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 a b s t r a c t

N-glycosylation is a critical quality attribute of monoclonal antibodies (mAbs), the dominant class of biopharma-
ceuticals. Controlling glycosylation remains difficult due to intrinsic pathway complexity, limited online mea-
surements, and a lack of tailored control strategies. This work applies an adaptive nonlinear model predictive 
control (ANMPC) framework to a fed-batch mAb production process, using a multiscale model that links extracel-
lular conditions to intracellular Golgi reactions to predict glycan profiles. Model parameters are updated online 
as new measurements arrive, after which a shrinking-horizon optimization computes the control inputs; only the 
first control move is implemented each cycle. Case studies show that, with a minimal day-1 galactose excitation, 
ANMPC mitigates model–plant mismatch and achieves up to 130% and 96% higher performance than open-loop 
optimization and state NMPC, respectively. Under more realistic conditions (partial measurement availability 
and longer preparation time), ANMPC maintains comparable performance, indicating robustness to practical 
limitations. Overall, the results demonstrate that ANMPC can actively shape glycan distributions in silico and 
offers a viable path toward closed-loop control of mAb glycosylation.

1.  Introduction

Monoclonal antibodies (mAbs) are among the highest-revenue bio-
pharmaceuticals, representing US $217 billion of the global biopharma-
ceutical market (US $343 billion) in 2021 (Walsh & Walsh, 2022). They 
are widely administered to treat cancer, infectious diseases, and inflam-
matory disorders (Mullard, 2021). The N-linked glycans attached to the 
Fc region of a mAb profoundly influence its bioactivity and therapeutic 
efficacy (Jefferis, 2009; Majewska et al., 2020). Because the glycan dis-
tribution must remain within tight limits, regulatory guidelines classify 
glycosylation as a critical quality attribute (CQA) for mAb products (Ba-
tra & Rathore, 2016). Variations in core fucosylation and terminal galac-
tosylation, for example, directly modulate antibody-dependent cellular 
cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC)–the 
primary mechanisms through which mAbs destroy target cells (James, 
2005; Matsumiya et al., 2007; Sha et al., 2016). Conversely, an increased 
proportion of high-mannose glycans accelerates serum clearance and re-
duces therapeutic potency (Goetze et al., 2011).

Although essential for mAb bioactivity and therapeutic effi-
cacy, achieving a consistent batch-to-batch glycan profile remains a 
formidable challenge for biopharmaceutical manufacturers (Federici 
et al., 2013; McCamish & Woollett, 2013; Michaela M. et al., 2014a). 
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Chinese hamster ovary (CHO) cells are the industry workhorse for mAb 
production because they perform complex post-translational modifica-
tions and secrete proteins that are both human-compatible and biolog-
ically active (Kotidis et al., 2019). The CHO-based production work-
flow comprises a sequence of template-driven steps—DNA transcrip-
tion, mRNA translation—followed by protein folding and glycosylation, 
which, unlike the earlier stages, do not rely on a nucleic acid template 
(Michaela M. et al., 2014b; Spahn et al., 2016). Instead, glycosylation 
emerges from a non-template enzymatic network of thousands of cou-
pled reactions in the endoplasmic reticulum and Golgi apparatus, all 
modulated by diverse intracellular factors (Kornfeld & Kornfeld, 1985). 
Consequently, glycan biosynthesis and conjugation to the antibody fre-
quently yield a heterogeneous mixture of glycoforms (Michaela M. et al., 
2014b). Overall, the inherent complexity of the glycosylation process, 
the lack of robust real-time glycan analytics, and the absence of dedi-
cated control strategies have so far limited the implementation of online 
glycosylation control (Michaela M. et al., 2014b).

Most published control strategies for mAb bioprocesses have targeted 
the productivity of mAb or the concentrations of extracellular metabo-
lites (e.g., glucose, glutamine, lactate) rather than the glycan profile 
itself (Dan et al., 2025; Dewasme et al., 2015; Lu et al., 2013; Sarna 
et al., 2023; Sauer et al., 2000). The emphasis on productivity reflects 
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\begin {align}&\frac {dV}{dt}=F_{\text {in}}-F_{\text {out}} \label {eq:1} \\ &\frac {d(VX)}{dt}=\mu VX_{\text {v}}-F_{\text {out}} X \label {eq:2} \\ &\frac {d(VX_{\text {v}})}{dt}=\left (\mu - \mu _{\text {death}}\right )VX_{\text {v}} - F_{\text {out}} X_{\text {v}} \label {eq:3}\end {align}


$V$


$\mathrm {L}$


$F_{\text {in}}$


$F_{\text {out}}$


$\mathrm {L}\,\mathrm {h}^{-1}$


$X$


$X_{\text {v}}$


$\mathrm {cells}\,\mathrm {L}^{-1}$


$\mu $


$\mu _{\text {death}}$


$\mathrm {h}^{-1}$


\begin {equation}\text {viability}=\frac {X_\text {v}}{X} \label {eq:4}\end {equation}


$\mu $


$\mu _{\text {death}}$


\begin {equation}\mu =\mu _\text {max}f_\text {lim}f_\text {inh} \label {eqnA1}\end {equation}


\begin {equation}f_{\text {inh}}=\frac {\text {KI}_\text {Amm}}{[\text {Amm}]+\text {KI}_\text {Amm}}\frac {\text {KI}_\text {Lac}}{[\text {Lac}]+\text {KI}_\text {Lac}}\frac {\text {KI}_\text {Urd}}{[\text {Urd}]+\text {KI}_\text {Urd}} \label {eqnA4}\end {equation}


\begin {equation}\frac {d(V[\text {Met}])}{dt}=F_{\text {in}}[\text {Met}]_{\text {in}}-F_\text {out}[\text {Met}]+q_\text {Met}VX_\text {v} \label {eq:9}\end {equation}


$[\text {Met}]_{\text {in}}$


$[\text {Met}]$


$\si {\milli \gram \per \liter }$


$\text {mAb}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$q_{\text {Met}}$


$\si {\pico \gram \per \cell \per \hour }$


$\text {mAb}$


$\si {\milli \mole \per \cell \per \hour }$


$\text {Amm}$


$\text {Asn}$


$\text {Asp}$


$\text {Glc}$


$\text {Gal}$


$\text {Gln}$


$\text {Glu}$


$\text {Lac}$


$\text {Urd}$


\begin {equation}q_\text {Glc}=\left (-\frac {\mu }{Y_{X_\text {Glc}}}-m_\text {Glc}\right )\left (\frac {K_{C_\text {Gal}}}{K_{C_\text {Gal}}+[\text {Gal}]}\right )^{\!\!n_\text {Gal}} \label {eqnA5}\end {equation}


