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Safety and maintaining high performance are key considerations during the operation of lithium-ion batteries. Battery degradation,
in particular lithium plating and loss of active material, is often accelerated by fast charging. This study explores a strategy for the
design of fast charging protocols that takes into account the influence of the variability between battery cells on factors that can
impact degradation. We employ a non-intrusive polynomial chaos expansion to identify the key parameters for each degradation
condition. We explore the reduction of battery degradation by adjusting constraints such as the maximum C-rate and voltage. Tight
control of the key adjustable parameters contributes significantly to reducing the confidence interval of the degradation factors,
allowing reduced charging time with minimal degradation. The application of our approach to two state-dependent fast charging
protocols for a LiC6/LiCoO2 battery indicates the value in explicitly accounting for uncertainties when designing charging
protocols that minimize degradation.
© 2024 The Author(s). Published on behalf of The Electrochemical Society by IOP Publishing Limited. This is an open access
article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-
NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction
in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse,
please email: permissions@ioppublishing.org. [DOI: 10.1149/1945-7111/ad76dd]

Manuscript submitted June 21, 2024; revised manuscript received August 20, 2024. Published September 13, 2024.

The Electric Vehicles (EVs) industry has been growing rapidly in
recent years. Lithium-ion Batteries (LIBs) are the most widely used
battery for EVs due to their advantages, such as high energy density,
low self-discharge characteristics, and long cycle life. However, long
charging times and reduced capacity due to battery degradation are
key bottlenecks of the EVs industry.1 The development of a fast
charging protocol that minimizes degradation is a goal of the EVs
industry.

The cycling behavior of LIBs is typically modeled using an
Equivalent Circuit Model (ECM) or an Electrochemical-based
Model (EM).2–4 EMs are preferred for charging protocol design
because it is difficult for ECMs to account for internal phenomena
such as lithium plating overpotential, concentration distribution,
temperature distribution, and Solid Electrolyte Interface (SEI)
growth during charging. Most EMs employ Porous Electrode Theory
(PET)5 to describe cycling behavior through various governing
equations and experimentally identified parameters. For example,
Qin et al.6 proposed a fast charging PET-based strategy that does not
cause lithium plating through pulse preheating charging. Jiang et al.7

used a PET model to validate a Bayesian optimization strategy for
identifying a protocol to minimize degradation during fast charging.
Xu et al.8 proposed an approach for parameter identification of PET
models that included parameter classification and initial value
guessing using machine learning. Lucia et al.9 propose a real-time
optimal charging protocol that adapts to aging by considering it
through a first-principles model of battery capacity fade. Galuppini
et al.10 propose a methodology to efficiently compute a charging
protocol that minimizes aging using Multiphase Porous Electrode
Theory (MPET),11 which is computationally expensive due to the
multiphase properties of the material, and validate it on commercial
Lithium Iron Phosphate (LFP) cells. Berliner et al.12 discuss
strategies to minimize degradation caused by high currents during
fast charging by proposing novel operational modes, such as
Constant Concentration of electrolyte (CCe), moving beyond stan-
dard charging modes like Constant Current (CC) and Constant
Voltage (CV).

The parameters included in the PET model are often identified
through destructive experiments.13 However, maintaining high
consistency across all products at each stage, from battery electrode
production to cell and pack assembly, is a practical challenge. For
example, the particle radius, which is assumed to be a deterministic
value, is identified as similar to a normal distribution through a
scanning electron microscope (SEM).14 Further, porous electrodes
are manufactured through various processes such as coating, drying,
and calendering, which inevitably cause variability in porosity and
electrode thickness.15–17 Additionally, during battery use, ambient
temperature is difficult to control precisely, in particular in EVs
where the ambient temperature can vary widely, and sensors can
have offsets and biases.18–20 A PET model with parameter values
that are assumed to be perfectly known ignores the probabilistic
uncertainty of the battery parameters, which can reduce the
reliability of the results obtained by that battery model.

Uncertainty Quantification (UQ) is used to determine how the
probabilistic uncertainty in the parameters of a mathematical model
affects the response of the system. A well-known approach for UQ is
Monte Carlo (MC) simulation.21 MC quantifies the propagation of
uncertainty by evaluating the model under investigation many times
with random draws from parameter distributions, which can be
computationally expensive. Depending on the model complexity,
often thousands or tens of thousands of evaluations are needed for
convergence to reliable UQ.22 Polynomial Chaos Expansion (PCE)23

is a sample-efficient alternative to performing UQ based on
expansions of optimally selected orthogonal polynomials. PCE
provides similar statistical information on the Quantity of Interests
(QoI) with significantly less computation than MC. Additionally,
variance-based global sensitivity analysis, which is easily obtained
by simple calculation of the PCE coefficients, is suitable for analysis
and design.24 The PCE coefficients, calculated through a non-
intrusive approach using regression,25 are obtained by post-proces-
sing multiple model simulations. PCE has been applied to PET
models. For example, Lin et al.26 performed a PCE-based global
sensitivity analysis on maximum temperature and discharge capacity
for a 3D multi-physics battery model discharging at 1C. Hadigol et
al.27 used PCE-based global sensitivity analysis to identify the
parameters that have the greatest impact on cell capacity, voltage,
and concentration in the discharge state of LiC6/LiCoO2 battery cellszE-mail: braatz@mit.edu
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for different C-rates. Streb et al.28 performed a global sensitivity
analysis for the reparametrization of the electrochemical model
according to battery aging. Pozzi et al.29 proposed a stochastic model
predictive control-based charging strategy that considers 11 uncer-
tain parameters assumed to be sensitive in the Single Particle Model
(SPM) and charges while avoiding accelerated degradation condi-
tions expressed by temperature and voltage. However, a compre-
hensive analysis of fast charging, such as identifying key parameters
contributing to degradation and adjusting charging constraints to
minimize degradation, has not been reported.

