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H I G H L I G H T S

ICD battery reliability is ensured with life-test experiments spanning multiple years.
ML provides accurate prediction of life-test experiments based on production data.
Interpretable ML fosters the development of battery design and physics-based models.
Approach is validated on 21 datasets, analysed for the first time in the literature.
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A B S T R A C T

Medtronic Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchronization Therapy Defibrillators
(CRT-Ds) rely on high-energy density, lithium batteries, which are manufactured with a special lithium/carbon
monofluoride (CF𝑥)–silver vanadium oxide (SVO) hybrid cathode design. Consistently high battery performance
is crucial for this application, since poor performance may result in ineffective patient treatment, whereas
early replacement may involve surgery and increase in maintenance costs. To evaluate performance, batteries
are tested, both at the time of production and post-production, through periodic sampling carried out over
multiple years. This considerable amount of experimental data is exploited for the first time in this work to
develop a data-driven, machine learning approach, relying on Generalized Additive Models (GAMs) to predict
battery performance, based on production data. GAMs combine prediction accuracy, which enables evaluation
of battery performance immediately after production, with model interpretability, which provides clues on
how to further improve battery design and production. Model interpretation allows to identify key features
from the battery production data that offer physical insights to support future battery development, and foster
the development of physics-based model for hybrid cathode batteries. The proposed approach is validated on
21 different datasets, targeting several performance-related features, and delivers consistently high prediction
accuracy on test data.
1. Introduction

Lithium-ion batteries are the leading technology for energy storage
for a wide range of applications, due to having high energy densities,
long lifetimes, and low production cost [1,2]. For many applications,
access to early, accurate predictions of primary performance and Re-
maining Useful Life (RUL) of the battery unlocks new opportunities in
battery production, use, and optimization. These include acceleration
of the cell development cycle, rapid validation of new manufacturing
processes, and process optimization over large parameter spaces [3,4].
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End-users can also benefit from accurate performance and RUL predic-
tions to reduce battery waste [2,3,5,6]. Specifically, this work focuses
on predictive modelling of lithium/carbon monofluoride (CF𝑥) – silver
vanadium oxide (SVO) hybrid cathode technology batteries that power
Implantable Cardioverter Defibrillators (ICDs) and Cardiac Resynchro-
nization Therapy – Defibrillators (CRT-Ds) [7]. The CF𝑥–SVO battery
design allows for high energy density, to ensure longevity and sufficient
rate capability to provide high power pulses for treating abnormal
heart rhythms. In this scenario, poor battery performance may result
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in ineffective patient treatment. Therefore, an accurate evaluation of
the battery performance is crucial to ensure reliability of ICDs and
CRT-Ds [8,9]. To this end, the batteries are tested, both at the time
of production (‘‘burn-in experiments’’) and post-production through
periodic sampling of production batteries (‘‘life-test experiments’’). For
this class of batteries, past modelling efforts were focused on the pre-
diction of the voltage-capacity behaviour with resistance-based mod-
els,including time- and temperature-dependence of resistance [8–10].
These models offer a fairly general description of the battery dynamics,
but their predictive accuracy is still insufficient to replace the actual
life-test experiments. When compared to experimental data, the models
overpredict voltage for high discharge rates, and underestimates perfor-
mance for long horizons (over five years). Both effects are particularly
undesirable in this application. On one hand, voltage overprediction
for high discharge rates may cause the powered device to deliver weak
pulses, which may not be sufficient to effectively restore a normal
heart rhythm. On the other hand, performance underestimation over
long horizons may lead to an early replacement of the battery pow-
ering the device. In case of subcutaneous ICDs, this operation may
involve surgery and lead to a considerable increase in the mainte-
nance costs. Moreover, the available resistance-based models only offer
population-level predictions, whereas ([8] used Monte Carlo simula-
tions to understand impact of production variability on performance,
but only focused on a few parameters of the first-principles model),
and may not be straightforwardly specialized to provide battery-specific
predictions.

As the development of predictive algorithms is an active field of
research, several modelling methodologies have been applied to this
problem in the scientific literature. First-principles models are available
for describing battery dynamics associated with reaction, diffusion,
and conduction [11–13], but the modelling of degradation mechanisms
is an open research area [14–16], including thermal effects, Solid-
Electrolyte Interface (SEI) growth, lithium plating, active material loss,
and impedance increase [17–19]. Moreover, accurate first-principles
models typically have poor parameter identifiability [20,21]. On the
other hand, data-driven modelling has gained popularity in recent
years, despite difficulties associated with the generation of informa-
tive datasets (battery lifetime may span from months to years) [22–
24]. The value of data-driven approaches for battery diagnosis and
prognosis from small to large datasets of lithium-ion batteries has
been demonstrated [25–32], including for construction of interpretable
models [26,33–36]. The ability to select relevant predictors among
a wide set of candidates, and provide insight into the contribution
of each selected predictor on the model output, makes this class of
models particularly interesting as this information can be exploited
by manufacturers to refine battery production processes [37]. For
instance, Elastic Net (EN) [38] has been used to build an interpretable
model for predicting the remaining battery lifetime, based on domain-
specific features constructed from the raw data [26], and to predict
battery capacity based on voltage relaxation data [39]. The perfor-
mance of other common regularized regression and latent variable
algorithms is assessed in [33], which also proposes a new set of
capacity-based features. The analysis is extended in [36] to improve
prediction accuracy under extremely fast-charging conditions. EN and
Support Vector Regression models are developed in [39], based on
statistical features obtained from the voltage relaxation curve. Machine
learning models have also been successfully employed to identify the
dominant ageing mechanism [40], and for State of Charge and State
of Health prediction [32]. For the CF𝑥–SVO batteries analysed in this
paper, the limitations of the available resistance-based models, and
the availability of a considerable amount of experimental data result-
ing from over 10 years of tests, motivates a shift to the data-driven
modelling paradigm. Preliminary modelling efforts have been carried
out by relying on several machine-learning algorithms, including Al-
gebraic Learning Via Elastic Net (ALVEN) [41,42], and Group Sparse
2