\begin {equation}q_\text {mAb}=Y_{\text {mAb}_\text {X}} \mu +m_\text {mAb} \label {eqnA15}\end {equation}


$\text {GLY}_{i}$


\begin {equation}\frac {d(V [\text {GLY}_{i}^\text {extra}])}{dt}=-F_{\text {out}} [\text {GLY}_{i}^\text {extra}]+V q_\text {mAb} X_\text {v} Y_{i}^\text {intra} \label {eq:21}\end {equation}


$[\text {GLY}_i^{\text {extra}}]$


$\bigl (\si {\milli \gram \per \liter }\bigr )$


$\text {GLY}_i$


$Y_i^{\text {intra}} = [\text {GLY}_i^{\text {intra}}]/[\text {mAb}^{\text {intra}}]$


$[\text {GLY}_i^{\text {intra}}]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$[\text {mAb}^{\text {intra}}]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$\qty {94}{\micro \mole \per \liter }$


$Y_i^{\text {extra}} = [\text {GLY}_i^{\text {extra}}]/[\text {mAb}]$


$N_{\text {R1}}$


$\nu ^{\text {nsd}}$


$i$


$(i=1,\dots ,N_{\text {NSD}}=7)$


\begin {equation}\begin {split} \frac {d([\text {NSD}_{i}^\text {intra}])}{dt}=& \sum _{j=1}^{N_{R1}} {\nu _{i,j}^\text {nsd} r_j^\text {nsd}}-f_{\text {NSD}_{i}}^\text {hcp/lipid}-f_{\text {NSD}_{i} }^\text {precursor}\\ & -f_{\text {NSD}_i}^\text {glyc}, \quad i=1, 2, \dots , N_\text {NSD} \end {split} \label {eq:22}\end {equation}


$[\text {NSD}_i^{\text {intra}}]$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$i$


$r_j^{\text {nsd}}$


$\bigl (\si {\milli \mole \per \liter \per \hour }\bigr )$


$j$


$f_{\text {NSD}_i}^{\text {hcp}/\text {lipid}}$


$f_{\text {NSD}_i}^{\text {precursor}}$


$f_{\text {NSD}_i}^{\text {glyc}}$


$\bigl (\si {\milli \mole \per \liter \per \hour }\bigr )$


\begin {equation}\label {eqnC1} r_{1}=V_\text {max,1}\frac {[\text {Gln}_\text {intra}]}{K_{\text {M1}_\text {Gln}}+[\text {Gln}_\text {intra}]}\end {equation}


\begin {equation}\text {vel}_\text {golgi}=\frac {2 \times 10^{-6}q_\text {mAb}}{60 ~ \text {MW}_\text {mAb} V_\text {golgi} \left [\text {OS}_1\right ](z=0)} \label {eqnC18}\end {equation}


$\text {OS}_i$


\begin {equation}\frac {\partial {\left [\text {OS}_i\right ]}}{\partial {t}}=-\text {vel}_\text {golgi}\frac {\partial {\left [\text {OS}_i\right ]}}{\partial {z}}+\sum _{j=1}^{N_{R2}} \nu _{i,j} r_j, i=1,\cdots {},N_\text {OS} \label {eq:41}\end {equation}


$\left [\text {OS}_i\right ]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$\text {OS}_i$


$r_j$


$\bigl (\si {\micro \mole \per \liter \per \minute }\bigr )$


$j$


$\nu _{i,j}$


$\text {OS}_i$


$j$


$N_{R2}$


$33$


$43$


$r_j$


\begin {align}\label {eqnD1} r_{j}=\frac {k_{f,j} \left [E_{j}\right ] \left [\text {OS}_{i}\right ]}{K_{d,i}^{\text {enz}} \left (1+\sum _{k=1}^{NC} \frac {\left [\text {OS}_{k}\right ]}{K_{d,k}^{\text {enz}}}\right )}\end {align}


\begin {align}\label {eqnD2} r_j &= \frac { k_{f,j}\left [E_j\right ][\text {Mn}]\left [\text {NSD}_z\right ]\left [\text {OS}_i\right ] }{ K_{d,\text {Mn}}^{\text {enz}}K_{d,z}^{\text {enz}}K_{d,i}^{\text {enz}} \Bigl ( 1 + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}} + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}}\frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}}\frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} \sum _{\substack {k=1\\ k\ne i+1}}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}}\frac {\left [\text {OS}_{i+1}\right ]}{K_{d,i+1}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} \Bigr ) }\end {align}


\begin {align}\label {eqnD3} r_j &= \frac {k_{f,j}\left [E_j\right ]\left [\text {NSD}_z\right ]\left [\text {OS}_i\right ]} {K_{d,z}^{\text {enz}}K_{d,i}^{\text {enz}} \Bigl ( 1 + \frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} + \sum _{k=1}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} \sum _{\substack {k=1\\ k\ne i+1}}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} \frac {\left [\text {OS}_{i+1}\right ]}{K_{d,i+1}^{\text {enz}}} \Bigr ) }\end {align}


\begin {equation}\left [E_j\right ](z) = E_{j,\text {max}} \exp \!\left [ -\tfrac {1}{2}\! \left ( \frac {z - z_{j,\text {max}}}{\sigma _j} \right )^{\!2} \right ], \label {eqnD6}\end {equation}


$T$


$\Delta t_{\text {feed}}$


$\tau = T/N$


$N$


$t = T$


\begin {equation}\text {GI}(T) = [\text {FA2G1}](T) + 2\,[\text {FA2G2}](T), \label {Xeqn9}\end {equation}


$u$


$x$


\begin {equation}u_{\text {lb}} \le u \le u_{\text {ub}}, \qquad x_{\text {lb}} \le x \le x_{\text {ub}}. \label {Xeqn10}\end {equation}