The main contribution of this study is to identify key parameters
of the electrochemical model affecting the degradation factors
indicated by voltage, temperature, and lithium plating overpotential
during the fast charging of LIBs and provide quantitative insight into
fast charging protocol design under uncertainty. The performance of
the PCE-based approach applied to fast charging of LiC6/LiCoO2

batteries is verified through comparison with QoI determined by
MC. The UQ framework applied to two fast charging scenarios
suggests that the contribution of parameters varies depending on the
charging mode and State-of-Charge (SoC). In addition, it is proposed
that charging constraints such as C-rate and maximum voltage
should be quantitatively adjusted during fast charging based on the
Confidence Interval (CI) of the degradation factor through which the
uncertainty of key parameters is propagated. Moreover, the analysis
provides insight into the design of control procedures for suppres-
sing degradation, by selecting key parameters that can be controlled
in the manufacturing stage or in the Battery Management System
(BMS), and then considering various levels of uncertainty. This
article includes a comprehensive analysis of uncertainty propagation,
such as parameter reduction effects and PET model-based inter-
pretation of sensitivity analysis, based on additional fast charging
case studies in preliminary work by the authors.30 In particular, this
work is the first to integrate PCE with generalized operating
modes.10,12,31

The article is organized as follows: Section Methods provides a
general description of the governing equations that constitute PET
models and the polynomial chaos theory used for global sensitivity
analysis and UQ for the investigation of degradation factors.
Additionally, information on the uncertain parameters for applying
the UQ-based approach and two applications are described in detail.
Finally, Section Results and Discussion presents the main results
based on fast charging applications, and Section Conclusion
summarizes the article.

Methods

Porous electrode theory.—The PET modeling framework is a
physics-based approach that describes the cycling behavior of LIBs
with high fidelity.5,32,33 The PET model (aka Pseudo-Two-
Dimensional (P2D) model aka Doyle-Fuller-Newman (DFN) model)
considers the porous anode, electrolyte, and porous cathode in two
dimensions, represented by the x-axis representing the length across
the cell and the radial r-axis of the particle, which is important for
internal diffusion.

Lithium ions exist in the solid-phase porous electrodes and the
liquid-phase electrolyte. The diffusion of lithium ions in a spherical
porous particle, according to Fick’s law of diffusion, is given by
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For graphite, this simple model neglects staging phase
transformations,34–36 which are strongly coupled with side reactions
such as lithium plating,37–40 but it can be viewed as a first
approximation of a porous secondary particle consisting of many
randomly oriented primary grains.41 Nonlinear diffusion and phase
separation can also arise in Lithium Cobalt Oxide (LCO),42 but this
regime is avoided during normal battery operation. The corre-
sponding boundary conditions are
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where ( )c x r t, ,s is the lithium-ion concentration inside the solid
phase of the spherical porous particle, r is the radial direction of the
porous particle, t is time, Di

s is the solid phase diffusion coefficient
of lithium ions in the solid phase, Rp is the radius of the particle, Ds

eff

is the effective diffusion coefficient, and ( )j x t, is the ionic flux. The
positive and negative electrodes are denoted by =i p and =i n,
respectively.

The concentration of lithium ions in the electrolyte is given by
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where ϵi is the porosity of the respective electrode material, ( )c x t,e
is the electrolyte concentration distribution, D ieff, is the effective
diffusion coefficient in the electrolyte, ai is the particle surface area
to volumes, and +t is the transference number. The subscript i
indicates either an electrode or the separator ( =i s). This standard
approximation of the PET model neglects coupled ionic fluxes,
which can be significant in concentrated electrolytes.5

The charge conservation for the solid particles in each porous
electrode, described by Ohm’s law, is given by
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where σ ieff, is the effective conductivity of each electrode, Φ ( )x t,s is
the solid phase potential distribution, and F is Faraday’s constant.
The voltage ( )V t of LIBs is expressed as the difference between the
solid potential at the positive Φ ( )t0,s and negative current collectors
Φ ( )L t,s , with =x 0 and =x L corresponding the cathode and anode
side, respectively.

To represent heat generation during battery cycling behavior,
thermal dynamics are included in the conservation equation and are
described by
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where ρi is the density, Cp i, is the specific heat, and λi is the thermal
conductivity. Different source terms expressed as Qohm, Qrev, and
Qrxn are the ohmic, reversible, and reaction heat generation rates,
respectively.32,43

Current density, concentrations, thermal dynamics, and over-
potential are integrated by the ionic flux expressed by the Butler-
Volmer equation,
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where ηi is the electrode activation overpotential and the concentra-
tion-dependent exchange current density is given by

Table I. Polynomial basis according to some probabilistic
uncertainty.46

Input distri-
bution

Density
function

Orthogonal
polynomial

Hilbertian polyno-
mial

Normal
π

−e x1

2
22 Hermite Hn(x) ( ) !H x kn

Uniform 1/2 Legendre Pn(x) ( ) +P x k12 1n
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where k ieff, is the effective kinetic reaction rate, cs i,
max is the

maximum solid phase concentration, and *( )c x t,s is the surface
concentration in the solid particles.

