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SUMMARY

Diverse usage patterns induce complex and variable aging behaviors in lithium-ion batteries, complicating 

accurate health diagnosis and prognosis. In this work, we leverage portions of operational measurements 

from charging or dynamic discharging in combination with an interpretable machine learning model to enable 

rapid, onboard battery health diagnostics and prognostics without offline diagnostic testing and access to 

historical data. We integrate mechanistic constraints derived from differential voltage analysis within an 

encoder-decoder to extract electrode health states in a physically interpretable latent space, which enables 

improved reconstruction of the degradation path with onboard aging mechanisms tracking. The diagnosis 

model can be flexibly applied across diverse applications with slight fine-tuning. We demonstrate the 

model’s versatility by applying it to three battery-cycling datasets consisting of 422 cells under different oper

ating conditions, with a mean absolute error of less than 2% for health diagnosis under varying conditions, 

highlighting the utility of an interpretable, diagnostic-free model.

INTRODUCTION

The growing trend of electrification has driven the wide appli

cation of lithium-ion batteries in electrified transportation and 

grid storage.1,2 One of the primary concerns during battery 

usage is degradation, leading to reduced capacity and power 

capabilities. Knowing a battery’s current and future state of 

health (SOH) is critical in optimizing its usage. However, the 

complex path-dependent nature of battery degradation re

sults in diverse practical degradation patterns, which pose 

challenges for accurate health diagnosis and prognosis.2,3

Typically, a diagnostic cycle is employed to assess the SOH 

of the battery.4–9 This diagnostic cycle may include pulse tests 

to check resistance, low-rate capacity checks, and other 

application-specific tests necessary to extract useful SOH 

metrics. Key information obtained from the diagnostic test is 

further used in other battery-related research, such as 

modeling and parameter identification, state estimation and 

CONTEXT & SCALE Batteries degrade during usage, reducing their energy and power supply performance. 

Diverse usage conditions lead to complex and varying degradation mechanisms occurring inside batteries. 

Separate diagnostic cycles are often used to untangle the battery’s current state of health from prior complex 

aging patterns. However, these same diagnostic cycles alter the battery’s degradation trajectory, are time- 

intensive, and cannot be practically performed in onboard applications. 

This paper presents an interpretable, diagnostic-free model for onboard battery health diagnosis and prog

nosis, along with an interpretation of aging mechanisms. By only using the random portions of operational 

measurements from the battery management system, the degradation path can be reconstructed, and the 

future degradation trajectory can be predicted. Electrode-level aging mechanisms are revealed, and the cy

cle life is forecasted during onboard operations, thus providing better guidance for predictive maintenance 

and battery design. This framework is effective with dynamic loadings and is flexible for different applica

tions, including battery design and characterization, onboard management, and retirement. 
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cycle life prediction, materials characterization, and second- 

life applications.10–13

One common SOH metric is the low-rate battery capacity. 

However, this metric alone is insufficient, as multiple degrada

tion pathways can lead to the same cell-level SOH, limiting the 

interpretative power of relying solely on the cell-level capacity. 

To address this, electrode-specific capacities have been pro

posed and extensively studied as a means to further break 

down degradation into electrode-level phenomena, capturing 

the more intricate aging behavior of lithium-ion batteries.6,7,14–16

This mechanistic model, known as differential voltage analysis 

(DVA), reconstructs the battery’s open-circuit voltage (OCV) by 

subtracting matched and rescaled half-cell OCV curves. Using 

these half-cell curves, DVA reveals key modes of battery aging, 

such as loss of active materials (LAMs) and loss of lithium inven

tory (LLI).17–19 Although this analysis provides valuable in situ 

insight into aging mechanisms, it is typically performed on 

pseudo-OCV curves at rates of C/20 or lower, taken during a 

diagnostic cycle. Furthermore, even at low rates, this adjustment 

does not fully capture the pseudo-OCV curve due to changes in 

half-cell overpotential, inhomogeneities of lithiation, and other 

aging effects.20–22

While diagnostic cycles provide valuable insights into the bat

tery’s SOH, such as enabling DVA, they have significant draw

backs. Taking time away from aging to perform disruptive and 

time-intensive diagnostic cycles can drastically alter the trajec

tory of battery aging.5 From a practical point of view, time- 

consuming diagnostic tests cannot be performed routinely on 

consumer electronics, leading to the need for onboard diagnos

tics that use operational data. In real-world applications, battery 

charging current rates (C-rates), state-of-charge (SOC) ranges/ 

voltage windows, and load profiles can vary significantly, neces

sitating data-driven models that are robust across diverse oper

ating conditions.2,23–25 Moreover, a significant number of 

lithium-ion batteries are expected to retire from electric vehicles 

(EVs) in the near future with varying conditions, but performing a 

lengthy diagnostic cycle to evaluate their performance will be 

costly.26–28 To facilitate more intelligent repackaging and reuse, 

rapid evaluation of battery performance has garnered increased 

attention. Finally, different C-rate-based diagnostic tests are 

required in diverse applications, necessitating the model’s suit

ability under varying scenarios.29,30

In recent years, the advanced development of machine 

learning models has led to their implementation in battery health 

estimations and predictions.2,31–35 Data-driven predictions of 

the OCV curve and the incremental capacity (IC) curve have 

shown potential for onboard health diagnosis by using measured 

current and voltage.36,37 Deep neural networks are used pre

dominantly in these data-driven models for the prediction of 

the battery OCV curve or charging curve due to their good 

nonlinear mapping capabilities.37–40 However, despite achieving 

high prediction accuracy, the input data is usually fixed to a spe

cific voltage curve under constant current (CC) between the 

voltage limits. This limits generalization to real applications 

with partial SOC cycling or dynamic load profiles. Additionally, 

the ‘‘black box’’ nature of these models limits their interpretability 

for a battery engineer to better understand the failure modes of a 

given battery. Consequently, mechanistic models are still 

required for subsequent aging mechanism analysis, which is 

separate from machine learning.