$F_s$


$s=1,\dots ,S$


$0 \le S \le 3$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


\begin {align}\max _{x(t),\,u(t)}\quad & \text {GI} (T) \\ \textrm {s.t.}\quad & x(t)=\text {glyco}\big (u(t),p\big ),\quad t\in [0,T], \\ & x(0)=x_{0}, \\ & x_{\text {lb}}^{\text {path}} \le x(t) \le x_{\text {ub}}^{\text {path}},\quad t\in (0,T), \\ & x_{\text {lb}}^{\text {terminal}} \le x(T) \le x_{\text {ub}}^{\text {terminal}}, \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [0,T].\end {align}


$\text {glyco}(u,p)$


$p$


$x_{0}$


$x^{\text {path}}$


$x^{\text {terminal}}$


$u_{\text {lb}}(t)$


$u_{\text {ub}}(t)$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\Delta t_{\text {prep}}$


$t_k$


$k$


$k$


\begin {align}\max _{x(t),\,u(t)}\quad & \text {GI}(T) \\ \textrm {s.t.}\quad & x(t)=\text {glyco}\big (u(t),\hat {p}(k)\big ),\quad t\in [0,T], \\ & x(k)=\hat {x}(k), \\ & x_{\text {lb}}^{\text {path}} \le x(t) \le x_{\text {ub}}^{\text {path}},\quad t\in (0,T), \\ & x_{\text {lb}}^{\text {terminal}} \le x(T) \le x_{\text {ub}}^{\text {terminal}}, \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [t_k,T].\end {align}


$p$


$\hat {p}(k)$


$k$


$\hat {x}(k)$


$[t_k,\,T]$


$\hat {p}(k)$


$\hat {x}(k)$


$k$


$\hat {p}(0)$


$\text {DO-}k$


$\text {DO-}0$


$k$


\begin {flalign}\max _{\substack {x(t),\,u(t),\\ \overline {w},\,\underline {w},\, \overline {v},\,\underline {v}}} &\mathrm {GI}(T) - \int _{t_k}^{T}\!\rho _w^{\top } \bigl (\overline {w}+\underline {w}\bigr ) dt - \rho _v^{\top } \bigl (\overline {v}+\underline {v}\bigr ) && \\ \textrm {s.t.} \quad &\text {Eqs.\,(18)--(19)} && \notag \\ & x_{\text {lb}}^{\text {hard,path}} \le x^{\text {hard}}(t) \le x_{\text {ub}}^{\text {hard,path}},\quad t\in (0,T) && \\ & x_{\text {lb}}^{\text {hard,terminal}} \le x^{\text {hard}}(T) \le x_{\text {ub}}^{\text {hard,terminal}} && \\ & x_{\text {lb}}^{\text {soft,path}} - \underline {w} \le x^{\text {soft}}(t) \le x_{\text {ub}}^{\text {soft,path}} + \overline {w},\quad t\in (0,T) && \\ & x_{\text {lb}}^{\text {soft,terminal}} - \underline {v} \le x^{\text {soft}}(T) \le x_{\text {ub}}^{\text {soft,terminal}} + \overline {v} && \\ & \overline {w},\; \underline {w},\; \overline {v},\; \underline {v} \ge 0 && \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [t_k,T] &&\end {flalign}


$\rho _{w}$


$\rho _{v}$


$\overline {w}(t)$


$\underline {w}(t)$


$\overline {v}$


$\underline {v}$


$(\text {soft-DO-}k)$


$(\text {DO-}k)$


$\sim $


$100$


$k$


$t_k^{\text {sample}}$


$k \ge 1$


$k$


\begin {align}\min _{{\hat p(k),\,x(t)}}\; \sum _{j=1}^{k}& \bigl (y(j)-\hat y(j)\bigr )^{\top } V_{\epsilon }(j)^{-1} \bigl (y(j)-\hat y(j)\bigr )\\ & + \bigl (\hat p(k)-\hat p(0)\bigr )^{\top } P\,\bigl (\hat p(k)-\hat p(0)\bigr )\nonumber \\ \textrm {s.t.}\; x(t)&=\text {glyco} \big (u(t),\hat p(k)\big ),\quad t\in \left [0,\,t_{k}^{\text {sample}}\right ], \\ x(0)&=x_{0}, \\ p_{\text {lb}} &\le \hat p(k) \le p_{\text {ub}}.\end {align}


$y(j)$


$\hat {y}(j)$


$V_{\epsilon }(j)$


$P$


$\hat {p}(0)$


$P=V_{p}^{-1}$


$P=0$


$[0,T]$


$t_{k}^{\text {sample}}$


$k$


\begin {align}\min _{{\hat p(k),\,x(t)}}\; & \text {Eq.\,(30)} \notag \\ \text {s.t.}\; & x(t)=\text {glyco}\big (u(t),\hat p(k)\big ),\quad t\in [0,\,T], \\ & \text {Eqs.~(32) and (33)}, \notag \\ & x_{\text {lb}} \le x(t) \le x_{\text {ub}},\quad t\in [0,\,T].\end {align}


$\bigl (P = V_{p}^{-1}\ \text {in Eq.~(30)}\bigr )$


$\bigl (P = 0\ \text {in Eq.~(30)}\bigr )$


$\ln \hat {p}(k)$


$\hat {p}(k)$


$Y_i^{\text {extra}}$


$Y_i^{\text {intra}}$


$\mathcal {T}$


$Y_i^{\text {extra}}$


$\mathcal {T}$


$100$


$[0,T]$


$\ln {p}^{*}$


$V_{\ln ({p})}$


$\ln {p}^{*}$


$\ln \hat {{p}}(0)$


$50\%$


$V_{\ln ({p})}$


$\ln \hat {{p}}(0)$


$V_{\ln ({p})}$


$2.30$


$\mathrm {GHz}$


$16$


$\mathrm {GB}$


$15$


$2$


$\mathrm {h}$


$\Delta t_{\text {prep}}=\SI {2}{\hour }$


$\Delta t_{\text {prep}}=\SI {4}{\hour }$


$42\%$


$64\%$


$0.3\%$


$20\%$


$\text {UDPGal}$


$\text {UDPGal}$


$V_{\text {Urd}}$


$0$


$\mathrm {mL}$


$20$


$\mathrm {mL}$


$0.014$


$\mathrm {mL}$


$405$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$1$


$\mathrm {mL}$


$350$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$V_{\text {Gal}}$


$15$


$\mathrm {mL}$


$3$


$\mathrm {a}$


$58$


$\mathrm {mL}$


$4$


$\mathrm {,}$


$V_{\text {Gal}}$


$10$


$\mathrm {mL}$


$V_{\text {Gal}}$


$5$


$\mathrm {mL}$


$\,p^{*}$


$\,p^{*}$


$\hat {p}(0)$


$\hat {p}(0)$


\begin {equation}\begin {aligned} \mathrm {Merit}=\mathrm {GI}(T) -\rho _{v,1}\max \bigl (0,\,60-\text {viability}\bigr ) - \rho _{v,2}\max \bigl (0,\,Y_{\text {Man5}}^{\text {extra}}-5\bigr ), \end {aligned} \label {Xeqn11}\end {equation}