The SoC of the anode (the limiting electrode) is defined as the
sum of the average concentration in the solid particles ( )c x t,s
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according to location as Ref. 43
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where θn
min is the minimum stoichiometry limit and θn

max is the
maximum stoichiometry limit of anode side.44

In this study, PETLION,45 based on the Julia language, was used.
The accuracy of simulations calculated using the Finite Volume
Method (FVM) is dependent on the number of grid points (N),
absolute tolerance (Δabs), and relative tolerance (Δrel).

45 While the
simulation results with default settings (N= 10, Δabs = 10−6,
Δrel =10−3) are similar to those obtained using very small tolerances
(Δabs = 10−10, Δrel = 10−10) and fine meshes (N= 30), there is a
significant difference in computation time (Appendix A). Therefore,
for efficient computation, the simulations are performed using the
default settings.

Fast charging and uncertainty quantification.—Polynomial
chaos theory quantifies the impact of probabilistic uncertainty in
parameters on the QoI through orthogonal polynomials. PCE
assumes that the input distribution of a random variable is a specific
distribution and evaluates the effect of that uncertainty on the system
through a polynomial basis (Table I) corresponding to each
distribution and coefficients. Variance-based global sensitivity
analysis is performed with the statistical information of the system
calculated through the coefficients of the finite polynomial expan-
sion. This Section provides an overview of the construction
sequence of PCE and global sensitivity analysis via Sobol’ indices.

Polynomial chaos expansion.—Consider the computational
model of the target system, expressed with n input parameters.
X is defined as = { ⋯ }x x x xX , , , , n1 2 3 where each component is
assumed to be statistically independent.a The QoI of the system,
denoted by Y, has finite variance, which is expressed as an infinite
polynomial expansion,23


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where Ψα(X) is a multivariate orthonormal polynomial for the input
distribution, aα is the coefficient of each polynomial term, and α ∈ n

is a multi-indices representing the combination of all polynomial basis
associated with the input variables of the multivariate polynomial.
Additionally, the univariate orthogonal polynomial is expressed as a
Hilbertian basis ψα

( )i
i
through normalization, and Ψα(X) is expressed as

the tensor product of the univariate orthonormal polynomials,47
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For engineering applications, the infinite polynomial expansion
expressed in Eq. 9 is reduced to a finite series by a truncation scheme.
PCE is reduced by the set α α α= { ∣ ∈ ∣ ∣ ⩽ }A p,n p n, , where α∣ ∣
cannot exceed p, which is the maximum degree of the finite polynomial
(Eq. 11). The truncated polynomial expansion is expressed as
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The coefficient set aα of truncated polynomial expansion can be
calculated using a non-intrusive approach. The least-squares mini-
mization-based approach is widely used.25 This approach identifies a

Table II. Description of uncertainty parameters in PET battery model.27

Parameter Description Unit Reference value Random input

Tamb Ambient temperature K 298.15 Gaussian, μ = 298.15, σ = 1.0
Ds

p Positive solid-phase diffusivity m2s−1 1.0 × 10−14 Uniform, [0.9 × 10−14, 1.1 × 10−14]
Ds

n Negative solid-phase diffusivity m2s−1 3.9 × 10−14 Uniform, [3.51 × 10−14, 4.29 × 10−14]
kp Positive reaction rate constant m5/2 mol−1/2s−1 2.334 × 10−11 Uniform, [2.1 × 10−11, 2.56 × 10−11]
kn Negative reaction rate constant m5/2 mol−1/2s−1 5.031 × 10−11 Uniform, [4.52 × 10−11, 5.53 × 10−11]
Dp Positive electrolyte diffusivity m2s−1 7.5 × 10−10 Uniform, [6.75 × 10−10, 8.25 × 10−10]
Ds Separator electrolyte diffusivity m2s−1 7.5 × 10−10 Uniform, [6.75 × 10−10, 8.25 × 10−10]
Dn Negative electrolyte diffusivity m2s−1 7.5 × 10−10 Uniform, [6.75 × 10−10, 8.25 × 10−10]
La Positive current collector thickness m 1.0 × 10−5 Uniform, [0.8 × 10−5, 1.2 × 10−5]
Lp Positive electrode thickness m 8.0 × 10−5 Uniform, [7.7 × 10−5, 8.3 × 10−5]
Ls Separator collector thickness m 2.5 × 10−5 Uniform, [2.2 × 10−5, 2.8 × 10−5]
Ln Negative electrode thickness m 8.8 × 10−5 Uniform, [8.5 × 10−5, 9.1 × 10−5]
Lz Negative current collector thickness m 1.0 × 10−5 Uniform, [0.8 × 10−5, 1.2 × 10−5]
ϵp Positive porosity — 0.385 Uniform, [0.36, 0.41]
ϵs Separator porosity — 0.724 Uniform, [0.63, 0.81]
ϵn Negative porosity — 0.485 Uniform, [0.46, 0.51]
Rp

p Positive particle radius m 2.0 × 10−6 Gaussian, μ = 2.0 × 10−6, σ = 0.3896 × 10−6