To improve the interpretability of battery health models, prom

ising ways of combining physical models with machine learning 

have been discussed.41,42 One approach involves extracting 

physically interpretable features from mechanistic models to 

inform machine learning models used for battery modeling, 

health estimation, and cycle life prediction.6,7,43,44 However, 

the extraction of these physical features poses challenges and 

typically requires specific and time-consuming diagnostic tests. 

Physics-informed neural networks (PINNs), which integrate gov

erning equations from mechanistic models to constrain machine 

learning models, show promise in improving both interpretability 

and the speed of solving governing equations in complex 

models.45–47 However, not only is the construction of explicit 

models with partial derivatives challenging, but current models 

also do not fully capture highly interconnected degradation pro

cesses during battery aging.48

Here, we propose an interpretable model for the diagnosis and 

prognosis of complex battery aging that can be performed 

without separate diagnostic tests. Instead of a diagnostic, this 

model uses partial operating data with random SOC windows 

truncated from the full charging/discharging curves that emulate 

the measured data from practical applications. An autoencoder 

integrates mechanistic states in a physically meaningful latent 

space, which is constructed through the DVA-based model 

and the alignment between the derived OCV and predicted 

OCV, enabling interpretable battery diagnosis and prognosis. 

Consequently, our model demonstrates the potential of machine 

learning to replace time-consuming and costly offline testing and 

model fitting to enhance onboard health management without 

requiring historical data. Furthermore, by fine-tuning our model, 

we demonstrate the swift transferability to different applications. 

We evaluate the model for three datasets: the van Vlijmen et al.6

dataset, which comprises 236 batteries sourced from a Tesla 

Model 3 cycled under 126 different CC operating conditions; 

the Geslin et al.7 dataset, which comprises 92 batteries under 

both constant and dynamic cycling conditions; and a new data

set consisting of a subset of 94 batteries from the van Vlijmen 

et al. dataset that underwent further low-rate (such as C/80 

and C/40) validation tests. These exemplary use cases demon

strate the potential of diagnostic-free aging studies and quick 

onboard health assessment.

RESULTS

Data generation

Three datasets are evaluated in this work. First, 236 cylindrical 

21700 cells (Li(Ni,Co,Al)O2/graphite + SiOx) extracted from a 

Tesla Model 3 EV were selected from the dataset presented in 

van Vlijmen et al.6 These cells were cycled under 126 distinct 

operating conditions, including 43 charging protocols, 14 dis

charging protocols, and 13 voltage windows. This extensive 

range of test conditions produced complex and varied degrada

tion curves with a broad distribution of equivalent full cycles 

(EFCs) at the end of life. The typical procedure for battery 

aging is illustrated in Figure 1A. The SOH was evaluated with a 

diagnostic test, where the pseudo-OCV was obtained from a 
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C/5-based reference performance test (RPT). The aging cycles 

consist of different charging and discharging protocols to cycle 

the cells within various voltage ranges for approximately 100 cy

cles before another diagnostic cycle is performed. Due to battery 

manufacturing variability and diverse aging conditions, various 

degradation patterns were observed, as depicted in Figure 1B 

and details described in van Vlijmen et al.6 The distribution of 1 

C and 2 C at fixed C/5 SOH in Figure 1C (see Note S1, 

Figures S1–S3, and Table S1 for details) indicates that the map

ping relationships between higher C-rates and reference RPT 

(C/5) are complex and diverse across different cycling conditions.

While the lowest rate used in the van Vlijmen et al. dataset is 

C/5, lower C-rate testing, such as C/40, is typically used for 

effective mechanistic feature extraction in aging analysis.21,49–51

Obtaining these pseudo-OCV curves at different SOHs is time- 

consuming, yet essential to develop accurate state monitoring. 

To showcase the robustness of the model architecture when 

Figure 1. Data illustration 

(A) Protocol for battery aging in the van Vlijmen 

et al. dataset, which includes the cycling and 

diagnostic test. The cycling test uses different 

C-rates and SOC windows for charging and dis

charging, while the pseudo-OCV curves are ob

tained from the diagnostic cycle. 

(B) Summary of the testing conditions and the 

degradation curves of the test batteries. 

(C) Capacity distributions obtained by different 

discharge C-rates and the variations during 

aging.6

(D) Protocol for the different C-rate tests gener

ated in this work, where 8 different rate tests are 

included. 

(E) Capacity distributions of the cells at different 

discharge C-rates. 

(F) Protocol design for battery aging in the Geslin 

et al. dataset,7 which includes the dynamic cycling 

and diagnostic test. 

(G) Cycling design and the degradation curves for 

the 92 cells in the Geslin et al. dataset7.

applied to a variety of C-rate cases for 

broader application interests, 94 cells 

from the van Vlijmen et al.6 dataset at 

different SOHs were subjected to addi

tional tests to generate a new dataset. 

An RPT was conducted using eight 

different C-rates, as shown in Figure 1D. 

The discharge capacities at different 

C-rates shown in Figure 1E illustrate the 

large variations in RPT and mechanistic 

health status among these cells. In partic

ular, these large variations highlight 

the difficulty in using high C-rate data to 

predict and understand low-rate data. 