Neural Networks (GSNNs) [43]. Both methods combine model training
and feature selection. In particular, ALVEN is a nonlinear regression
model learning methodology which is specifically designed to build
interpretable, accurate, and robust models from manufacturing data.
However, the predictive performance of ALVEN was not sufficient for
this application. GSNNs address the task of simultaneously optimizing
the weights of a neural network, the number of neurons for each hidden
layer, and the subset of active input features. However, GSNNs also
delivered conservative performance predictions, and did not provide
interpretability of the results. The machine learning approach adopted
in this work employs then Generalized Additive Models (GAMs) [38,
44], which we show are able to accurately learn and predict life-test
data from burn-in data. Their additive structure further allows high
interpretability, by distinguishing the contribution that each model
input makes on the model output. Due to the huge number of highly
correlated, candidate predictors, a feature selection strategy based on
the Maximum Relevance Minimum Redundancy (MRMR) algorithm is
employed [45,46]. Feature selection via MRMR, and GAMs training, are
combined with a nested cross-validation approach, enabling a rigorous
selection of the best subset of predictors, and best hyperparameter
values for the GAMs [38,42]. The results obtained for 21 different
datasets highlight that GAMs can achieve very high prediction ac-
curacy, evaluated as Mean Squared Error (MSE) and coefficient of
determination 𝑅2 [38], by relying on a small (< 10) subset of all
available predictors (≈ 300).

2. Methods

This section provides information about data and data preprocess-
ing, as well as about the machine learning algorithms used in this
work.

2.1. Dataset description

Batteries powering ICDs require high energy density to ensure
longevity, and sufficient rate capability to provide high power pulses
for treating abnormal heart rhythms. Lithium/carbon monofluoride
(CF𝑥)-silver vanadium oxide (SVO) multi-active material porous elec-
trode batteries [47,48] leverage the excellent energy density of CF𝑥 and
power density of SVO through the use of a CF𝑥-SVO hybrid cathode.
This battery design allows years of correct functionality of ICDs under
low-rate background monitoring (∼ 11 μA, equivalent to 8 × 10−6 C or
1.3×10−7 A cm−2), and is able to provide high-rate defibrillation pulses
(∼3.5 A, equivalent to ∼ 2.5C or ∼ 0.04 A cm−2) on demand.

Medtronic internally manufactures the CF𝑥-SVO hybrid cathode
batteries used to power ICDs and CRT-Ds. The available data comprise
electrical background, pulse discharge data, and manufacturing data,
including electrical burn-in data, of batteries manufactured since 2012.
Production samples are collected for long-term discharge and pulse
performance characterization, after manufacturing and burn-in tests
are completed in the factory. Based on measurements carried out
during manufacturing, more than 50 candidate predictors are available,
including cathode thickness (at various sampling locations along cath-
ode length), mass of cathode, weight of battery plus electrolyte (after
electrolyte filling), and electrolyte weight. Moreover, timestamps are
assigned to starting and termination of a number of production phases,
and are made available as candidate predictors.

During burn-in, a battery is discharged at a constant current (drain
phase) of 10 mA to remove the specified amount of capacity (≈20
mAh). Then, it recovers at open circuit, and eventually goes through
a series of four high-current pulses (1.16 A) with a short, open-circuit
rest between each pulse. After pulsing, a battery recovers again at open
circuit. An example of a burn-in test is in Fig. 1(b). Based on measure-
ments carried out during burn-in, more than 200 additional candidate
predictors are available, including maximum/minimum/initial/final
voltages, currents, temperatures and resistances recorded during each

of the aforementioned burn-in phases. Statistics (average and standard
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Fig. 1. Examples of voltage 𝑉 [V] during (a) life-test and (b) burn-in experiments. For life-test, the line colour represents cell temperature 𝑇 [◦C].
deviations) for voltages, currents, temperatures and resistances are
computed at the lot level, for a number of burn-in measurements.
Finally, timestamp values are also available for several burn-in phases.

In order to collect life-test data, batteries are tested at 37 ◦C under
a background resistive load of 270 kΩ, and subjected to constant
energy pulses at a quarterly interval under a resistive load of 0.65 Ω.
Depending on the battery, 3 different pulse regimes are applied: either
1 pulse of 64 J, 4 pulses of 64 J each, or 1 pulse of 32 J. Pulses are
applied in a train of four pulses with 10 s between pulses in the 4 pulse
test. Pulses are continued until either the desired energy is delivered,
or a 60-s pulse time is reached, or the pulse load voltage drops below
1 V. Additionally, the cell temperature during background discharge
is recorded and made available as a candidate predictor during the
modelling phase. An example of life-test experiment is in Fig. 1(a).

In this work, we develop predictive models for four life-test quanti-
ties:

• Pulse Average Voltage (PulseAvgV), the battery average voltage
during a pulse.

• Pulse Duration (PulseDuration), the duration of a pulse, expressed
in seconds.

• Pulse Minimum Voltage (PulseMinV), the battery minimum voltage
during a pulse.

• Smoothed Background Voltage (SmoothedBckgndV), the battery
voltage during background discharge Due to the measurement
protocol, raw background voltage data are affected by spike noise.
A preliminary smoothing operation is carried out by means of
robust local regression [38,49].

For each of the above quantities, and based on the pulsing regime,
a total of 21 datasets are constructed (see Fig. 2). In the reminder of
this article, each dataset name (PulseAvgV, PulseDuration, PulseMinV
or SmoothedBckgndV) is completed by a code identifying the pulsing
regime and, if required, the pulse number. The encoding convention is
DatasetnamexxJPyy, where xx denotes the energy of pulses, expressed
in J (32 or 64), and yy denotes the number of pulses in each pulse
train (1 or 4). In addition, for pulse-related quantities, the pulse number
is also included with the convention DatasetnamexxJPyy_npzz, where
zz in the pulse number in the pulse train (1 for 1 pulse trains, 1
to 4 for 4 pulse trains). The scatter plots in Fig. 2 also highlight
a different variability in the four life-test quantities. In particular,
SmoothedBckgndV appears to be the least dispersed variable (data
point stay within tenths of mV around the average SmoothedBckgndV
vs. Capacity trend), regardless of the life-test experimental conditions.
PulseAvgV and PulseMinV show a higher dispersion, in the order of
hundreds of mV, whereas PulseDuration shows a dispersion in the order
3

of hundreds of milliseconds. Variability arises from tolerances in the
production process, as well as from variability in the raw materials used
in the manufacturing process. The machine learning models developed
in this work aim to improve the prediction accuracy over the simple,
average behaviour (which can be obtained via e.g., local regression or
smoothing algorithms [38], relying on capacity as the sole predictor),
to capture – and possibly explain – variability in the target variable.
Further details about the size of the available datasets are reported in
Table 1.