Rp
n Negative particle radius m 2.0 × 10−6 Gaussian, μ = 2.0 × 10−6, σ = 0.1354 × 10−6

Bruggp Positive Bruggeman coefficient — 4.0 Uniform, [3.8, 4.2]
Bruggs Separator Bruggeman coefficient — 4.0 Uniform, [3.8, 4.2]
Bruggn Negative Bruggeman coefficient — 4.0 Uniform, [3.8, 4.2]
t+ Transference number — 0.364 Uniform, [0.345, 0.381]
σp Positive electronic conductivity S m−1 100 Uniform, [90, 110]
σn Negative electronic conductivity S m−1 100 Uniform, [90, 110]

aCorrelations between parameters are handled by pre-multiplying the parameter
vector by a matrix.
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set of coefficients that minimizes the truncation error, which is the
difference between an infinite polynomial expansion and a finite
polynomial expansionPC ,

 ˆ = [ ( ) − ( )] [ ]αa X Xargmin E 13PC

The statistical information of QoI is calculated by the coefficients
of each polynomial. For example, the variance is expressed as the
sum of the squares of all coefficients, excluding the constant term:

 ∑[ ] = − [ ]
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α
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2
0
2
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Obtaining statistical information through coefficients allows a
variance-based sensitivity analysis to be performed, which is
discussed the next section.

Global sensitivity analysis.—Sobol’ indices are a widely used
indicator for analyzing the sensitivity of parameters in complex systems
which do not assume that the system is linear or monotonic.24,48 Due to
the orthonormality of the polynomial basis, the partial and total variance
of component i can be obtained through the calculation of the
coefficients. The coefficients used to calculate each variance are
identified from the sets Ai and Atot, which represent multi-indices. In
other words, the coefficients are calculated through post-processing of
PCE without any tuning of the polynomial series construction.

First-order Sobol’ indices represent the individual contribution of
each parameter to the system,


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Higher-order Sobol’ indices take into account their contribution to
the total variance, including their interactions with other para-
meters,
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In this study, the total Sobol’ indices Si,tot are considered to evaluate
the overall contribution of the parameters.

Problem description.—As reviewed and discussed in the intro-
duction, many optimal control strategies have been proposed and
validated for determining charging protocols. Charging batteries
faster requires higher currents. However, charging in extreme
conditions causes rapid increases in voltage and temperature, which
accelerates degradation.10,31,49–53 Additionally, lithium plating pro-
moted by high C-rates is considered a major factor contributing to
the Loss of Lithium Inventory (LLI).54,55 The overpotential of the
side reaction causing lithium plating at the negative electrode is
expressed as

η = Φ − Φ − Φ [ ]+. 17s llpl Li Li
0

0

By definition, lithium plating becomes thermodynamically favored
for ηlpl < 0 V. Appreciable lithium plating rates can only occur if the
graphite surface become saturated with lithium cs(x, Rp, t)→ 1 in
stage 1,36–41 and overpotential exceeds the nucleation barrier, ηlpl[<
ηlpl

nuc < 0 V, which depends on the electrolyte, graphite edge-plane
surface defects, and SEI chemistry with reported values in the range
of −20 mV38 to −150 mV.37 Even tiny amounts of lithium plating
on graphite can lead to accelerated capacity fade, since SEI grows
much faster on lithium metal than on graphite and since some
lithium can become electrically disconnected (“dead”) in each
cycle.56

Here, three charging constraints are set to mitigate degradation
during fast charging:

1. ⩽V 4.1 Vmax ,

Figure 1. Nominal (a) voltage, (b) temperature, and (c) lithium plating overpotential for 2.2C CC-CV charging, and (def) violin plots showing their
corresponding probability distributions for 24 parameter uncertainties, quantified by MC (left) and PCE (right).

Table III. Computational times associated with CC-CV charging for
MC and PCE using 24 parameters, and PCE using 11 parameters.

MC
(24 parameters)

PCE
(24 parameters)

PCE*
(11 parameters)

Time (s) 39,881 4,143 3,905
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2. ⩽T 313.15Kmax ,
3. η ≥ 0Vlpl .

The upper voltage cutoff is set to avoid degradation of LCO at high
potentials57 related to structural transitions58 and cation disorder
caused by oxidation reactions,59 and the temperature cutoff is chosen
to limit the acceleration of side reactions forming SEI.52 In order to
avoid the complications of nucleation and growth, we adopt the most
conservative constraint, ηlpl > 0 V, as a sufficient condition to avoid

lithium plating.12 The effect of propagated uncertainties on voltage,
temperature, and lithium plating overpotential during charging
implies that each factor may stochastically reach the charging
constraints, which are analyzed through the PCE-based UQ ap-
proach.

Second-order PCEs using 24 parameters, as shown in Table II,
are generated at 10-second intervals for two charging protocols (i.e.
Constant Current-Constant Voltage (CC-CV), Constant Current-
Constant Temperature-Constant Voltage (CC-CT-CV)) and are

Table IV. Charging time and accelerated degradation according to C-rate and Vmax for CC-CV charging.