Consequently, this dataset encom

passes a wide range of aging stages, 

from fresh cells to retired ones, enabling 

a holistic study of battery aging over the 

entire lifespan and enabling validations 

for health diagnostics under different C-rate tests. For more de

tails on the data samples, see Note S2 and Figures S4 and S5.

Finally, the van Vlijmen et al. dataset and the different C-rate 

validation dataset use CC cycling; however, dynamic cycling is 

more representative of EV operations and leads to a prolonged 

lifetime compared with standard CC cycling.7 Therefore, model 

performance in operation closer to real-world aging is crucial. 

To this end, we use 92 cells from the Geslin et al. dataset7 as 

the third test case. The batteries were subject to four types of 

operating conditions, i.e., CC, periodic, synthetic, and real 

driving protocols. A periodic diagnostic cycle is conducted after 

every 25/100 aging cycles. The typical profile and the degrada

tion curves are shown in Figures 1F and 1G. During the diag

nostic test, RPT was performed under C/40, providing data 

closer to real OCV for the verification of our model. The diversity 

of degradation during practical cycling further motivates the util

ity of onboard health assessment during operation.
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Health diagnosis

First, we evaluate our model on the van Vlijmen et al. dataset. The 

first charge (with rates between C/5 and 2C) after the diagnostic 

cycle is used as the input to the model, and the output is the full 

C/5 discharge curve of the directly preceding diagnostic cycle, 

which will be used as the pseudo-OCV curve in this study. In a 

real-world scenario, an EV battery may be charged between a 

variety of SOC ranges depending on its daily driving require

ments. Although the SOC ranges and charging C-rates are 

already varied in the van Vlijmen et al. dataset to make the model 

robust to a large variety of working SOC ranges, the beginning 

and end of the charging data are artificially truncated as demon

strated in Figure 2A (see Note S1 for details), yielding several par

tial charging voltage curve samples that correspond to the same 

C/5 discharge curve for model training. The random sampling of 

the partial curves is performed three times with different starting 

and ending points at each diagnostic cycle to cover wide data 

distributions, which helps evaluate the model more comprehen

sively. The truncated voltage and capacity, together with current 

Figure 2. Data sampling and diagnostic 

model 

(A) Randomly sampled portions of charging 

curves. 

(B) Distributions of the voltage windows for the 

input data sampling of the cycling dataset. 

(C) The SOC ranges of the extracted partial 

charging data. 

(D) The mapping between the measured capacity 

from the partial charging and the reference C/5 

RPT capacity. 

(E) Mechanistic constraint model for battery health 

diagnosis using randomly sampled portions of 

charging curves. 

(F and G) The errors of the Q̂ sequence and V̂ 

sequence of the predicted OCV curves for all the 

test samples (composed of all the RPT cycles from 

the test cells), respectively. 

(H) The errors of the derived voltage of the OCV 

curves, which are calculated based on the phys

ics-constrained mechanistic states in the machine 

learning model. The predicted discharge capacity 

(Q̂) and voltage (V̂ ) MAE errors were 45.1 mAh 

and 10.1 mV, respectively, with derived voltages 

(Vd) showing MAE error below 18.4 mV.

EFC, are employed as input data for the 

full OCV (C/5 discharge curve) predic

tions. Figure 2B demonstrates the distri

butions of the data samples with different 

voltage windows, and the corresponding 

SOC ranges are shown in Figure 2C. 

Based on previous studies that assessed 

daily usage conditions in real-world ap

plications, where the available SOC 

ranges could significantly vary depending 

on the applications and usage habits, our 

data sampling effectively simulates prac

tical charging scenarios.2,23,52–56 The 

relationship between partially charged 

capacities from randomly sampled portions of charging pro

cesses and the reference capacity (C/5 discharge capacity) is 

illustrated in Figure 2D, demonstrating a significant nonlinearity.

To go from the partial charging curves to the full C/5 discharge 

voltage curves, the encoder-decoder structure is employed for 

the data-driven health diagnosis, as represented by Figure 2E. 

Specifically, the encoder takes the partial charging voltage, ca

pacity, and EFC and encodes them into 4 latent variables. These 

latent variables are assigned to be the mechanistic states used in 

DVA: anode capacity (Cn), cathode capacity (Cp), anode (x0), and 

cathode lithiation state (y0) at the beginning of discharge of the 

corresponding half cell. These latent variables become these 

mechanistic states through the mechanistic constraint, which 

compares the derived OCV from these latent variables to the pre

dicted OCV (see Notes S3 and S4, Figures S6 and S7, and 

Table S2 for detailed descriptions of the model and physics con

straints). The decoder uses these mechanistic states and out

puts the C/5 discharge curve. The objective function is a combi

nation of the prediction error and the mechanistic constraint 
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error. In summary, this model can be understood as being first a 

flexible DVA where the encoder portion enables performing the 

analysis on partial charging data, followed by a decoder that en

ables flexible reconstructing of the voltage curve that balances 

pure DVA reconstruction (mechanistic constraint) and a compo

nent that adjusts the voltage curves to account for the discrep

ancy (prediction error).

To comprehensively evaluate the model, all cells with the 

same charging/discharging protocols appeared only in either 

the training or testing group. This setup ensured that the testing 

cells were aged under conditions unseen in the training data. 

Additionally, 20% of the training data were randomly chosen 

as validation samples to avoid overfitting by early stopping, 

thus establishing an inner loop for validation and an outer loop 

for testing (see Table S3 for the detailed grouping information). 