2.2. Machine learning approach

This section describes the overall modelling methodology adopted
in this work for the development of interpretable machine learning
models based on GAMs. The methodology involves a preliminary
data preprocessing step, including removal of unreliable or incomplete
records, and removal of constant or incomplete features. Then, a set of
GAMs is trained using a different number of relevant predictors, which
are selected using the MRMR. Based on cross-validation results, the best
GAM is selected and its performance assessed on a set of fresh data, to
avoid overoptimistic evaluation of GAM’s predictive capabilities. The
flowchart in Fig. 3 summarizes the procedure for the identification
of GAMs. First, the dataset  is split into training set 𝑡𝑟 and test
set 𝑡𝑒 using a Grouped, Hold 15% Out cross-validation approach. The
training set 𝑡𝑟 is used to optimize parameters and hyperparameters
of the model (including the predictor subset), and the test set 𝑡𝑒 is
used to evaluate the predictive performance of the model on fresh data.
A Grouped, Repeated Hold 30% Out cross-validation approach is used
to determine the best predictor subset: For a number 𝑝 of predictors,
ranging from 1 to 𝑁𝑝 = 10, GAM training is repeated 𝑁𝑟 = 20
times. During each repetition, (with active training set is 𝑡𝑟,𝑡𝑟,𝑛, and
validation set 𝑡𝑟,𝑣𝑎𝑙,𝑛, with 𝑛 = 1,… , 𝑁𝑟), predictors are first ranked
according to the MRMR algorithm, and the first 𝑝 are made available
as GAM inputs. GAM hyperparameters are optimized using Bayesian
Optimization (BO) [50] and Grouped K Fold cross-validation approach
with 𝐾 = 5 folds (𝑡𝑟,𝑣𝑎𝑙,𝑛,𝑘, with 𝑘 = 1,… , 𝐾). The best hyperparameter
values are chosen according to the minimum validation MSE, averaged
over the 5 folds. Once all training repetitions are carried out, the
best predictor subset is then chosen using the OSE rule, based on the
validation MSE, averaged over the 20 repetitions. A final GAM training
– using the best predictor subset, and the best hyperparameters values
– is carried out on 𝑡𝑟. The final model is tested on 𝑡𝑒. For the final
GAM, GOF is quantified using MSE and 𝑅2.

Further details about data preprocessing, MRMR algorithm, GAMs,
cross-validation, and goodness-of-fit (GOF) scores are in the reminder

of this section.
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Fig. 2. Scatter plots of voltage vs. capacity (a–c, g–l) and duration vs. capacity for (d–f) of the life test-related datasets explored in this work.
2.3. Dataset preprocessing

Several steps are taken to preprocess each dataset:

• Conversion of timestamp features to numeric values. The dataset
includes several timestamps associated to various production
phases. Timestamps are recorded in Date/Time format (day-
month-year hour:minute:second) and are converted to numeric
values, expressed in minutes. For each record, the
FILL_Weight_Post-Weight_1DateTime timestamp is chosen as base-
line, and converted timestamp features represent the elapsed time
from such value.

• Removal of unreliable records. Records considered as unreliable –
due to known production issues and/or measurement errors – are
removed from the dataset.
4

• Removal of outliers. Based on physical considerations, records
including outlier values are removed from the dataset.

• Removal of constant features. Features with variance ≤ 10−10 are
considered constant and are removed from the dataset (a single
constant term is included in the modelling phase, if necessary).

• Removal of incomplete features. Features with > 25% of missing
data are removed from the dataset.

• Removal of incomplete records. Records with missing data are
removed from the dataset.

2.4. Minimum redundancy maximum relevance algorithm

The MRMR algorithm [45,46,51] finds an optimal set of features
that is mutually and maximally dissimilar and can represent the re-
sponse variable effectively. Its goal is to find an optimal set 𝑋 of
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Table 1
Number of available cells and data points for each dataset (after preprocessing).
Dataset Number of cells Number of data points

PulseAvgV32JP1_np1_Prediction_v3_Pyc 65 1143
PulseAvgV64JP1_np1_Prediction_v3_Pyc 394 7130
PulseAvgV64JP4_np1_Prediction_v3_Pyc 126 2053
PulseAvgV64JP4_np2_Prediction_v3_Pyc 126 2094
PulseAvgV64JP4_np3_Prediction_v3_Pyc 126 2094
PulseAvgV64JP4_np4_Prediction_v3_Pyc 126 2094

PulseDuration32JP1_np1_Prediction_v3_Pyc 65 1143
PulseDuration64JP1_np1_Prediction_v3_Pyc 394 7131
PulseDuration64JP4_np1_Prediction_v3_Pyc 126 2098
PulseDuration64JP4_np2_Prediction_v3_Pyc 126 2098
PulseDuration64JP4_np3_Prediction_v3_Pyc 126 2098
PulseDuration64JP4_np4_Prediction_v3_Pyc 126 2098

PulseMinV32JP1_np1_Prediction_v3_Pyc 66 1209
PulseMinV64JP1_np1_Prediction_v3_Pyc 324 6839
PulseMinV64JP4_np1_Prediction_v3_pyc 74 1367
PulseMinV64JP4_np2_Prediction_v3_Pyc 132 2345
PulseMinV64JP4_np3_Prediction_v3_Pyc 132 2345
PulseMinV64JP4_np4_Prediction_v3_Pyc 132 2344

SmoothedBckgndV32JP1_Prediction_v3_Pyc_Lifetest 84 9646
SmoothedBckgndV64JP1_Prediction_v3_Pyc_Lifetest 208 39 396
SmoothedBckgndV64JP4_Prediction_v3_Pyc_Lifetest 35 6303
Fig. 3. Flowchart summarizing the overall machine learning methodology for the development of GAMs.
5
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∑

𝑥,𝑧∈𝑋
𝐼(𝑥, 𝑧), (2)

where |𝑋| is the number of features in 𝑋 and

𝐼(𝐴,𝐵) = (3)
∑

𝑎𝑖∈,𝑏𝑗∈
𝑃 (𝐴 = 𝑎𝑖, 𝐵 = 𝑏𝑖) log

𝑃 (𝐴 = 𝑎𝑖, 𝐵 = 𝑏𝑖)
𝑃 (𝐴 = 𝑎𝑖)𝑃 (𝐵 = 𝑏𝑖)

is the mutual information of two (discrete) random variables (𝐴,𝐵)
taking values over the space  × , with  = {𝑎1, 𝑎2,… , 𝑎𝑛} and
 = {𝑏1, 𝑏2,… , 𝑏𝑚}.