Charging protocol 2.2C CC-CV (Figs. 1 and 5) 2.0C CC-CV (Fig. 7) 2.1C CC-CV (Fig. 7)
Vmax (V) 4.1 4.08 4.09

CC to CV (s) 711.2 787.3 747.3
Total charging time (s) 1086.2 1204.8 1142.5
Degradation considering uncertainty accelerated not accelerated not accelerated

Figure 2. Histograms of probability distribution computed by MC and PCE in the CC to CV transition region during 2.2C CC-CV charging: voltage at (a) 400 s,
(b) 600 s, and (c) 700 s; temperature at (d) 400 s, (e) 600 s, and (f) 700 s; and lithium plating overpotential at (g) 400 s, (h) 600 s, and (i) 700 s.
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used to analyze the sensitivity of each parameter and identify the CI
of the degradation constraints.

First, the PCEs generated for each of the three degradation
factors are used to identify key parameters for each factor during fast
charging. During charging, parameters whose total Sobol’ indices
exceed 0.1 are classified as key parameters and treated as uncertain-
ties, while other parameters are fixed as reference values.60–62

Second, the 95% non-parametric CI for the three degradation
factors identified through PCEs is investigated. At this stage, it is
established that the degradation can be accelerated depending on the
QoI due to uncertainty propagation as well as the nominal result.
Additionally, the design of a charging protocol that ensures that
charging does not reach charging constraints despite the presence of
probabilistic uncertainty is discussed.

Results and Discussion

In this section, two applications are discussed for the quantifica-
tion of uncertainty propagation for degradation factors during fast
charging: CC-CV and CC-CT-CV. However, since this article
focuses on applying a UQ-based methodology to minimize degrada-
tion by CIs, the problem is simplified by terminating charging early
when charging constraints are violated. For example, in case of
violation of Tmax or ηlpl in CC-CV charging or violation of ηlpl in
CC-CT-CV charging, charging is terminated. Global sensitivity
analysis for each degradation factor and statistical information on
the probability distribution of each factor are investigated for 20% to
80% anode SoC (Eq. 8).

The MC and PCE approaches are applied to each charging
protocol, statistical information on QoI is compared, and the
accuracy of PCE is evaluated using R-squared (R2), assuming that
models with lower values than 0.8 have low reliability.

The 95% CI of QoI analyzed at 10-second intervals for both
charging protocols are applied for three degradation factors. Based

on the charging protocol considering the CI, we provide insight into
the constraints of the charging protocol, C-rate settings, and analysis
of the impact of the control level of adjustable parameters on
degradation.

CC-CV charging.—Figs. 1a–1c shows the nominal voltage,
temperature, and lithium plating overpotential for 2.2C CC-CV
charging of LiC6/LiCoO2, depicted using the parameters of Ref. 43.
The uncertainty of the nominal results was quantified using 3,000
evaluations at 100-second intervals each, and the PCE was generated
through 300 evaluations. QoI approximated by PCE is evaluated
with 10,000 samples generated appropriately for the prior distribu-
tion of each parameter, and the results are compared with MC. PCE
using all parameters calculates QoI with a computational cost of
about 10.4% of that for MC (Table III). Figures 1d–1f compares the
estimated probability density functions for MC and a full PCE
model. MC and PCE have very similar distributions in the CC
charging stage. However, at 600 seconds, MC shows a multimodal
distribution, while the distribution by PCE is unimodal (Fig. 1d).
This difference occurs because the propagation of uncertainty affects
the CC charging mode, so there are cases where Vmax is reached
before about 711 seconds when the charging mode changes
(Table IV). Skewness is observed in the voltage probability
distribution as the voltage approaches the CV mode (Figs. 2a–2c),
which reduces the accuracy of PCE and can result in predictions that
are higher than Vmax. For temperature, from 600 seconds, PCE has a
CI with a higher upper bound than for MC (Fig. 1e). When the
voltage reaches Vmax, CC operation switches to CV, and charging is
terminated when the temperature reaches Tmax, minimizing cell
degradation.63 The constraints on temperature and voltage men-
tioned in Section Problem description are applied to determine the
optimal charging protocol design.7,53

In our case study, the temperature remains smooth, and the
distribution shows smaller skewness, although a temperature value

Figure 3. Sobol’ indices for (a) voltage, (b) temperature, and (c) lithium plating overpotential in CC-CV charging. Times for which the R2 of the PCE is less
than 0.8 are indicated in gray as low accuracy.
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greater than Tmax is predicted as being possible (Figs. 2d–2f). Since
the lithium plating overpotential does not reach the constraint during
charging, the distributions identified by MC and PCE during
charging are quite similar (Figs. 2g–2i). Figure 3 shows the total
Sobol’ indices for each degradation condition during CC-CV
charging. Among the three degradation factors, voltage has a range
where R2 is lower than 0.8 due to control in CV mode, and Sobol’
indices for that range are not considered. Parameters with high
sensitivity to the three degradation conditions are identified as

• Voltage: electrode thickness (Ln), porosity (ϵp, ϵn), particle
radius (Rp

p), Bruggeman coefficient (Bruggp)
• Temperature: ambient temperature (Tamb), porosity (ϵp, ϵs, ϵn),

Bruggeman coefficient (Bruggp)
• Lithium plating overpotential: reaction rate constant (kn),

electrode thickness (Lp), porosity (ϵp, ϵn), particle radius (Rn
p),

Bruggeman coefficient (Bruggp, Bruggn)

The union of the sets determined with highly sensitive parameters
for each condition was identified as the key parameter set for
accelerated degradation. The common high contributing parameters
for the three conditions are ϵp, ϵn, and Bruggp. In the PET governing
equations, effective material properties are used to express the
transport of porous electrodes that reflect the characteristics of
battery materials (e.g., σeff,i in Eq. 4). The high sensitivity of
the Bruggeman coefficient and porosity is explained by the
contribution of both parameters to the effective material properties
(Appendix B64,65).