$\rho _{v}$


$k$


$\mathrm {GI}$


$\text {FA2G2}$


$\text {FA2G1}$


$1\%$


$30\%$


$\mathrm {GI}$


$247$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$^{-1}$


$^{-1}$


\begin {equation}\mu _{\text {death}}=\mu _{\text {death,max}}\left (\frac {[\text {Amm}]}{[\text {Amm}]+K_{\text {d,Amm}}}+\frac {[\text {Urd}]}{[\text {Urd}]+K_{\text {d,Urd}}}\right ) \label {eq:6}\end {equation}


\begin {equation}f_{\text {lim}}=\frac {[\text {Glc}]}{[\text {Glc}]+K_{\text {Glc}}}\frac {[\text {Asn}]}{[\text {Asn}]+K_{\text {Asn}}} \label {eq:7}\end {equation}


$\mu _\text {max}$


$\mu _\text {death, max}$


$\mathrm {h}^{-1}$


$f_{\text {lim}}$


$f_{\text {inh}}$


$K_{\text {Glc}}$


$K_{\text {Asn}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$K_\text {d,Amm}$


$K_\text {d,Urd}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$K_\text {I,Amm}$


$K_\text {I,Lac}$


$K_\text {I,Urd}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$[\text {Glc}]$


$[\text {Asn}]$


$[\text {Amm}]$


$[\text {Lac}]$


$[\text {Urd}]$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


\begin {equation}n_\text {Gal}=1-f_\text {Gal}\frac {q_\text {Gal}}{q_\text {Glc}} \label {eq:11}\end {equation}


\begin {equation}q_\text {Gln}=\frac {\mu }{Y_{X_\text {Gln}}}+q_\text {Amm} Y_\text {Gln/Amm} \label {eq:12}\end {equation}


\begin {equation}\begin {split} q_\text {Lac}= \left (\frac {\mu }{Y_{X_\text {Lac}}}-Y_\text {Lac/Glc} \, q_\text {Glc}\right )\frac {\text {Lac}_\text {max1}-[\text {Lac}]}{\text {Lac}_\text {max1}} +m_\text {Lac}\frac {\text {Lac}_\text {max2}-[\text {Lac}]}{\text {Lac}_\text {max2}} \end {split} \label {eq:13}\end {equation}


\begin {equation}q_\text {Amm}=\frac {\mu }{Y_{X_\text {Amm}}}-Y_\text {Amm/Urd} \, q_\text {Urd} \label {eq:14}\end {equation}


\begin {equation}q_\text {Glu}=-\frac {\mu }{Y_{X_\text {Glu}}} \label {eq:15}\end {equation}


\begin {equation}q_\text {Gal}=-\frac {\mu }{Y_{X_\text {Gal}}}\frac {[\text {Gal}]}{[\text {Gal}]+K_\text {Gal}} \label {eq:16}\end {equation}


\begin {equation}q_\text {Urd}=\frac {\mu }{Y_{X_\text {Urd}}}\frac {[\text {Urd}]}{[\text {Urd}]+K_\text {Urd}} \label {eq:17}\end {equation}


\begin {equation}q_\text {Asn}=-\frac {\mu }{Y_{X_\text {Asn}}}-Y_\text {Asn/Asp} \, q_\text {Asp} \label {eq:18}\end {equation}


\begin {equation}q_\text {Asp}=-\frac {\mu }{Y_{X_\text {Asp}}}-Y_\text {Asp/Asn} \, q_\text {Asn} \label {eq:19}\end {equation}


$Y_{X_{\text {Met}}}$


$\bigl (\si {\cell \per \milli \mole }\bigr )$


$m_{\text {Met}}$


$\bigl (\si {\milli \mole \per \cell \per \hour }\bigr )$


$\text {mAb}$


$m_{\text {mAb}}$


$\bigl (\si {\pico \gram \per \cell \per \hour }\bigr )$


$\text {mAb}$


$f_{\text {Gal}}$


$Y_{\text {Met1}/\text {Met2}}$


$\bigl (\si {\milli \mole \per \milli \mole }\bigr )$


$K_{\text {Met}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\text {Lac}_{\text {max}1}$


$\text {Lac}_{\text {max}2}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$Y_{\text {mAb}_X}$


$\bigl (\si {\pico \gram \per \cell }\bigr )$


\begin {equation}r_{1_\text {sink}}= V_{\text {max},1_\text {sink}} \frac {[\text {UDPGlcNAc}]}{\left (K_{\text {M1}_\text {sink}}+[\text {UDPGlcNAc}]\right ) \left (1+\frac {[\text {CMPNeu5Ac}]}{\text {KI}_{1_\text {sink}}}\right )} \label {eq:24}\end {equation}


\begin {equation}r_{2}=V_\text {max,2}\frac {[\text {Glc}]}{K_{\text {M2}_\text {Glc}}+[\text {Glc}]} \label {eq:25}\end {equation}


\begin {equation}r_{\mathrm {2b}} = V_{\max ,\mathrm {2b}} \frac {[\mathrm {UDPGal}]} {K_{\mathrm {M2b,UDPGal}} \Biggl ( 1 + \frac {[\mathrm {UDPGlcNAc}]}{K_{\mathrm {I2A}}} + \frac {[\mathrm {UDPGalNAc}]}{K_{\mathrm {I2B}}} + \frac {[\mathrm {UDPGlc}]}{K_{\mathrm {I2C}}} + \frac {[\mathrm {UDPGal}]}{K_{\mathrm {I2D}}} \Biggr ) + [\mathrm {UDPGal}]} \label {eq:26}\end {equation}


\begin {equation}r_{3}=V_\text {max,3}\frac {[\text {Glc}]}{K_{\text {M3}_\text {Glc}}+[\text {Glc}]} \label {eq:27}\end {equation}