Finding an optimal set 𝑋 requires considering all 2|𝛺| combina-
tions, where 𝛺 is the entire feature set. Instead, the MRMR algorithm
ranks features through the forward addition scheme, which requires
(|𝛺|⋅|𝑋|) computations, by using the value of the mutual information
quotient,

MIQ𝑥 =
𝑉𝑥
𝑊𝑥

, (4)

where 𝑉𝑥 and 𝑊𝑥 are the relevance and redundancy of a feature,
respectively:

𝑉𝑥 = 𝐼(𝑥, 𝑦), (5)

𝑊𝑥 = 1
𝑋

∑

𝑧∈𝑋
𝐼(𝑥, 𝑧). (6)

A large MIQ score value indicates that the corresponding predictor
is important. Algorithm 1 summarizes the procedure, where 𝑋 is the
complementary set of 𝑋 ⊆ 𝛺 in 𝛺.

Algorithm 1 MRMR Algorithm
1: 𝑋 = ∅
2: 𝑥𝑀𝑎𝑥𝑅 ← argmax𝑥∈𝛺 𝑉𝑥
3: add 𝑥𝑀𝑎𝑥𝑅 to 𝑋
4: 𝑋𝑁𝑍𝑅−𝑧𝑟 ← {𝑥 ∈ 𝑋 s.t. 𝑉𝑥 > 0, 𝑊𝑥 = 0}
5: while 𝑋𝑁𝑍𝑅−𝑧𝑟 ≠ ∅ do
6: 𝑥𝑀𝑎𝑥𝑅 ← argmax𝑥∈𝑋𝑁𝑍𝑅−𝑧𝑟 𝑉𝑥
7: add 𝑥𝑀𝑎𝑥𝑅 to 𝑋
8: remove 𝑥𝑀𝑎𝑥𝑅 from 𝑋𝑁𝑍𝑅−𝑧𝑟

9: end while
10: 𝑋𝑁𝑍𝑅−𝑛𝑧𝑟 ← {𝑥 ∈ 𝑋 s.t. 𝑉𝑥 > 0, 𝑊𝑥 > 0}
11: while 𝑋𝑁𝑍𝑅−𝑛𝑧𝑟 ≠ ∅ do
12: 𝑥𝑀𝑎𝑥𝑀𝐼𝑄 = argmax𝑥∈𝑋𝑁𝑍𝑅−𝑛𝑧𝑟 𝑀𝐼𝑄𝑥
3: add 𝑥𝑀𝑎𝑥𝑀𝐼𝑄 to 𝑋
4: remove 𝑥𝑀𝑎𝑥𝑀𝐼𝑄 from 𝑋𝑁𝑍𝑅−𝑛𝑧𝑟

5: end while
6: 𝑋𝑍𝑅−𝑛𝑧𝑟 ← {𝑥 ∈ 𝑋 s.t. 𝑉𝑥 = 0, 𝑊𝑥 > 0}
7: while 𝑋𝑍𝑅−𝑛𝑧𝑟 ≠ ∅ do
8: pick a feature 𝑥𝑟 randomly from 𝑋𝑍𝑅−𝑛𝑧𝑟

19: add 𝑥𝑟 to 𝑋
20: remove 𝑥𝑟 from 𝑋𝑍𝑅−𝑛𝑧𝑟

21: end while

2.5. Generalized additive models

A generalized additive model (GAM) [38,44,52,53] is an inter-
pretable model that explains a response variable 𝑦 ∼  (𝜇, 𝜎2) using
a sum of univariate and bivariate (interactions) shape functions of the
6
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predictors,

�̂� = 𝜇 = 𝑐 +
𝑁𝑝
∑

𝑖=1
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𝑁𝑝
∑

𝑖,𝑗=1
𝑔𝑖,𝑗 (𝑥𝑖, 𝑥𝑗 ), (7)

here �̂� is the GAM prediction (corresponding to the expected value
f 𝑦), 𝑐 is a constant, 𝑓𝑖(𝑥𝑖) is an univariate shape function of the 𝑖th
redictor, and 𝑔𝑖,𝑗 (𝑥𝑖, 𝑥𝑗 ) is a bivariate shape function of the 𝑖th and
th predictors. Common choices for 𝑓𝑖 and 𝑔𝑖,𝑗 are splines or boosted
rees [38,44,52,53]. Similarly, GAMs can also be trained to predict the
tandard deviation 𝜎 of 𝑦.

This work uses a Matlab implementation of GAMs, which adopts a
et of boosted trees to learn each shape function. Further details related
o the implementation can be found in the documentation of Matlab
tatistics and Machine Learning Toolbox [54]. GAM training is carried
ut using the least-squares boosting algorithm [38]. At each iteration
f the algorithm, a new set of trees is built by training one tree at a
ime. Every tree is trained to learn the difference between the observed
esponse and the aggregated prediction of all trees trained previously.
o control the boosting learning speed, tree predictions are weighted by
learning rate 𝜂 ∈ (0; 1]. Every time a new tree is trained in the least-

quares boosting algorithm, the overall model prediction �̂�+ is updated
as

�̂�+ = �̂� + 𝜂�̂�new (8)

where �̂� is the current prediction, and �̂�new is the model prediction
contribution from the latest tree. The updated residual 𝑒+ is computed
as

𝑒+ = 𝑒 − 𝜂�̂�new (9)

where 𝑒 is the current residual.
The algorithm starts training a set of trees for univariate shape

functions. At each iteration, the latest set of trees is included in the
model if it improves the Mean Squared Error (MSE) by a value larger
than a specified tolerance. Otherwise, the algorithm stops the iterations
for univariate shape functions, and starts the iterations for bivariate
shape functions. The algorithm stops when the MSE is not sufficiently
improved by training trees for bivariate shape functions.

To prevent overfitting, a maximum number of trees per predic-
tors can be set for univariate and bivariate shape functions. Different
learning rates can also be assigned for univariate and bivariate shape
functions.