Figures 2F and 2G show the prediction results for the OCV curve, 

and the derived OCV (representing the OCV curve obtained 

directly by the constrained mechanistic states) is shown in 

Figure 2H. The heat maps reflect the capacity/voltage error at 

each voltage/capacity point for all the test OCV curves, where 

the color bars represent the absolute errors. The results indicate 

the stability of the physics-constrained machine learning model 

for health diagnosis across batteries operating under diverse 

C-rates, SOC ranges, and aging states. The mean absolute error 

(MAE) for the predicted discharge capacity (Q̂) and voltage (V̂ )

errors are 45.1 mAh (0.93% of the nominal capacity) and 

10.1 mV, respectively, with derived voltages (Vd) with MAE of 

18.4 mV, as summarized in Table 1. Due to the variations in 

open-circuit overpotential during aging, especially for the sili

con-graphite anode, inhomogeneities of lithiation, and other ag

ing-related influences,20–22 we observe that while the predicted 

voltage error and the derived voltage error have a qualitatively 

similar error dependence on capacity, the predicted voltage er

rors (Figure 2G) are lower, indicating that the decoder can 

compensate for deficiencies in the mechanistic model during 

aging.

Here, we compare our model accuracy and complexity by 

incorporating different neural networks—including multilayer 

perceptron, recurrent neural network, gated recurrent unit neural 

network, long-short term memory neural network, and 1D con

volutional neural network—which are widely used in battery 

health diagnosis and prognosis.12,37,42,57 See Note S5 and 

Figure S8 for the detailed comparisons. The prediction results 

indicate that SOH estimation errors remained below 7% under 

all conditions, with more than 95% of the results having relative 

errors below 5% using a simple multilayer perception model as 

encoder and decoder. The error distributions shown in 

Figure S9 indicate that the estimations are not sensitive to input 

voltage and SOC ranges. The performance underscores the high 

reliability of the model for SOH estimation across diverse appli

cation scenarios.

Exemplary prediction results for the C/5 pseudo-OCV and dif

ferential voltage curves are shown in Figures 3A, 3B, and S10, 

demonstrating the effectiveness and physical interpretability of 

the model through the comparative results with conventional off

line model fitting.17–19 The directly predicted OCV, derived OCV, 

and half-cell voltage facilitate the interpretation of holistic health 

status using only the information from the randomly sampled 

portions of the charging curve. The mechanistic states capture 

the aging, and the decoder further compensates for the predic

tion errors. To illustrate the role of mechanistic constraints in the 

data-driven model, we present the result of the ablation experi

ment where predictions were made without the physical 

constraint and the corresponding boundary constraint (Lphy 

and Lbound in Note S3) in Figure S11. While a pure data-driven 

OCV prediction model37–40 can accurately predict OCV curves 

based on partial charging data to some degree, a significant 

misalignment between the predicted and derived OCV curves 

(see Figure S11A) indicates that the model functions as a black 

box with poor physical interpretability. Additionally, the derived 

OCV curve can extend beyond reasonable ranges without 

boundary constraints, interrupting the interpretation of aging 

mechanisms in a purely data-driven model. Further results 

from the proposed model, including the worst and average diag

nosis performances across all tests, are provided in Figure S12.

With this model, we can now generate the C/5 discharge 

voltage curves using the charging portion of operational data 

without a separate diagnostic cycle. In Figure 3C, we extract 

the mechanistic states from an example cell using solely the ag

ing cycle data. For the complete prediction of the C/5 discharge 

curves for every aging cycle of this representative cell, see 

Figure S13. From this analysis, we can see how the full SOC 

range diagnostic cycle modifies the state of the battery and gen

erates a capacity increase that is often observed in battery 

degradation studies.5,58 This approach enables a full trajectory 

picture of degradation in the battery that is otherwise 

inaccessible.

This approach is applied to all the testing cells in the dataset, 

and from these mechanistic states, we can directly obtain the 

degradation modes: LLI and LAM on the cathode (LAMp) and 

anode (LAMn). Results in Figures 3D–3F illustrate the degrada

tion of each aging mode derived from our model, with the varia

tions of each mechanistic state shown in Figure S14. The results 

indicate that the anode degradation progresses more rapidly 

than the cathode degradation, leading to greater losses of active 

material on the anode. The lithium inventory also exhibits a rapid 

decline, as shown in the diagnosis results. The Li(Ni,Co,Al)O2/ 

graphite + SiOx cells used for the aging test have a strong 

coupling between LLI and LAMn (Figure S15). As the anode is 

a blended graphite SiOx electrode, swelling of Si with Li interca

lation can cause cracking of particles and disconnection, 

creating ‘‘dead’’ particles with trapped/lost Li.59–61 LAMp is 

also correlated with LLI, as demonstrated in Figure S15. Possible 

causes are oxidation-induced cation disordering or cathode- 

electrolyte interphase (CEI) growth, degrading the cathode while 

trapping dead Li in blocked crystal sites.59,61,62

Shapley additive explanations (SHAP), a tool for analyzing the 

importance of input features on the output, is used in combina

tion with our model to further interpret our results.6,7,63–66 The 

SHAP analysis for the encoder is presented in Figure 3G, while 

the results for the decoder are illustrated in Figure 3H. For 

most of the mechanistic states, voltage, capacity, and EFC are 

approximately equal in determining the output. For the decoder, 

however, the anode capacity contributes most significantly to 

the reconstruction of the voltage curve. The aging mode analysis 

indicates a more pronounced degradation of LAMn compared 
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with LAMp, which is corroborated by the SHAP results. In addi

tion, due to the fact that the anode is a blended electrode, the 

decoder may need to compensate for the voltage effects of pref

erential degradation of Si.21,67 The analysis highlights that ca

pacity degradation on the anode has a greater impact on health 

predictions than capacity degradation on the cathode, as de

picted in Figure 3H. Additional results detailing the impact of fea

tures on mechanistic state estimations can be found in 

Figure S16. In summary, with the proposed diagnostic-free 

physics-constrained health diagnosis model, the degradation 

mechanisms and pathways can be reconstructed in regular us

age by only using the partial charging measurements across 

various SOC ranges and C-rates for the whole lifespan.