\begin {equation}r_{4}=V_\text {max,4}\frac {[\text {UDPGlcNAc}]}{K_{\text {M4}_\text {UDPGlcNAc}}+[\text {UDPGlcNAc}]} \label {eq:28}\end {equation}


\begin {equation}r_{5}=\!V_\text {max,5}\frac {[\text {UDPGlcNAc}]}{K_{\text {M5}_\text {UDPGlcNAc}} \left (1\!+\!\frac {[\text {CMPNeu5Ac}]}{\text {KI}_{5}}\right )\!+\![\text {UDPGlcNAc}]} \label {eq:29}\end {equation}


\begin {equation}r_{6} = V_{\max ,6} \frac {[\mathrm {UDPGlc}]} {K_{\mathrm {M6,UDPGlc}} \Biggl ( 1 + \frac {[\mathrm {UDPGlcNAc}]}{K_{\mathrm {I6A}}} + \frac {[\mathrm {UDPGalNAc}]}{K_{\mathrm {I6B}}} + \frac {[\mathrm {UDPGal}]}{K_{\mathrm {I6C}}} \Biggr ) + [\mathrm {UDPGlc}]} \label {eq:30}\end {equation}


\begin {equation}r_{6_\text {sink}}= V_{\text {max},6_\text {sink}} \frac {[\text {UDPGal}]}{K_{\text {M6}_\text {sink}}\left (1+\frac {[\text {UDPGlc}]}{\text {KI}_{6_\text {sink}}}\right )+[\text {UDPGal}]} \frac {[\text {Gal}]}{[\text {Gal}] + K_\text {regulator}} \label {eq:31}\end {equation}


\begin {equation}r_{7}=V_\text {max,7}\frac {[\text {GDPMan}]}{\left (K_{\text {M7}_\text {GDPMan}}+[\text {GDPMan}]\right ) \left (1 + \frac {[\text {GDPFuc}]}{\text {KI}_{7}}\right )} \label {eq:32}\end {equation}


\begin {equation}r_{7_\text {sink}}=V_{\text {max},7_\text {sink}}\frac {[\text {GDPFuc}]}{K_{\text {M7}_\text {sink}}+[\text {GDPFuc}]} \label {eq:33}\end {equation}
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$K_{\text {TP},i}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\text {NSD}_i$


$\nu _i^{\text {hcp}/\text {lipid}} \, \bigl (\si {\milli \mole \per \cell }\bigr )$


$\nu _i^{\text {precursor}}$


$^{-1}$


$V_{\text {cell}} \, (\si {\liter \per \cell })$


$\text {NSD}_i$


$r_i^{\text {glyc}}$


$\bigl (\si {\milli \mole \per \liter \per \hour }\bigr )$


\begin {equation}r_{i}^\text {glyc}=\text {vel}_\text {golgi}\left (\frac {V_\text {golgi}}{V_\text {cell}}\right )\sum _{j=1}^{N_\text {OS}} \left \{\nu _{i,j}\left [OS_j\right ](z=1)\right \} \label {eqnC17}\end {equation}


$\text {vel}_{\text {golgi}}$


$\bigl (\text {Golgi length } \si {\per \minute }\bigr )$


$V_{\text {golgi}}$


$\bigl (\si {\liter \per \cell }\bigr )$


$v_{i,j}$


$\text {NSD}_i$


$j$


$[\text {OS}_j](z)$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$z$


$z=0$


$z=1$


$\text {MW}_{\text {mAb}}$


$\text {mAb}$


$\bigl (\SI {165e3}{\gram \per \mole }\bigr )$


$\text {OS}_i$


$\text {OS}_{i+1}$


$j$


$\{\text {OS}_k \mid k=1,2,\dots ,N_{\text {C}}\}$


$E_j$


$K_{d,i}^{\text {enz}}$


$K_{d,k}^{\text {enz}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\text {OS}_i$


$\text {OS}_k$


$\text {enz} \in \{\text {Man I}, \text {Man II}, \text {GnT I}, \text {GnT II}, \text {GalT}, \text {FucT}, \text {SiaT}\}$


$K_{d,z}^{\text {enz}}$


$K_{d,n}^{\text {enz}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\text {NSD}_z$


$\text {Nuc}_n$


$\text {enz}$


$n \in \{1,2,3,4\}$


$K_{d,\text {Mn}}^{\text {enz}}$


$\text {enz} \in \{\text {GnT I}, \text {GnT II}, \text {GalT}\}$


$[\cdot ]$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$k_{f,j}$


$\bigl (\si {\per \minute }\bigr )$


$j$


$\left [\text {NSD}_z\right ]$


$\left [\text {NSD}_i\right ]$


$\left [\text {Nuc}_n\right ]$


$k_{f,j}$


\begin {equation}k_{f,j} = k_{f,j}^{\max }\, \exp \left ( -\tfrac {1}{2} \left ( \frac {\text {pH}^{\text {golgi}} - \text {pH}_{\text {opt}}^{\text {golgi}}}{\omega _{f,j}} \right )^{2} \right ), \label {eqnD4}\end {equation}


\begin {equation}\text {pH}^{\text {golgi}} = \text {pK}_{A}^{\text {golgi}} + \log \!\left ( \frac {[\text {Amm}]}{\,N_{A}^{\text {golgi}} - [\text {Amm}]\,} \right ), \label {eqnD5}\end {equation}


$k_{f,j}^{\max }$


$\bigl (\si {\per \minute }\bigr )$


$\text {pH}_{\text {opt}}^{\text {golgi}}$


$j$


$\omega _{f,j}$


$\text {pK}_{A}^{\text {golgi}}$


$N_{A}^{\text {golgi}}$


$E_{j,\text {max}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$z_{j,\text {max}}$


$0$


$1$


$\sigma _j$

https://orcid.org/0000-0003-1075-866X
https://orcid.org/0000-0002-1821-5072
https://orcid.org/0000-0002-9148-9686
https://orcid.org/0000-0003-4304-3484
mailto:yingjma@mit.edu
mailto:jing.guo@polymtl.ca
mailto:adubs@mit.edu
mailto:kkganko@mit.edu
mailto:braatz@mit.edu
https://doi.org/10.1016/j.conengprac.2025.106731
https://doi.org/10.1016/j.conengprac.2025.106731


Y. Ma et al.

the historical absence of mechanistic models that couple extracellular 
conditions to the intracellular glycosylation network–yet maximizing 
titer (mAb concentration) can be at odds with meeting a specified glycan 
distribution. Seeking to reconcile this tradeoff, Wong et al. (2005) inves-
tigated how dynamic feed profiles influence N-glycan quality, but their 
policies were still framed in terms of holding nutrient concentrations at 
preset levels rather than directly steering the glycosylation state space. 
Reference (Zupke et al., 2015) introduced a model predictive control 
(MPC) scheme to maintain a target high-mannose (HM) fraction, but the 
underlying model only comprised a single manipulated variable and a 
single glycoform, limiting its ability to balance yield enhancement with 
multi-attribute quality specifications.