2.6. Best predictors subset and hyperparameter selection via cross-validation

Cross-validation is the most widely applied method for predictor
subset and hyperparameter selection [42]. Cross-validation estimates
the expected out-of-sample prediction error by holding out a portion of
data when training the model, and evaluating the model performance
based on the holdout dataset. The predictor subset and/or hyperpa-
rameters that give the smallest validation error is selected, and the
final model is rebuilt on all of the data [38,42]. A more robust choice
can be carried out according to the One-Standard-Error (OSE) rule,
which selects the most parsimonious model whose error is smaller than
one standard deviation above the error of the best model [38,42].
Depending on data availability, several cross-validation strategies can
be applied. With simple held-out validation, the dataset is simply split
in training and validation folds. This choice is only recommended when
there are enough sample points. When the amount of data is limited,
K-fold cross-validation can be applied. The dataset is split into 𝑘 folds.
The model is trained using 𝑘 − 1 folds and validated on the remaining
one. Model training is repeated 𝑘 times, and the performance metrics
averaged. A possible alternative is Monte Carlo cross-validation. In
this case, data are shuffled and then split into training and validation
datasets. The procedure is repeated 𝑛 times, and the performance is
veraged over all the validation errors [38,42].
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Remark. Independence and Identical Distribution of data (I.I.D.) is a
common assumption behind many model identification algorithms, and
the data splitting for cross-validation should ensure independence of
the data subsets. When dealing with data originating from manufactur-
ing processes, the I.I.D. assumption can be violated if the process has an
underlying group structure. In this case, grouped cross-validation [42]
avoids an overly optimistic estimation of the true error and prevents
fitting possible system biases. With grouped cross-validation, data split-
ting is carried out at the group level: all of the data belonging to
one group should be assigned to the same data subset. In this work,
grouping is based on battery production batch (i.e., data from batteries
belonging to the same batch are not split across different dataset
partitions).

Remark. The implementation of GAMs discussed above requires the
definition of several hyperparameters, including maximum number of
trees, learning rates, and use of bivariate terms. In this work, Grouped
K-fold cross-validation [38,42] is used to determine the best value
of GAM hyperparameters, as those resulting in the minimum average
validation MSE. When optimizing for bivariate terms, the number of
possible combinations grows very rapidly with the number of predic-
tors. Therefore, a grid search approach over the hyperparameter may be
computationally intractable. In this case, BO can be effectively adopted
as an efficient optimization strategy [55,56] and is adopted in this
work.

2.7. Model performance assessment with goodness-of-fit scores

Let 𝑦𝑛 be the 𝑛th observation, �̂�𝑛 be the corresponding model
prediction, and 𝑁 be the number of available observations.

The Mean Squared Error (MSE) is defined as

MSE = 1
𝑁

𝑁
∑

𝑛=1
(𝑦𝑛 − �̂�𝑛)2. (10)

The Coefficient of Determination (𝑅2) is defined as

𝑅2 = 1 − RSS
TSS

(11)

where the Residual Sum of Squares (RSS) and the Total Sum of Squares
(TSS) are defined as

RSS =
𝑁
∑

𝑛=1
(𝑦𝑛 − �̂�𝑛)2, (12)

TSS =
𝑁
∑

𝑛=1
(𝑦𝑛 − 𝑦)2, (13)

ith

𝑦 = 1
𝑁

𝑁
∑

𝑛=1
𝑦𝑛. (14)

2.8. Model interpretation with partial dependence plots

Partial dependence [38,57] represents the relationships between a
predictor variable and the predicted response in a trained model, and
can be computed by marginalizing over the other predictor variables.
Consider partial dependence on a subset 𝑋𝑆 of the whole predictor
variable set 𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑚. A subset 𝑋𝑆 includes either one variable
r two variables: 𝑋𝑆 = {𝑥𝑆1} or 𝑋𝑆 = {𝑥𝑆1 𝑥𝑆2}. A predicted response
(𝑋) depends on all variables in 𝑋,

(𝑋) = 𝑓 (𝑋𝑆 , 𝑋
𝑆
), (15)

where 𝑋
𝑆

is the complementary set of 𝑋𝑆 in 𝑋. The partial dependence
of predicted responses on 𝑋𝑆 is defined by the expectation of predicted
responses with respect to 𝑋

𝑆
,

𝑆 (𝑋𝑆 ) = 𝑓 (𝑋𝑆 , 𝑋
𝑆
)𝑃 (𝑋

𝑆
)𝑑𝑋

𝑆
, (16)
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∫

here 𝑃 (𝑋
𝑆
) is the marginal probability of 𝑋

𝑆
,

𝑃 (𝑋
𝑆
) ≈ ∫ 𝑃 (𝑋𝑆 , 𝑋

𝑆
)𝑑𝑋

𝑆
. (17)

Assuming I.I.D. observations, and weak dependence between 𝑋𝑆 and
𝑋

𝑆
and the interactions of 𝑋𝑆 and 𝑋

𝑆
, partial dependence can be

estimated as

𝑓𝑆 (𝑋𝑆 ) = 1
𝑁

𝑁
∑

𝑖=1
𝑓 (𝑋𝑆 , 𝑋

𝑆
𝑖 ) (18)

where 𝑁 is the number of observations and 𝑋𝑖 = (𝑋𝑆
𝑖 , 𝑋

𝑆
𝑖 ) is the 𝑖th

observation.

3. Results

The predictive performances of the modelling approach are summa-
rized in Fig. 4, which compares model predictions to the test regression
line for all the 21 datasets explored in this work. Table 2 provides a
quantification of performances, as training1 and test GOF scores (MSE
and 𝑅2). As expected from the huge number of available data, and due
to the cross-validation approach, the GOF is well-aligned between train-
ing and test partitions, for all datasets, with a minor degradation when
moving from train to test subsets. Test values of 𝑅2 are consistently high
(𝑅2 > 0.9), with the only exception being the PulseMinV32JP1_np1 and
PulseDuration64JP4_np2 datasets, which result in slightly lower scores
(𝑅2 = 0.87). This performance can also be appreciated in Fig. 4, where
model predictions are closely aligned with the regression line. The
analysis of residuals, reported in the Supplementary Material, supports
the correctness of results: for all datasets, train and test residuals are
nearly zero-mean. Train and test residual distributions closely resemble
Gaussian distributions for high probability densities, while distribution
tails may deviate from the Gaussian. The latter may be due to the pres-
ence of particularly low/high values of the target variables, which were
considered as reliable measurements during the dataset preprocessing.
In a few cases, the distribution of residuals shows some skewedness,
which suggests that these extreme measurements concentrate either in
the lower or upper range of admissible target values. The variance of
residuals typically shows low correlation with the target data, which is
consistent with the hypothesis of homoscedastic measurement noise.