Health prognosis

In addition to health diagnosis to understand current aging con

ditions, health prognosis is essential to anticipate future degra

dation to guide predictive maintenance and reduce research 

and development costs. Future degradation can be forecasted 

using the macroscopic (current EFC and predicted SOH at the 

current cycle, i.e., the last value of Q̂ sequence) and mechanistic 

states (Cp, Cn, x0, and y0) through another decoder, as shown in 

Figure S6. The data-driven diagnostic results are utilized as the 

basis for future degradation prediction, without needing access 

to historical degradation data. This allows for developing a 

sequential framework for health diagnosis and prognosis 

(as detailed in Note S3). Such a framework facilitates real-world 

applications by eliminating the need for increased memory ca

pacity in the battery management system for health prognosis, 

which conventional degradation prediction models typically 

require.

The predicted results for the cycle life and future degradation 

curves are shown in Figures 4A–4C, where the predictions of cy

cle life (when the capacity C/5 RPT drops below 80% of the nom

inal capacity) and future degradation curves are demonstrated. 

The predictions here show the results when the diagnostic cycle 

is conducted between 83.5% and 86.5% SOH (for an application 

of guiding onboard predictive maintenance), with earlier predic

tion results from the third diagnostic cycle presented in 

Figure S17 (for an application of early prediction). The results 

indicate that the prediction successfully converges to real degra

dation and predicts the cycle life with mean errors of less than 76 

EFCs, 12.8% of the mean cycle life of 593 EFCs. The predicted 

cycle life (represented by the EFC) can be determined either 

from the final value of the future degradation curve (sequence 

prediction) or directly from the decoder (point prediction), with 

Table 1. Summary of the diagnostic and prognostic performances

Objective Task RMSE MAE R2

Health diagnosis (dataset 1) predicted Q of OCV curve (Q̂) 67.2 mAh 45.1 mAh 0.998

predicted voltage of OCV curve (V̂) 13.8 mV 10.1 mV 0.999

derived voltage of OCV curve (Vd) 25.2 mV 18.4 mV 0.996

predicted SOH 1.86% 1.35% 0.945

Health prognosis (dataset 1) predicted Q of the future degradation curve 28.7 mAh 22.6 mAh 0.861

predicted EFC of future degradation curve 62.1 EFC 39.4 EFC 0.910

predicted cycle life from degradation curve 105 EFC 76.0 EFC 0.824

predicted cycle life from model 105 EFC 76.4 EFC 0.824

predicted cycle life for all cells 81.6 EFC 59.2 EFC 0.876

Early health prognosis (dataset 1) predicted Q of the future degradation curve 70.2 mAh 50.0 mAh 0.842

predicted EFC of future degradation curve 93.6 EFC 60.1 EFC 0.636

predicted cycle life from degradation curve 158 EFC 118 EFC 0.482

predicted cycle life from model 158 EFC 118 EFC 0.481

predicted cycle life for all cells 95.9 EFC 65.1 EFC 0.794

Different C-rate validations (dataset 2) predicted Q of OCV curve (Q̂) 68.2 mAh 43.1 mAh 0.997

predicted voltage of OCV curve (V̂) 27.4 mV 22.4 mV 0.996

derived voltage of OCV curve (Vd) 52.4 mV 43.1 mV 0.984

predicted SOH 2.54% 1.86% 0.890

Dynamic cycling using charging (dataset 3) predicted Q of OCV curve (Q̂) 0.61% 0.41% 0.999

predicted voltage of OCV curve (V̂) 4.79 mV 5.05 mV 0.999

derived voltage of OCV curve (Vd) 11.4 mV 8.46 mV 0.999

predicted SOH 1.10% 0.86% 0.963

Dynamic cycling using discharging (dataset 3) predicted Q of OCV curve (Q̂) 0.79% 0.53% 0.999

predicted voltage of OCV curve (V̂) 9.63 mV 7.33 mV 0.999

derived voltage of OCV curve (Vd) 18.1 mV 13.7 mV 0.999

predicted SOH 1.51% 1.15% 0.932

Note: datasets 1, 2, and 3 in the table correspond to the van Vlijmen et al. dataset (CC cycling), the different C-rates dataset (RPT using different 

C-rates), and the Geslin et al. dataset (dynamic cycling), respectively.
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the comparable performance shown in Table 1. The mean pre

diction error for early predictions (i.e., predictions from the third 

diagnostic cycle) is also less than 118 EFCs, and the future ca

pacity degradation curve shows an MAE and root-mean-square 

error (RMSE) of less than 50.1 and 70.1 mAh, respectively, for 

these cells having a nominal capacity of 4.84 Ah. Therefore, 

the model enables health prognosis for both future degradation 

curves and cycle life using only onboard measurements, without 

requiring historical memory. Improved prediction accuracy 

throughout the aging process supports better predictive mainte

nance and retirement planning.

To evaluate the feature impacts of the health prognosis 

decoder, SHAP analysis results are shown in Figures 4D–4H. 

Each row of the heatmap in Figures 4D and 4E represents the 

mechanistic and macroscopic features influencing the predicted 

future degradation curves, described by the variation in capac

ities and EFCs. The mean impacts on the future degradation 

curves for the EFCs and capacities are shown in Figures 4F 

and 4H, where the current EFC has the highest importance. 