After fixing the parameters with Sobol’ indices lower than 0.1 to
the reference value, the accuracy of PCE with key parameters and

with all parameters are compared in Fig. 4. Despite using only key
parameters, fairly similar distributions are identified for the three
degradation conditions. According to Table III, the computational
time is reduced by about 240 seconds as a result of parameter
reduction. For the voltage, the low accuracy region where R2 is less
than 0.8 is reduced, and R2 is improved overall for the temperature
and lithium plating overpotential. The accuracy of PCE was
improved by reducing the set of uncertain parameters in the
expansion to include only those parameters that have a significant
effect on the battery operation. Figure 5 shows the nominal profile
and 95% CI for voltage, temperature, and lithium plating over-
potential in 2.2C CC-CV charging as solid and dotted lines,
respectively. The nominal result indicates that the mode should
switch from CC to CV because Vmax is reached after about 711
seconds. However, the upper bound of the voltage CI reaches Vmax at
about 550 seconds, which indicates that, in battery modules or packs
composed of many battery cells, voltage constraints may be
breached by a single cell due to cell-to-cell variability, which may
lead to inhomogeneous pack degradation. Furthermore, even within
each cell, the distribution of parameters and particles will lead to
spatially inhomogeneous degradation.

The nominal temperature rises to 311.4 K during charging,
which does not violate the temperature constraint set to minimize
degradation, but the CI exceeds the Tmax of 313.15 K from about
530 to 930 seconds. However, this predicted violation of the
temperature constraint is due to overestimation of the CI due to the
low accuracy of PCE for the truncated distribution. In reality, the
Tmax constraint is not violated for any values of the uncertain
parameters, although the desired SoC (i.e. 80%) cannot be reached
as charging ends.

Figure 4. Probability distributions of (a) voltage, (b) temperature, (c) lithium plating overpotential computed by PCE calculated for 24 (PCE) and 11 parameters
(PCE*), and (d) R2 comparison for three degradation conditions according to the PCE model.
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The lithium plating overpotential does not reach its constraint for
either the nominal case or for any values in its CI, which can be
explained by the choice of temperature constraints and SoC range.
Figure 6a shows the 4.0C CC-CV charging results without tempera-
ture constraints. The CI of the lithium plating overpotential
decreases with a high C-rate, decreasing below 0 V from about
280 to 330 seconds. However, when temperature constraints are
considered, the temperature constraint is reached around 200
seconds before decreasing below 0 V, forcing charging to end.
That is, by taking temperature constraints into account for charging
up to a set SoC of 80%, charging at a high C-rate is avoided, and the

regulated C-rate lowers the decay rate of lithium plating
overpotential.6,66 Additionally, it is worth noting that cell degrada-
tion may depend on the anode SoC range even when using the same
charging protocol (Fig. 6b).

Temperature constraints and charging at 20%–80% anode SoC
ensured that no degradation due to lithium plating occurred. In other
words, uncertainty propagation in 2.2C CC-CV charging suggests
that degradation accelerated by voltage or charging is prematurely
terminated by reaching the maximum temperature constraint.
Therefore, it is necessary to ensure that even the CI does not reach
the charging constraints or that charging is not terminated

Figure 5. Nominal values and 95% CI by PCE for the (a) voltage, (b) temperature, and (c) lithium plating overpotential for 2.2C CC-CV charging (Vmax: 4.1 V,
Tmax: 313.15 K). The nominal value and CI (i.e. 2.5th and 97.5th percentile) are indicated by solid and dotted lines, respectively.

Figure 6. Lithium plating overpotential with 4C CC-CV charging for (a) 20∼80% SoC and (b) 0∼60% SoC.
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prematurely by adjusting the charging constraints or C-rate.
Figures 7a–7c show that accelerated degradation conditions are not
reached when C-rate and Vmax are adjusted appropriately. As Vmax is
reduced to 4.08 V, the upper bound of the CI does not reach 4.1 V,
which is the condition for accelerated degradation. Additionally, the
C-rate reduced to 2.0C results in a low-temperature rise, which
ensures that the temperature CI does not reach the charging
constraints (Fig. 8). Lithium plating overpotential, which is affected
by the C-rate, also does not reach the constraint. However, charging
in moderate conditions increases the charging time by about 118
seconds.