Tables 3 and 4 summarize the selected predictors for pulse- and
background-related datasets, respectively (see Table 5 for predictor
meanings). Predictors are sorted according to the MRMR algorithm,
in descending order. For GAMs including predictor interactions, the
predictors are reported in Supplementary Tables 1 to 12.

As highlighted by the scatterplots in Fig. 2, all target variables
show a strong dependence on capacity, which is always present in
the GAMs as the most important predictor. For some datasets from
the 64JP4 set, (PulseAvgV64JP4_np1, PulseAvgV64JP4_np2, PulseDu-
ration64JP4_np1, PulseDuration64JP4_np2, PulseDuration64JP4_np3,
PulseDuration64JP4_np4, and PulseMinV64JP4_np1), capacity is cho-
sen as the only relevant predictor. Each corresponding GAM is therefore
a simple smoother of the target variable vs. capacity scatterplot (see
Fig. 2), whose variability cannot be properly explained in terms of the
available candidate predictors from production and burn-in data. In
all other cases, GAMs rely on multiple predictors, whose impact on
the prediction of the target variable can be investigated by means of
Partial Dependence Plots (see Method Section). In general, correlation
between random variables does not necessarily imply causation [38].
However, for some of the selected predictors, a clear trend in the PDP,
combined with domain expertise, can point to interesting directions
to be further investigated. For all datasets, all PDPs are provided in
the Supplementary Material. As discussed earlier, capacity has the
strongest impact of the target variable, which is also highlighted by

1 scores are computed on the whole training set 
𝑡𝑟
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Fig. 4. Model predictions and regression lines for the datasets explored in this work. Results are related to the test partition of each dataset.
the related PDPs. Other interesting relationships include linear (see
e.g., Supplementary Figs. 4, 12, 15, 41, 47, 72, 80, 82, 91, 97, 104, 114,
123, and 128), quadratic (Supplementary Fig. 120), and exponential
(Supplementary Fig. 1) dependencies between the target variable and
selected predictors.

The above analysis suggests that resistance- and voltage-related
predictors from burn-in pulse train can predict variations of pulse-
related features, such as average pulse voltage, minimum pulse voltage,
and pulse duration, observed during life-test studies. For example, as
seen in Supplementary Fig. 41, the last voltage measured at the end
of the 2nd pulse during burn-in (BB_1_16_A_Pulse_VPt4), can already
reflect the battery’s performance (PulseDuration32JP1_np1) under high
current pulses; from the PDP, lower voltages during the second burn-
pulse can mean higher pulse duration, reflective of higher resistance or
lower pulse average voltage. Similarly, Supplementary Fig. 47 shows
8

the partial dependence of pulse duration for the 1st pulse in a 4 pulse
train of 64 J pulses (PulseDuration64JP1_np1) on the initial burn-
in pulse resistance of the 4th pulse (BB_1_16_A_Pulse_RP4Init); higher
burn-in pulse resistance values are correlated to higher pulse duration
later in life. The effect of pointwise cathode thickness measurements
also produces noticeable trends in both pulse- and background-related
target variables. Variability in cathode thickness within the same cell
is usually neglected in pseudo-2D first-principles models [10,13]. How-
ever, that variability may introduce variances in geometric properties
of the cathode across its length, which not only affects density, poros-
ity, and particle size distribution in the cathode, but also reaction
rate and diffusion coefficient in the electrode and overall dynamics
of the battery. Domain expertise also confirms the effect of cathode
mass/weight on pulse and background voltages. Interestingly, both
cathode mass and thickness appear as terms interacting with capacity in
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Table 2
Train and test GOF scores (MSE and 𝑅2) of GAMs.
Dataset Train MSE Test MSE Train 𝑅2 Test 𝑅2

PulseAvgV32JP1_np1 0.00014575 0.000285102 0.961037915 0.941054075
PulseAvgV64JP1_np1 7.07652E−05 0.000289954 0.992465167 0.965906866
PulseAvgV64JP4_np1 0.001554356 0.001474513 0.969504759 0.959513788
PulseAvgV64JP4_np2 0.001105054 0.001170778 0.977983493 0.961582935
PulseAvgV64JP4_np3 0.001002586 0.001041193 0.981803 0.96838532
PulseAvgV64JP4_np4 0.001081184 0.001058037 0.98204262 0.970620462

PulseDuration32JP1_np1 0.001645879 0.005186101 0.967352187 0.924653552
PulseDuration64JP1_np1 0.006045291 0.029516279 0.992732313 0.957175809
PulseDuration64JP4_np1 0.894232341 0.285256022 0.928652973 0.929367551
PulseDuration64JP4_np2 0.649248717 0.836235949 0.97398745 0.876140736
PulseDuration64JP4_np3 0.756731717 0.49232884 0.977308994 0.958115483
PulseDuration64JP4_np4 1.064863786 0.293577897 0.974007537 0.980820311

PulseMinV32JP1_np1 0.000122527 0.000390717 0.955905967 0.872117225
PulseMinV64JP1_np1 0.000116913 0.000654668 0.990946076 0.943698587
PulseMinV64JP4_np1 0.004228281 0.003221383 0.926405426 0.939599677
PulseMinV64JP4_np2 0.000768641 0.001828769 0.988123303 0.974109714
PulseMinV64JP4_np3 0.00067271 0.001534866 0.990463651 0.980420011
PulseMinV64JP4_np4 0.000244664 0.00088715 0.996790055 0.989879493

SmoothedBckgndV32JP1 2.8203E−06 1.07534E−05 0.9993221 0.997477596
SmoothedBckgndV64JP1 9.57996E−06 3.10012E−05 0.998875171 0.996254048
SmoothedBckgndV64JP4 3.05659E−05 9.53002E−05 0.999486832 0.998346696
Table 3
Summary of selected predictors for Pulse Datasets (Minimum Voltage, Average Voltage, Pulse Duration)

PulseMinV32JP1_np1 PulseMinV64JP1_np1 PulseMinV64JP4_np1 PulseMinV64JP4_np2 PulseMinV64JP4_np3 PulseMinV64JP4_np4

Q_PulseMinV_1 Q_PulseMinV_1 Q_PulseMinV_1 Q_PulseMinV_2 Q_PulseMinV_3 Q_PulseMinV_4
BB_1_16_A_Pulse_RP4Init BB_UPCoT_Perform_Calculations_VP4Vsigma Intercept BB_1_16_A_Pulse_RP3Final BB_1_16_A_Pulse_RP3Init BB_UPCoT_Perform_Calculations_VpsOCVsigma1
FILL_Weight_Post-Weight 1 BB_1_16_A_Pulse_IONMin Intercept BB_1_16_A_Pulse_IONMax CMI_Blackwell Wt thick_Thickness 5
bb_1_16_a_pulse_rp1diff CathodeMass Intercept BB_1_16_A_Pulse_VPt2DateTime
Intercept BB_1_16_A_Pulse_RP1Final Intercept