The emergence of multiscale mechanistic models that explicitly link 
extracellular metabolism to intracellular glycosylation has enabled high-
fidelity open-loop optimizations capable of simultaneously boosting 
product titer and shaping the glycan profile (Kappatou et al., 2020; Ko-
tidis et al., 2019). Reference (Kotidis et al., 2019) validated their opti-
mization experimentally, achieving an over 90% increase in the desired 
glycoform and underscoring the promise of this approach. Nevertheless, 
both studies generated feed trajectories offline; such open-loop policies 
are vulnerable to model–plant mismatch and unanticipated disturbances 
(Rawlings et al., 2017). Embedding the resulting partial-differential–
algebraic equation (PDAE) models directly in a nonlinear MPC (NMPC) 
framework remains computationally prohibitive–a single optimization 
may require 20 h (Ma et al., 2025) to 40 h (Kappatou et al., 2020). To 
reduce this burden, several groups have linearized the multiscale model 
into a process-gain matrix and applied the resulting controller in fed-
batch (Luo et al., 2023) and perfusion bioreactors (Maloney, 2021), but 
such linearizations are accurate only near the operating point used for 
their construction (Michaela M. et al., 2014b), limiting their robustness 
for the wide excursions typical of industrial fed-batch or disturbance-
prone perfusion processes.

A second challenge is parameter identification for the multiscale 
model. Adaptive MPC techniques–updating model parameters online 
from process data–have been used to address model uncertainty with 
promising results (Hajizadeh et al., 2018; Jabarivelisdeh et al., 2020; 
Pickhardt, 2000). Motivated by these gaps, we develop an adaptive 
NMPC (ANMPC) controller for a fed-batch mAb bioreactor using the 
multiscale PDAE glycosylation model of Kotidis et al. (2019). At each 
sampling time, ANMPC updates model parameters using all available 
measurements and then recomputes the control moves via model-based 
optimization. To solve the resulting dynamic optimization and param-
eter estimation problems efficiently and robustly, we employ control-
vector parameterization (CVP) with embedded simulations accelerated 
by a parallel quasi-steady-state (QSS) approach proposed in our previous 
work (Ma et al., 2025). Case studies initialized from multiple parameter 
sets compare open-loop optimization, state NMPC, and ANMPC; AN-
MPC mitigates model–plant mismatch and achieves up to 130% higher 
penalized merit than the alternatives. We further evaluate ANMPC un-
der more realistic measurement availability (no NSD measurements) and 
with a 4 h analytics/actuation delay, observing no material performance 
loss, which demonstrates robustness.

In what follows, Section 2 describes the multiscale glycosylation 
model; Section 3 formulates the control problem; Section 4 presents the 
ANMPC framework; Section 5 examines actuator choices and demon-
strates the algorithm through case studies; and Section 6 concludes.

2.  Glycosylation model

Fig. 1 illustrates the three-level multiscale glycosylation model em-
ployed in this work:

(1) Bioreactor-level cell culture model – predicts viable cell density, ex-
tracellular metabolite concentrations, specific productivity, and the 
concentrations of secreted mAb.

(2) Intracellular nucleotide sugar donor (NSD) synthesis model – con-
verts the extracellular metabolite information from the culture 
model into intracellular NSD using a detailed synthesis pathway and 
associated rate laws.

(3) Golgi-level glycosylation reaction model – receives the NSDs as sugar 
donors and computes the fractional distribution of glycoforms leav-
ing the secretory pathway via a network of enzyme-catalyzed reac-
tions coupled with glycoprotein transport equations.

The overall structure follows Kotidis et al. (2019) and is extended to in-
corporate manganese- and ammonia-dependent kinetics reported by Vil-
liger et al. (2016). Information propagates downstream from the extra-
cellular environment through the NSD synthesis layer and to the Golgi 
reaction network, and the resulting NSD consumption and glycoform 
flux then feeds back to the NSD synthesis model and cell culture model–
closing the loop and capturing the two-way coupling between reactor 
conditions and intracellular glycosylation.

The multiscale model is formulated as a large-scale PDAE system that 
couples 30 ordinary differential equations (ODEs), 34 partial differential 
equations (PDEs), and numerous highly nonlinear algebraic relations. 
The remainder of this section introduces each submodel in turn.

2.1.  Cell culture model

At the reactor scale, we employ an unstructured differential algebraic 
equation (DAE) model to describe cell growth, death, and metabolism 
(Kontoravdi et al., 2010; Kotidis et al., 2019). The dynamic balances for 
cell culture volume and cell populations are
𝑑𝑉
𝑑𝑡

= 𝐹in − 𝐹out (1)

𝑑(𝑉 𝑋)
𝑑𝑡

= 𝜇𝑉 𝑋v − 𝐹out𝑋 (2)

𝑑(𝑉 𝑋v)
𝑑𝑡

=
(

𝜇 − 𝜇death
)

𝑉 𝑋v − 𝐹out𝑋v (3)

where 𝑉  (L) is the cell culture volume, 𝐹in and 𝐹out (Lh−1) are the inlet 
and outlet flow rates, 𝑋 and 𝑋v (cells L−1) denote the total and viable 
cell densities, and 𝜇 and 𝜇death (h−1) are the specific cell growth and 
death rates, respectively.

The viability is defined as the fraction of living cells:

viability =
𝑋v
𝑋

(4)

The specific growth (𝜇) and death (𝜇death) rates are determined by 
nutrient availability and by the buildup of inhibitory byproducts. Glu-
cose and asparagine supply is growth-limiting, whereas lactate, ammo-
nia, and uridine exert inhibitory effects–with ammonia and uridine also 
driving cell death. The rate expressions are given in Eqs. (A.1)–(A.4).