CC-CT-CV charging.—The design of the UQ-based fast char-
ging protocol is also applied to CC-CT-CV, which is designed to
consider temperature constraints in the CC-CV protocol.67

Temperature feedback reduces degradation by controlling tempera-
ture consistently as Tmax is reached during charging. The key
parameters in CC-CT-CV application investigated through Sobol’
indices are

• Voltage: ambient temperature (Tamb), porosity (ϵp, ϵs, ϵn),
particle radius (Rp

p), Bruggeman coefficient (Bruggp, Bruggs)
• Temperature: ambient temperature (Tamb), porosity (ϵp, ϵs, ϵn),

Bruggeman coefficient (Bruggp, Bruggs)
• Lithium plating overpotential: ambient temperature (Tamb),

reaction rate constant (kn), electrode thickness (Lp), porosity (ϵp,
ϵs, ϵn), particle radius (Rn

p), Bruggeman coefficient (Bruggp, Bruggn)

Porosity and Bruggeman coefficient are identified as key para-
meters for all three degradation conditions, identical to CC-CV
charging. Unlike CC-CV, which identified only temperature as a key
parameter, ambient temperature was identified as a key parameter
not only for temperature but also for voltage and lithium plating
overpotential. Figures 9a–9c show the nominal profile and 95% CI
for three degradation conditions at 4.0C CC-CT-CV charging as
solid and dotted lines, respectively. The voltage and temperature
reach charging constraints in the region where CV mode and
Constant Temperature (CT) mode begin, respectively. In addition,
as with CC-CV charging, PCE accuracy decreases rapidly in the area

Figure 7. Nominal values and 95% CI by PCE for the (a) voltage, (b) temperature, and (c) lithium plating overpotential for 2.0C CC-CV charging (Vmax: 4.08 V,
Tmax: 313.15 K); and (d) voltage, (e) temperature, and (f) lithium plating overpotential for 2.1C CC-CV charging (Vmax: 4.09 V, Tmax: 313.15 K). The nominal
value and CI (i.e. 2.5th and 97.5th percentile) are indicated by solid and dotted lines, respectively.

Figure 8. Comparison of the temperature distribution computed by MC and PCE in the CC to CV transition region during 2.0C CC-CV charging (Vmax: 4.08 V),
for voltage at (a) 400 s, (b) 600 s, and (c) 700 s. The dotted lines are the upper and lower bounds of the CI.
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where the control system switches to the CT and CV modes, where
the measurement value is kept constant.

In particular, the low accuracy PCE for voltage in the transition
region from CC mode to CT mode provides unclear information
about whether CI reaches Vmax. Additionally, due to the low
accuracy PCE, the voltage and overpotential in Figs. 9a, 9c exceed
the upper and lower bounds of CI, respectively. Exceeding the
bounds of CI is explained by the C-rate being reduced to keep the
temperature constant in the CC-CT-CV protocol. Figure 10 shows
the distribution and CI comparison of MC and PCE in the low
accuracy area where CC mode is converted to CT mode. In the case
of voltage, CI identified as MC shows a higher upper bound than
PCE, but does not reach Vmax. Additionally, voltage and lithium
plating overpotential show a multimodal distribution as the C-rate
rapidly decreases when switching charging modes. The multimodal
shape of the distribution significantly reduces PCE accuracy and
causes errors with CI obtained by MC. Additionally, as with the CV
mode of CC-CV charging, there is skewness in temperature
distribution (Figs. 10d–10f), which can be resolved by adjusting
Tmax. Figures 9d–9f shows that by reducing C-rate, Vmax, and Tmax,
the charging time increases by about 46 seconds (Table V), but the
degradation acceleration conditions not be reached.

Uncertainty level control for CC-CV.—Cell-to-cell variations
can be reduced by reducing variations during manufacturing.16 In
particular, the calendaring process, which compresses the coated
electrode to the target density, is important. Calendaring has a
significant impact on the performance and safety of the cell because
it affects the porosity,68 thickness,69 and charge transport character-
istics of the electrode.17 Additionally, uncertainty in the calendaring
process can cause wide porosity distribution and large thickness
deviations, which have the highest impact on cell performance.70

The impact of the level of uncertainty of the two parameters
assumed to be uniform distributions on degradation is analyzed in
the case study sections, assuming that the bounds of the two
parameters are reduced to the 50% level.

Additionally, the difference in heat flux to the environment or
cooling system are contributing factors to temperature differences
between the cells of a battery pack or module.71 These temperature
differences can be further increased by different heat generation due
to differences in internal cell resistance. Battery performance is
temperature-dependent; thus, nonuniform degradation is accelerated
by temperature differences between cells. The effect of temperature
distribution is assumed to be controlled through active cooling by the
BMS at a level of 33% of the standard deviation assumed in Table II
in the case studies.

In other words, in this case study, CI assuming reduced
uncertainty for voltage-sensitive parameters, electrode thickness
and porosity, and temperature-sensitive parameters, ambient tem-
perature and porosity, are investigated. Therefore, the length of CIs
decreased by approximately 36%, 38%, and 32% in the order of
temperature, voltage, and lithium plating overpotential, respectively
(Figs. 7d–7f). Reduced CI allows for higher Vmax and C-rate during
fast charging. As a result, CC-CV charging increased to 4.09 V and
2.1C reduces charging time by about 62.3 seconds (Table IV).

Conclusion

The article analyzes the effect of uncertain parameters on the
acceleration of degradation during fast charging of LIBs and
introduces UQ approach for the design of a fast charging protocol
that does not accelerate degradation. Non-intrusive PCE is applied to
perform global sensitivity analysis and PCE calculation for degrada-
tion factors, which requires only 10.4% of the computational cost of
MC. The main causes of battery degradation caused by battery usage
are temperature, voltage, and lithium plating overpotential during
fast charging. Our UQ approach identifies non-parametric CIs with
propagated key probabilistic uncertainty for the three degradation
conditions and provides insight into charging strategies to minimize
degradation.