Intercept

PulseAvgV32JP1_np1 PulseAvgV64JP1_np1 PulseAvgV64JP4_np1 PulseAvgV64JP4_np2 PulseAvgV64JP4_np3 PulseAvgV64JP4_np4

Q_PulseAvgV_1 Q_PulseAvgV_1 Q_PulseAvgV_1 Q_PulseAvgV_2 Q_PulseAvgV_3 Q_PulseAvgV_4
BB_1_16_A_Pulse_RP4Final BB_UPCoT_Perform_Calculations_VP4Vsigma Intercept Intercept Electrolyte

FillEndDateTime
Electrolyte FillEndDateTime

FILL_Weight_Post-Weight 1 BB_10_mA_drain_VMIN Intercept Intercept
BB_UPCoT_Perform_Calculations_VpsOCVsigma1 fill_weight_diff-weight 1
Intercept BB_1_16_A_Pulse_IONMax

BB_10_mA_drain_TFIN
BB_UPCoT_Perform_Calculations_pPERCENT
BB_PostSoak_TFIN
BB_UPCoT_Perform_Calculations_VP4Vavg
Intercept

PulseDuration32JP1_np1 PulseDuration64JP1_np1 PulseDura-
tion64JP4_np1

PulseDuration64JP4_np2 PulseDuration64JP4_np3 PulseDuration64JP4_np4

Q_PulseDuration_1 Q_PulseDuration_1 Q_PulseDuration_1 Q_PulseDuration_2 Q_PulseDuration_3 Q_PulseDuration_4
BB_1_16_A_Pulse_VPt4 PostSoakOCV_V Intercept Intercept Intercept Intercept
BatHROCVDataCollectionEndDateTime CathodeMass
Intercept BatHROCVDataCollectionEndDateTime

BB_UPCoT_Perform_Calculations_pPERCENT
BB_1_16_A_Pulse_RP4Init
Intercept
Table 4
Summary of selected predictors for Background Voltage Datasets.

SmoothedBckgndV32JP1 SmoothedBckgndV64JP1 SmoothedBckgndV64JP4

Q_BckgndV Q_BckgndV Q_BckgndV
BB_10_mA_drain_VMAX fill_weight_diff-weight 1 FILL_Weight_Post-Weight 1
BB_1_16_A_Pulse_RP1Init bb_1_16_a_pulse_rp3diff T_BckgndV
T_BckgndV T_BckgndV CMI_Blackwell Wt thick_Thickness 5
BB_UPCoT_Perform_Calculations_pPERCENT BB_PostSoak_TFIN Intercept
BB_10_mA_drain_TFIN BB_10_mA_drain_TFIN
WhenCreated BB_10_mA_drain_tFIN
Intercept Intercept
several datasets (e.g., PulseDuration64JP1_np1, PulseMinV64JP1_np1,
PulseMinV64JP4_np4, and SmoothedBckgndV32JP1), suggesting that
they could play an important role in defining the behaviour of the cell
during life tests. Lastly, cell temperature during background discharge
was expected to influence background voltage, based on thermody-
9

namic and kinetic considerations, which is confirmed by the modelling
results. At this stage, it must be recalled that any physics-based in-
terpretation of data-driven models should be in principle validated by
suitable experiments performed on the process, e.g. by adjusting one
design parameter at a time, and verifying whether this results in the
expected change in the measured process output. For ICD cells and

the life-test protocol, however, this procedure would require several
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Table 5
Meaning of all features selected by GAMs as predictors.

Feature name Measurement unit Meaning

BB_10_mA_drain_TFIN ◦C Temperature at the end of 10 mA drain phase of burn-in
BB_10_mA_drain_VMAX V In process maximum voltage during the 10 mA drain phase of burn-in
BB_10_mA_drain_VMIN V In process minimum voltage during the 10 mA drain phase of burn-in
BB_10_mA_drain_tFIN hrs DateTime at which the load was on during the 10 mA drain phase of burn-in
BB_1_16_A_Pulse_IONMax A Maximum current measured during the 1.16 A pulse
BB_1_16_A_Pulse_IONMin A Minimum current measured during the 1.16 A pulse
BB_1_16_A_Pulse_RP1Final Ohm Resistance at the end of the first burn-in pulse
BB_1_16_A_Pulse_RP1Init Ohm Resistance at the beginning of the first burn-in pulse
BB_1_16_A_Pulse_RP3Final Ohm Resistance at the end of the third burn-in pulse
BB_1_16_A_Pulse_RP3Init Ohm Resistance at the beginning of the third burn-in pulse
BB_1_16_A_Pulse_RP4Final Ohm Resistance at the end of the fourth burn-in pulse
BB_1_16_A_Pulse_RP4Init Ohm Resistance at the beginning of the fourth burn-in pulse
BB_1_16_A_Pulse_VPt2DateTime DateTime DateTime of the first burn-in pulse voltage minimum
BB_1_16_A_Pulse_VPt4 V Last Voltage at the second burn-in pulse
BB_PostSoak_TFIN ◦C Final temperature for Post soak OCV step (OCV step prior to 10 mA drain step)
BB_UPCoT_Perform_Calculations_VP4Vavg V Mean of the 4th pulse voltage at the lot level
BB_UPCoT_Perform_Calculations_VP4Vsigma V Standard deviation for the 4th pulse voltage at the lot level
BB_UPCoT_Perform_Calculations_VpsOCVsigma1 V Standard deviation of VEPR (End Process Voltage measurement in the Post Soak OCV step) with a passing VEPR
BB_UPCoT_Perform_Calculations_pPERCENT Percent Lot minimum percentage pass
BatHROCVDataCollectionEndDateTime DateTime DateTime at the OCV collection step prior to burn-in
CMI_Blackwell Wt thick_Thickness 5 inch Cathode thickness at sampling location 5 (along cathode length)
CathodeMass g Mass of cathode
Electrolyte FillEndDateTime DateTime DateTime of electrolyte filling termination
FILL_Weight_Post-Weight 1 g Weight of battery plus electrolyte after electrolyte filling
PostSoakOCV_V V Voltage of the Post soak OCV step (OCV step prior to 10 mA drain step)
Q_BckgndV mAh Capacity of background discharge voltage samples
Q_PulseAvgV_1 mAh Capacity before the first life-test pulse voltage samples (PulseAvgV datasets)
Q_PulseAvgV_2 mAh Capacity before the second life-test pulse voltage samples (PulseAvgV datasets)
Q_PulseAvgV_3 mAh Capacity before the third life-test pulse voltage samples (PulseAvgV datasets)
Q_PulseAvgV_4 mAh Capacity before the fourth life-test pulse voltage samples (PulseAvgV datasets)
Q_PulseDuration_1 mAh Capacity before the first life-test pulse voltage samples (PulseDuration datasets)
Q_PulseDuration_2 mAh Capacity before the second life-test pulse voltage samples (PulseDuration datasets)
Q_PulseDuration_3 mAh Capacity before the third life-test pulse voltage samples (PulseDuration datasets)
Q_PulseDuration_4 mAh Capacity before the fourth life-test pulse voltage samples (PulseDuration datasets)
Q_PulseMinV_1 mAh Capacity after the first life-test pulse voltage samples (PulseMinV datasets)
Q_PulseMinV_2 mAh Capacity after the second life-test pulse voltage samples (PulseMinV datasets)
Q_PulseMinV_3 mAh Capacity after the third life-test pulse voltage samples (PulseMinV datasets)
Q_PulseMinV_4 mAh Capacity after the fourth life-test pulse voltage samples (PulseMinV datasets)
T_BckgndV ◦C Temperature of background discharge voltage samples
WhenCreated DateTime DateTime of battery production termination
bb_1_16_a_pulse_rp1diff Ohm Difference of BB_1_16_A_Pulse_RP1Final and BB_1_16_A_Pulse_RP1Initial
bb_1_16_a_pulse_rp3diff Ohm Difference of BB_1_16_A_Pulse_RP3Final and BB_1_16_A_Pulse_RP3Initial
fill_weight_diff-weight 1 g Electrolyte weight (Difference of FILL_Weight_Post-Weight_1 and FILL_Weight_Pre-Weight_1)