The anode state has a greater influence on future EFC predic

tions, while the cathode has a more significant impact on future 

Figure 3. Health diagnosis 

(A) Illustration of the predicted OCV curves, 

derived OCV curves based on the constrained 

mechanistic states, and the fitted OCV based on 

the states obtained by the particle swarm optimi

zation for the predicted OCV curves. 

(B) The differential voltage curves for the corre

sponding curves in (A). 

(C) The predicted curves of the mechanistic states 

obtained from cycling cycles and the comparisons 

from those obtained from diagnostic cycles. 

(D–F) The predicted aging modes, which are 

directly obtained based on the constrained 

mechanistic states, for onboard diagnosis of LLI, 

LAM at the cathode (LAMp), and LAM at the anode 

(LAMn). 

(G) The SHAP analysis results for the encoder, 

which represents the impacts (absolute values) of 

the input information from the partial charging 

curve on the prediction of mechanistic states. 

(H) The SHAP analysis of the decoder for the OCV 

curve predictions, where the impacts of the con

strained mechanistic states on the predicted OCV 

(combination impacts of the capacity and voltage) 

are illustrated.

capacity predictions. The final prediction 

step of the future EFCs, which represents 

the cycle life prediction, is analyzed in 

Figure 4G, highlighting the substantial im

pacts of both mechanistic and macro

scopic features on the predictions. The 

SHAP results for the prediction of cycle 

life point, as shown in Figure S18, reveal 

a similar impact of features on the out

comes. When predictions are made at 

an earlier stage, such as during the 

third diagnostic cycle as illustrated 

in Figure S17, the feature impacts on future degradation and cy

cle life predictions exhibit some differences, with mechanistic 

features playing more prominent roles, especially for the capac

ity from the anode. This result successfully captures the main ag

ing effects in early life. One physical reason for the differences in 

the features’ impacts is that the overpotential of half cells may 

change during aging, leading to a decreasing effect on the mech

anistic states extracted in later aging status. In conclusion, the 

physically constrained health diagnosis model effectively ex

tracts mechanistic states onboard, facilitating a better early 

health prognosis and cycle life predictions, which help guide bet

ter maintenance and retirement.

Applications to diverse use conditions

In the van Vlijmen et al. dataset, C/5 discharge data were used as 

the target pseudo-OCV; however, this is a higher rate than what 

is typically used in DVA. To address this issue, 94 cells at a vari

ety of SOH (Figure 5A), calculated by C/5 capacity, were 

sampled from the van Vlijmen et al. dataset and underwent 

testing under eight different C-rates with rates as low as C/80 

(Figure 5D). Here we deploy the model pre-trained on the van 
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Vlijmen et al. dataset and fine-tune it to use the partial discharge 

data from 20 min of a 1 C discharge as the input to predict the 

voltage curve and capacity at different C-rates (Figure 5B). 

Detailed explanations are provided in Notes S2 and S3. The 

effectiveness of our model for different C-rate validations is illus

trated in Figure 5C, where 5-fold cross-validation was per

formed, and results for all cells are displayed. Performance of 

the C/80 pseudo-OCV curve and differential voltage curve pre

dictions for four example cells at different SOH are shown in 

Figures 5D and 5E (SOH based on C/80 capacity). This model 

demonstrates significant time savings, effectively extracting 

the low C-rate voltage curves using only 20 min of 1 C discharge 

data compared with the nearly 80 h needed to gather a C/80 

pseudo-OCV curve. The cells are under varying SOH conditions, 

and our model enables fast health assessment to guide intelli

gent and fast sorting, regrouping, and reusing of these batteries, 

which is significant for second-life applications.

Additional results on prediction performance and DVA are pro

vided in Figures S19 and S20. Figure S21 summarizes the pre

diction outcomes, indicating high accuracy and reliability, with 

an MAE for predicted capacity and voltage of less than 43.2 

mAh and 22.4 mV, respectively, and R2 values exceeding 0.99. 

Even with a shorter partial discharge, our model maintains strong 

performance. See Figures S22 and S23 for results from the 

10-min discharge-based assessment, demonstrating the 

Figure 4. Future health prognosis 

(A) Prediction of future capacity degradation 

curves. 

(B) Sequence prediction of the cycle life from the 

last value of the predicted future degradation 

curve. 

(C) Point prediction of the cycle life based on the 

decoder. 

(D and E) The feature impacts analysis of the future 

degradation predictions based on SHAP for the 

predicted EFC and capacity values, respectively. 

The color bars indicate the SHAP values. 

(F) The mean feature impacts the predicted future 

EFC variations. 

(G) The feature impacts on the last prediction step, 

i.e., the cycle life, of the predicted EFCs. 

(H) The mean feature impacts the predicted ca

pacities.

model’s effectiveness with reduced test 

times. See Figure S24 for the impact in

terpretations based on SHAP analysis, 

where the results also indicate the pro

nounced impact of anode degradations. 

In addition, the correlations of the pre

dicted results from C/5 and C/40 are 

demonstrated in Figure S25. By applying 

a quick and flexible fine-tuning strategy 

to the model developed for onboard 

health diagnosis, our model transitions 

seamlessly to predicting different C-rate 

behaviors. RPT capacities at different 

low C-rates can be predicted from partial 

discharge curves at 1 C, and the mecha

nistic states that are directly obtained through this process are 

shown in Figure 5F. Therefore, our model is suitable for applica

tions in the fast retirement assessment with physical 

interpretations.

In real-world applications, although CC or power may be seen 

during charging, it is rarely seen during operation or discharge. 