Among the 24 parameter set consisting of 23 model parameters
for LiC6/LiCoO2 depicted by PET and ambient temperature, key

Figure 9. Nominal values and 95% CI by PCE for the (a) voltage, (b) temperature, and (c) lithium plating overpotential for 4.0C CC-CT-CV charging (Vmax: 4.1
V, Tmax: 313.15 K). (d) Voltage, (e) temperature, and (f) lithium plating overpotential for 3.9C CC-CT-CV charging (Vmax: 4.09 V, Tmax: 312.15 K). The nominal
result and CI (i.e. 2.5th and 97.5th percentile) are indicated by solid and dotted lines, respectively.
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parameters contributing to degradation are identified through global
sensitivity analysis using Sobol’ indices. A subset of key parameters
has been identified for CC-CV charging and CC-CT-CV charging,
respectively. For both applications, porosity and Bruggeman

coefficient, which are used to calculate electrode tortuosity, con-
tribute significantly. Additionally, in the case of the CC-CT-CV
protocol, where temperature feedback control is reflected in the CC-
CV protocol, ambient temperature has a significant contribution to
the three degradation factors.

The 95% CI of each degradation factor due to uncertainty
propagation means that conservative charging constraints or mod-
erate C-rates should be adopted to minimize degradation. In both
case studies, the CI for lithium plating overpotential does not reach
the charging constraint. However, when charging termination due to
temperature rise is not considered, lithium plating is accelerated by
high C-rate and depends on the SoC from which charging begins. On
the other hand, for voltage and temperature, the upper bound of CI
reaches the constraint before the nominal result. This accelerated
degradation caused by CI can be suppressed by reducing Tmax, Vmax,
or C-rate, but an increase in charging time is inevitable.

In addition, electrode thickness and porosity, which are assumed
to be able to reduce quality deviation through a precisely designed

Figure 10. Comparison of MC and PCE in CC to CT transition region during 4C CC-CT-CV charging: voltage at (a) 160 s, (b) 180 s, (c) 200 s; temperature at
(d) 160 s, (e) 180 s, (f) 200 s; and lithium plating overpotential at (g) 160 s, (h) 180 s, (i) 200 s. The dotted lines are the upper and lower bounds of the 95% CI
(For each approach, the left dotted line is 2.5th percentile and the right dotted line is 97.5th percentile.).

Table V. Comparison of charging time and accelerated degradation
according to C-rate, Vmax, and Tmax for CC-CT-CV charging.

Charging protocol 4.0C CC-CT-CV 3.9C CC-CT-CV
Vmax (V) 4.1 4.09
Tmax (K) 313.15 312.15

CC to CT (s) 186.9 185.3
CT to CV (s) 570.8 583.6
Total charging time (s) 917.1 963.3
Degradation considering un-
certainty

accelerated no accelerated
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calendaring process, and ambient temperature, which is assumed to
be strictly controlled through BMS, can reduce the length of CI. This
reduced CI allows for faster charging compared to the case where
uncertainty is not reduced. However, the skewness and multimodal
shape of the distribution caused by CV mode and CT mode reduce
the accuracy of PCE. The accuracy of the CI by PCE is lower in
regions where the charging mode is switched when voltage and
temperature constraints are reached. We are currently exploring
potential ways to increase the numerical accuracy during the
switching between charging modes, which would be incorporated
directly into fast charging protocol optimization. Our UQ-based
charging protocol design was applied to a specific LiC6/LiCoO2

battery, but since the PCE approach is a general approach, it can be
applied to any other battery model, chemistry or parameter set. Our
future work focuses on the investigation of the effect of low
temperatures on accelerated lithium plating and improving PCE
accuracy where the charging mode is switched, as well as accounting

for the coupling of lithium plating with graphite phase
separation37–41 and more realistic models of reaction kinetics based
on coupled ion-electron transfer theory.37,41,72
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Appendix A. Comparison of Simulation Results According to
Solver Settings

Table A·I. Comparison of results according to grid points N at 200 s during 2C CC-CV charging, for 500 evaluations (μ is mean, σ is standard
deviation).

N
Voltage (V) Temperature (K) Lithium plating overpotential (V)

Computational time (s)
μ σ μ σ μ σ

10 3.859 1.32 × 10−2 299.03 6.73 × 10−1 0.106 3.27 × 10−3 20.31
15 3.858 1.28 × 10−2 298.95 5.68 × 10−1 0.106 3.37 × 10−3 34.17
20 3.857 1.29 × 10−2 298.82 5.24 × 10−1 0.105 3.40 × 10−3 69.57
25 3.857 1.27 × 10−2 298.73 5.01 × 10−1 0.105 3.47 × 10−3 85.16
30 3.857 1.26 × 10−2 298.67 4.89 × 10−1 0.104 3.48 × 10−3 112.36

Table A·II. Comparison of simulation results for varying number of grid points N and tolerances.

Setting description
Voltage (V) Temperature (K) Lithium plating overpotential (V)

Computational time (s)
μ σ μ σ μ σ

N = 10, Δabs = 10−6, Δrel = 10−3 3.859 1.32 × 10−2 299.03 6.73 × 10−1 0.106 3.27 × 10−3 20.31
N = 30, Δabs = 10−10, Δrel = 10−10 3.857 1.28 × 10−2 298.67 4.86 × 10−1 0.105 3.33 × 10−3 2861.89

Journal of The Electrochemical Society, 2024 171 090517



Appendix B. Effective Material Properties
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