The extracellular mass balance for each metabolite is described by
𝑑(𝑉 [Met])

𝑑𝑡
= 𝐹in[Met]in − 𝐹out[Met] + 𝑞Met𝑉 𝑋v (5)

where [Met]in is the metabolite concentration in the feed stream, [Met] is 
its concentration in the culture, and their units are mgL−1 for mAb and 
mmol L−1 for the other metabolites. 𝑞Met is the cell-specific production 
or consumption rate, which is expressed in pg cell−1 h−1 for mAb and in 
mmol cell−1 h−1 for the remaining metabolites. Metabolites considered in 
the model include ammonia (Amm), asparagine (Asn), aspartate (Asp), 
glucose (Glc), galactose (Gal), glutamine (Gln), glutamate (Glu), lactose 
(Lac), and uridine (Urd). Fig. 2 depicts the corresponding metabolic net-
work, and the individual reaction rates are given in Eqs. (A.5)–(A.15).

The extracellular mass balance equation for each glycoform GLY𝑖 is
𝑑(𝑉 [GLYextra𝑖 ])

𝑑𝑡
= −𝐹out[GLYextra𝑖 ] + 𝑉 𝑞mAb𝑋v𝑌

intra
𝑖 (6)

where [GLYextra𝑖 ]
(

mgL−1) is the extracellular concentration of glyco-
form GLY𝑖, and 𝑌 intra𝑖 = [GLYintra𝑖 ]∕[mAbintra] is its intracellular frac-
tional abundance. Here, the intracellular glycoform concentration 
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Fig. 1. Multiscale glycosylation model.

Fig. 2. The metabolic reaction network in the cell culture. The start of an arrow 
refers to the reactant, while the end of the arrow denotes the product.

[GLYintra𝑖 ]
(

µmol L−1) is obtained from the Golgi model, while the 
total intracellular mAb level [mAbintra] (

µmol L−1) is approximately 
94 µmol L−1 (Kotidis, 2021). By analogy, the extracellular fractional 
abundance is 𝑌 extra𝑖 = [GLYextra𝑖 ]∕[mAb]. Nine frequently observed gly-
cans are considered in this work: HM, FA1G1, FA2G0, FA2G1, FA2G2, 
SIA, G0, G2, and Man5. Their full names are provided in Appendix B.

2.2.  NSD synthesis model

NSDs provide monosaccharides for the glycosylation reactions, and 
they are synthesized inside the cells. Therefore, the NSD synthesis 
model consisting of a DAE system is used to track the intracellu-
lar concentrations of seven monosaccharide donors: guanosine diphos-
phate mannose (GDP-Man), guanosine diphosphate fucose (GDP-Fuc), 
uridine diphosphate galactose (UDP-Gal), uridine diphosphate glucose 
(UDP-Glc), uridine diphosphate N-acetylgalactosamine (UDP-GalNAc), 
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), and cytidine 
monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). The reaction 
network, depicted in Fig. 1(b), comprises 𝑁R1 enzyme-catalyzed steps 
whose stoichiometry is encoded in the matrix 𝜈nsd. For each donor 𝑖
(𝑖 = 1,… , 𝑁NSD = 7), the mass balance is
𝑑([NSDintra𝑖 ])

𝑑𝑡
=

𝑁𝑅1
∑

𝑗=1
𝜈nsd𝑖,𝑗 𝑟nsd𝑗 − 𝑓hcp/lipidNSD𝑖

− 𝑓precursorNSD𝑖

− 𝑓 glycNSD𝑖
, 𝑖 = 1, 2,… , 𝑁NSD

(7)

where [NSDintra𝑖 ] (mmol L−1) is the intracellular concentration of donor 
𝑖; 𝑟nsd𝑗

(

mmol L−1 h−1
) is the rate of a reaction 𝑗; and the sink terms 

𝑓hcp∕lipidNSD𝑖
, 𝑓precursorNSD𝑖

, and 𝑓 glycNSD𝑖

(

mmol L−1 h−1
) are consumption rates 

of the donor for host cell protein and glycolipid synthesis, precursor 
oligosaccharide assembly, and N-linked glycosylation, respectively. All 
reaction rates follow Michaelis–Menten kinetics that depend on the 
intracellular NSD concentrations together with extracellular glucose, 

galactose, and uridine concentrations and the intracellular glutamine 
level. The explicit rates are given in Eqs. (C.1)–(C.18).

2.3.  Golgi model

The Golgi model predicts the intracellular glycoform distribution us-
ing a dynamic plug flow reactor (PFR) representation of the Golgi appa-
ratus, formulated as a PDAE system (Jimenez del Val-et al., 2011; Kotidis 
et al., 2019). The spatiotemporal balance for each oligosaccharide OS𝑖
is

𝜕
[

OS𝑖
]

𝜕𝑡
= −velgolgi

𝜕
[

OS𝑖
]

𝜕𝑧
+

𝑁𝑅2
∑

𝑗=1
𝜈𝑖,𝑗𝑟𝑗 , 𝑖 = 1,⋯ , 𝑁OS (8)

where [OS𝑖
] (

µmol L−1) is the local concentration of OS𝑖 in the Golgi 
apparatus, 𝑟𝑗

(

µmol L−1 min−1
) is the rate of reaction 𝑗, 𝜈𝑖,𝑗 is the stoi-

chiometric coefficient of OS𝑖 in reaction 𝑗, and 𝑁𝑅2 is the total number 
of glycosylation reactions. The glycosylation reaction network involving 
33 oligosaccharides and 43 reactions is depicted in Fig. 3 (Villiger et al., 
2016).

The glycosylation reaction rates 𝑟𝑗 fall into three mechanistic classes: 
Michaelis–Menten kinetics, sequential order Bi–Bi kinetics, and random-
order Bi–Bi kinetics (Jimenez del Val-et al., 2011; Villiger et al., 2016), 
and the detailed equations are shown in Eqs. (D.1)–(D.6).

3.  Control problem

We focus on economic control of a fed-batch bioreactor—the mode 
most employed in industry because of its operational flexibility. The 
culture runs for a total duration 𝑇 . Nutrient supplements are added for 
a short period Δ𝑡feed once every sampling interval 𝜏 = 𝑇 ∕𝑁 , where 𝑁 is 
the number of control intervals. No harvest stream is withdrawn until 
the batch ends at 𝑡 = 𝑇 .