While the batteries in the Geslin et al. dataset are charged iden

tically, they are discharged under several different dynamic 

discharge loading profiles. We apply our model to the Geslin 

et al. dataset7 to validate our model performance under real- 

world operating conditions. Before using the dynamic discharge 

data as an input, we first use the charging data as a baseline. The 

same data sampling technique employed for the van Vlijmen 

et al. dataset is utilized here, where randomly sampled portions 

of charging curves are extracted from the charging data 

following the diagnostic cycle for model input, while the C/40 

discharge pseudo-OCV serves as the output. The model pre- 

trained by the Vlijmen et al. dataset is fine-tuned by using 

approximately one-third of the cells and subsequently tested 

on the remaining cells. Results are presented in Figures S26

and S27, with numerical outcomes detailed in Table 1. The pre

diction errors are demonstrated in Figure S28 for the predicted 

OCV and SOH (calculated by C/40 capacity), demonstrating 

high accuracy and robustness across various dynamic cycling 

conditions that are closer to practical operation scenarios, with 
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MAEs of 5.05 mV and 0.41% for the predicted voltage and 

normalized capacity of the OCV curves, and the SOH has an 

MAE of 0.86%. Even in this low C-rate OCV case, the predicted 

OCV has higher accuracy than the derived OCV based on the 

mechanistic model, again indicating that variations of the half- 

cell open-circuit curve and other dynamics influence the effec

tiveness of the mechanistic model.

Now, to see if our model can work under practical operating 

conditions, we instead use randomly sampled portions of the dy

namic discharge curves as input for the OCV predictions. The 

model performance is illustrated in Figure 6, where the overall er

ror distributions for the predicted and derived OCV are pre

sented in Figure 6A. The results indicate good predictions with 

an MAE of only 7.33 mV and 0.53% for the voltage and normal

ized capacity of the predicted OCV curves, respectively. The dis

tribution of the accumulated SOH prediction error is shown in 

Figure 6B, which indicates high prediction accuracy and reli

ability (95% of the results have errors less than 3.2%) under 

different loading profiles, C-rates, and portion data distributions 

(more results are shown in Figure S29). Three representative pre

diction results based on truncated dynamic discharge data from 

periodic, synthetic, and real driving discharging curves are 

shown in Figure 6C, indicating the effectiveness of our model 

with different dynamic discharging profiles. Although the results 

utilizing the constant current charging data create more accurate 

models, we show that reasonable model performance can be 

achieved even when using the dynamic discharge data. These 

findings underscore the model’s potential for onboard, diag

nostic test-free battery health assessment not only under CC 

profiles but also dynamic profiles. In summary, our model is 

Figure 5. Rate test validation study 

(A) SOH distribution (C/5 discharge) of all the cells. 

(B) Discharge curves with different C-rates. 

(C) Predicted capacity for different C-rate valida

tions using measurements from 1 C discharge 

within 20 min. 

(D) Measured OCV and predicted OCV curves 

using partial 1 C discharge curves under C/80 at 

four different SOH levels. 

(E) dV/dQ curves derived from the OCV curves 

in (D). 

(F) Prediction distributions for the discharge ca

pacities using different C-rates and the corre

sponding constrained mechanistic states.

applicable for real-world applications 

with EV driving cycles, where the health 

mechanisms and key mechanistic pa

rameters are available to support the ac

curate state monitoring.

DISCUSSION

In summary, we develop an interpretable 

machine learning model to enable on

board battery health diagnosis and 

prognosis without time-consuming and 

disruptive diagnostic tests. We demon

strate the path for combining mechanistic constraints with ma

chine learning, leading to a physically interpretable and robust 

model. The mechanistic constraints derived from DVA are inte

grated in the encoder-decoder framework to enable a physically 

interpretable latent space and thus specify the physical func

tions of the model. By only using the onboard measurement 

from CC charging or dynamic current discharging, degradation 

pathways can be reconstructed, and the mechanisms are avail

able without offline diagnostic tests. To evaluate the versatility of 

this model, we apply our framework to three battery-cycling da

tasets, encompassing a total of 422 cells. First, we use the van 

Vlijmen et al. dataset to reconstruct C/5 diagnostic cycle data 

from CC cycling across various SOC windows. Results show 

highly accurate health diagnosis with an MAE of only 1.35% for 

the whole lifespan until SOH drops below 70%, while the early 

health prognosis achieves an EFC prediction error of less than 

120. Next, we generate a new rate-performance dataset by 

testing rates as low as C/80 with 94 degraded cells from the 

van Vlijmen et al. study. Using this dataset, we fine-tune the 

model to reconstruct information from low-rate-performance 

tests (such as C/80 and C/40), leveraging partial data from a 1 

C discharge, and achieve fast health diagnosis with an MAE of 

only 1.86% at varying SOH levels. Finally, we fine-tune the model 

to reconstruct C/40 diagnostic cycle data using partial dynamic 

operating condition data from the Geslin et al. dataset, which 

shows the proposed physics-constrained model is effective un

der real-world dynamic discharging conditions with an MAE of 

less than 1.2%. Therefore, once the model is trained or fine- 

tuned to a given system, diagnostic-free onboard battery health 

assessment is possible. By applying this framework across 
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these three datasets, we demonstrate its utility in enabling diag

nostic-free onboard battery diagnosis and prognosis.

Our model can be flexibly applied across broad application in

terests such as materials and mechanisms evaluation, synthetic 

data generation, electric transportation health assessment, and 

fast retiring assessment for guiding second-life applications, 

with slight fine-tuning. We encourage future work in this field to 

further understand the detrimental effect of diagnostic cycles 

on battery aging with different chemistries and to utilize diag

nostic-free battery health monitors to circumvent these issues.