FILL_Weight_Post-Weight_1DateTime DateTime DateTime of production at which weight of battery is measured (after electrolyte fill)
months to years, and would therefore be extremely time consuming.
An alternative approach would then be relying on the development of
detailed physics-based models, in which cell design parameters could
be more straightforwardly adjusted. The combination of physics-based
and data-driven modelling is discussed in the following section.

4. Discussion

The value of the observations introduced in the previous section
is twofold. On one hand, they can be used to support the devel-
opment of mechanistic models, by suggesting possible dependencies
between predictors and target variables. For example, variability in
cathode thickness and cathode mass could be included in pseudo-
2D first-principles models, as discussed above. Thinner cathodes have
shorter charging times and are less likely to exhibit transport limita-
tions and phase-transformation fronts [58], which lead to mechanical
stresses [59], concentration polarization in the electrolyte [12], and
dissipated heat, all of which can affect battery performance and accel-
erate degradation [60]. Smaller active particles usually result in faster
reaction kinetics, due to higher internal surface area, and as well as
faster diffusion in both in bulk and particle volume [61]. Moreover, any
heterogeneities in thickness, internal area, porosity or other properties
across one cell cause parallel variations in internal resistance [62],
which are known to accelerate the degradation in the analogous sit-
uation of parallel cells in battery packs, due to inhomogeneous current
distributions and localized heating [63]. As a result, our dependency
study presented above implies that would be recommended to ac-
count for the impact of cathode thickness on key input parameters for
10
first principles porous electrode models. Other possible developments
include the explicit combination of first-principles and data-driven
models. Within this hybrid framework [64,65], a first-principles model
based on porous electrode theory (PET) [10] or its multiphase gen-
eralization (MPET) [13,66] for hybrid batteries with multiple active
materials can provide baseline, population-level predictions for a wide
range of operating conditions, thanks to the high level of generalization
of this class of models. The baseline prediction can then be improved
by training data-driven models to specialize the prediction at the
individual battery level, by leveraging specific measurements of the
battery — which may not be directly compatible with the structure of
the first-principle model. On the other hand, the above analysis can
lead to improvements in the battery production. Since PDPs highlight
and quantify the effect each predictor has on the predicted variables
in the model, their inspection can point to the production phases
requiring tighter tolerances, in order to increase the consistence of
battery performance. Based on the results of this work, it may be con-
venient to invest in tightening production tolerance for the thickness
of cathode, which affects pulse minimum (PulseMinV64JP4_np4) and
background voltage (SmoothedBckgndV64JP4), respectively, as seen
in Supplementary Figs. 104 and 128. Tighter production tolerances
on cathode mass may reduce variability in the pulse minimum volt-
age (PulseMinV64JP1_np1), as seen in Supplementary Fig. 82. Pulse
average (PulseAvgV64JP1_np1) and background voltage (Smoothed-
BckgndV64JP1) could also benefit from improvements in temperature
control during the battery burn-in process (BB PostSoak TFIN), as
seen in Supplementary Figs. 14 and 120. Other possible developments
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include the design of new cell acceptance criteria and new cell grad-
ing strategies, based on model predictions. As soon as a battery has
completed burn-in, the models constructed in this work can be used to
predict the outcome of life-test experiments and evaluate its expected
performances.

5. Conclusion

Machine learning is a promising route for diagnostics and prognos-
tics of lithium-ion batteries and enables emerging applications in their
development, manufacturing, and optimization. In this work, we devel-
oped interpretable, machine learning models to predict primary battery
performance of hybrid cathode technology batteries based on produc-
tion data and on tests carried out immediately after manufacturing. The
machine learning approach adopted in this work relies on Generalized
Additive Models as the main building block, and on the Maximum
Relevance Minimum Redundancy algorithm and cross-validation to
select the predictor subset. Our approach provides accurate predictions
(𝑅2 > 0.87 on test data) for all of 21 different datasets. Physical
ntuition supports the data-driven choice of a subset of predictors that
ay be responsible for the observed variability in the battery primary
erformances. Broadly speaking, our results confirm the possibility of
xploiting a variety of production data, sometimes already available
o the manufacturer, to unlock the development of data-driven models
hat are tailored to the specific product. This in turn enables high
rediction accuracy at low cost. Moreover, the use of interpretable
ata-driven models can provide further insight in the variability of the
roduction process, and give clues on how to refine it.
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