20ml/min, and the aqueous-to-ethanol flow rate ratio of 3:1. 2ml of
the sample was collected in a glass vial, and the particle size was
measured with PhaSR-DLS operated in batch mode. The mean par-
ticle size was recorded every 9 s.
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