METHODS

Experiment and data generation

236 batteries with a cathode of nickel cobalt aluminum (NCA) 

and an anode of graphite SiOx from the van Vlijmen et al.6 dataset 

are selected in the first dataset. The cells aged below 80%, and 

the available raw data are used in this work. More details of the 

experiment description are found in van Vlijmen et al.6 All the 

data is processed through the BEEP processing pipeline.68

These cells are cycled with different C-rates and SOC windows. 

A diagnostic test is performed periodically, which includes a 

reset cycle, hybrid pulse power characterization (HPPC), and 

RPT at three C-rates (C/5, 1 C, and 2 C). 94 batteries are 

collected for the different C-rate validation tests using the 

same test platform to generate the second dataset. The batteries 

are 21700 cylindrical cells produced by Panasonic with a nomi

nal capacity of 4.84 Ah. These 94 cells are aged to different SOH 

levels through different cycling profiles. Eight different C-rates 

ranging from C/80 to 2 C were used for the RPT tests. Finally, 

the dynamic cycling dataset from Geslin et al.7 is utilized to vali

date the proposed model, which is designed for real-world aging 

conditions. Different synthetic and real-world driving protocols 

with different C-rates are employed for the cycling. During the 

diagnostic test, voltage-based pulses are included besides 

reset, HPPC, and RPT tests. The RPT was performed under 

Figure 6. Validations with dynamic cycling 

The partial discharging data with different loading 

profiles and C-rates are employed as model input 

to predict the OCV of the C/40 discharge. 

(A) The error distributions of predicted OCV curves 

and derived OCV curves for the dynamic cycling 

dataset. The MAE of each predicted and derived 

OCV curve of the dynamic cycling dataset. 

(B) The cumulative error distribution of the SOH 

estimation results. 

(C) Prediction results for three representative 

cycling conditions, including discharging with 

periodic, synthetic, and real driving profiles.

C/40, providing data closer to real OCV 

for the verification of our model. 92 com

mercial silicon oxide–graphite/NCA cells 

were cycled. For more comprehensive 

details, readers are referred to.7 To obtain 

the anode and cathode open-circuit po

tential curves, we first harvested elec

trode sheets by disassembling the cylin

drical cells used in this study within an argon glovebox. 

Circular sections were then punched from these electrode 

sheets and assembled into pouch cells with lithium metal 

counter electrodes. These pouch cells were subsequently 

cycled to extract the open-circuit potential curves of the anode 

and cathode for use in DVA. For further experimental details, 

see van Vlijmen et al.6

Machine learning with mechanistic constraints

Auto-encoders and decoders with physical constraints are de

signed for the machine learning model, where the mechanistic 

model describing the relationship between the four key states 

and the full-cell OCV is constrained to make the data-driven 

model interpretable. Auto-encoders and decoders can be de

signed as different types of neural networks, while a multilayer 

perceptron is simpler and easier to explain than others. In this 

paper, the mechanistic constraints are based on the DVA. A 

similar method presented in previous works is employed 

here.17–19,69,70 The mechanistic model is to fit the full-cell OCV 

by means of two half-cell open-circuit potentials, named OCPp 

for the cathode and OCPn for the anode:

OCV(z) = OCPp(y) − OCPn(x); (Equation 1) 

During battery aging, the variations of the full-cell OCV curve 

can be reconstructed through the shift and shrinking of the 

OCP curves. The shift and shrinking can be described by four 

key mechanistic states θ = [x0; y0;Cp;Cn], as detailed in Note 

S4. In this way, the non-destructive aging mode diagnosis can 

be performed, and the LLI and LAM at two electrodes can be ob

tained. Traditional methods employed model fitting to obtain 

these mechanistic states through diagnostic tests. In this work, 

instead of using offline fitting, we propose an interpretable ma

chine learning model for onboard health diagnosis and prognosis 

without a diagnostic test. We construct a physical constraint as a 

difference between the output of the decoder (i.e., predicted 
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OCV) and the states encoded by the encoder through the mech

anistic model equations (i.e., derived OCV). In this way, we do 

not need the labeled data of the mechanistic states, which are 

necessary for conventional supervised machine learning-based 

state estimation. In addition, the prior knowledge of the bound

ary condition (e.g., the ranges of the SOC and mechanistic 

states) for the prediction and constrained states helps maintain 

the predictions within reasonable ranges and accelerates the 

model convergence. Therefore, the total loss function for the 

health diagnosis can be described by

L1 = αLreg + βLphy +
∑N

i = 1

γiLbound;i; (Equation 2) 

where Lreg, Lphy, and Lbound represent the loss for the prediction, 

physical constraints, and boundary constraints, respectively, 

and α, β, and γ are the associated weighting factors. For prog

nosis, the regression loss and boundary knowledge are included 

for the prognosis decoder training, and the total loss is

L2 = ηLreg +
∑N

i = 1

ζiLbound;i; (Equation 3) 

where η and ζ are also the weighting factors. The model is 

developed through PyTorch. The weights of the regression 

loss and physical loss were set equal to the same value (1.0) 

so that the model prediction accuracy and mechanistic modeling 

equations have the same importance. For the boundary loss, we 

constrained ten boundaries, so the weight for each boundary 

was set to 0.1 so that the sum over the ten boundaries is weighed 

the same as the regression loss and physical loss. To understand 

the feature impacts on the diagnosis and prognosis perfor

mance, we use the SHAP Python library for the encoder and 

decoder, respectively. See Notes S3 and S6 for detailed descrip

tions of the machine learning model and SHAP analysis.63,64
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