The goal is to maximize the harvest titer of the target glycoform 
while satisfying all process and product constraints. A widely used per-
formance metric is the galactosylation index (GI) at harvest,
GI(𝑇 ) = [FA2G1](𝑇 ) + 2 [FA2G2](𝑇 ), (9)

where the bracketed terms denote the extracellular concentrations of 
the indicated glycoforms. Manipulated variables 𝑢 (feed flow rates) and 
state variables 𝑥 (cell density, metabolite concentrations, glycoform per-
centages, etc.) are bounded by
𝑢lb ≤ 𝑢 ≤ 𝑢ub, 𝑥lb ≤ 𝑥 ≤ 𝑥ub. (10)

The manipulated inputs are the feed stream flow rates 𝐹𝑠 for 𝑠 =
1,… , 𝑆. Up to three feeds can be employed—supplement medium, 
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Fig. 3. The glycosylation reaction network in the Golgi apparatus.

Table 1 
Compositions of the feed streams (all concentrations 
in mmol L−1).

 Metabolite  Medium  Gal solution  Urd solution
 Glc  144.37  0  0
 Gln  0  0  0
 Lac  0  0  0
 Amm  0.06  0  0
 Glu  12.19  0  0
 Asn  26.99  0  0
 Asp  51.95  0  0
 Gal  0  3600  0
 Urd  0  0  2000

galactose solution, and uridine solution—so 0 ≤ 𝑆 ≤ 3. The composition 
of each stream is listed in Table 1.

In an ideal scenario–perfect model, exact initial state, and no 
disturbances–the economic optimization of the fed-batch process re-
duces to an offline dynamic optimization (DO-offline),

(DO-offline)

max
𝑥(𝑡), 𝑢(𝑡)

GI(𝑇 ) (11)

s.t. 𝑥(𝑡) = glyco
(

𝑢(𝑡), 𝑝
)

, 𝑡 ∈ [0, 𝑇 ], (12)

𝑥(0) = 𝑥0, (13)

𝑥pathlb ≤ 𝑥(𝑡) ≤ 𝑥pathub , 𝑡 ∈ (0, 𝑇 ), (14)

𝑥terminallb ≤ 𝑥(𝑇 ) ≤ 𝑥terminalub , (15)

𝑢lb(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢ub(𝑡), 𝑡 ∈ [0, 𝑇 ]. (16)

where glyco(𝑢, 𝑝) denotes the implicit PDAE model parameterized by 𝑝
(the glycosylation model parameters); 𝑥0 represents the initial values of 
the state variables; 𝑥path and 𝑥terminal are path and terminal constraint 
bounds; and the input bounds 𝑢lb(𝑡) and 𝑢ub(𝑡) are time-dependent, al-
lowing, for example, zero flow rates during hold periods.

In practice, the ideal assumptions rarely hold. We address model–
plant mismatch by embedding parameter adaptation within the NMPC 
framework (ANMPC), while the remaining assumptions hold given care-
ful pre-start measurements and carefully controlled bolus feeding.

To evaluate the closed-loop performance of ANMPC, we inject mea-
surement noise into simulated data using the standard deviations (stds) 
computed from the dataset of Kotidis et al. (2019). Two measurement 
scenarios are considered:

(1) Full measurement – all state variables are available;

Table 2 
Measurement variables and standard deviations in the 
cell culture model.
 Variables  Std  Variables  Std
𝑉  (L)  0.001 𝑐Glu (mmol L−1)  0.22
𝑋 (cells µL−1)  494.66 𝑐Gal (mmol L−1)  3.80
𝑋v (cells µL−1)  494.66 𝑐Urd (mmol L−1)  0.87
𝑐Glc (mmol L−1)  1.45 𝑐Asn (mmol L−1)  0.22
𝑐Gln (mmol L−1)  0.11 𝑐Asp (mmol L−1)  0.84
𝑐Lac (mmol L−1)  0.48 𝑐mAb (mmol L−1)  11.05
𝑐Amm (mmol L−1)  0.17

Table 3 
Measurement variables and standard devi-
ations in the NSD model (all concentra-
tions/Stds are in mmol L−1).

 Variables  Std  Variables  Std
𝑐UDP–GlcNAc  0.25 𝑐UDP–Glc  0.22
𝑐GDP–Fuc  0.004 𝑐GDP–Man  0.003
𝑐UDP–Gal  0.18 𝑐UDP–GalNAc  0.03
𝑐CMP–Neu5Ac  0.005

Table 4 
Measurement variables and standard 
deviations in the Golgi model (all vari-
ables/Stds are in %).
 Variables  Std  Variables  Std
𝑦extraHM  0.64 𝑦extraSIA  0.12
𝑦extraFA1G1  0.15 𝑦extraG0  0.42
𝑦extraFA2G0  1.05 𝑦extraG2  0.49
𝑦extraFA2G1  0.99 𝑦extraMan5  0.90
𝑦extraFA2G2  0.82

(2) Industry-realistic measurement – NSDs and certain metabolites 
(Asn, Asp) and glycoforms (HM, FA1G1, SIA) remain unobserved, 
reflecting current analytical limitations.

The potential measurement variables and their standard deviations 
are summarized in Tables 2–4.

4.  Adaptive NMPC (ANMPC) framework

The adaptive NMPC loop iteratively updates model parameters, state 
estimates and future control actions using online measurements. Algo-
rithm 1 summarizes the procedure:
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Table 5 
Parameters in the ANMPC algorithm for the glycosylation process control problem.
 Parameter  Description  Value
𝑇  (h)  Total culture time  288
𝑉0 (L)  Initial working volume  1.5
Δ𝑡feed (h)  Feed window length  0.01
Δ𝑡prep (h)  Preparation time  2 in Sections 5.2– 5.3; 4 in Sections 5.4–5.5
𝜏 (h)  Length of each control interval  24
𝑁 (–)  Number of control intervals  12

Algorithm 1 ANMPC algorithm.
Initialization 
Set counter 𝑘 = 0, current time 𝑡 = 0. Specify: total batch duration 
𝑇 ; number of control intervals 𝑁 and length 𝜏 = 𝑇 ∕𝑁 ; feed window 
Δ𝑡feed; preparation time Δ𝑡prep. 
Times: 𝑡𝑗 = 𝑗𝜏 (𝑗 = 0,… , 𝑁), 𝑡end𝑗 = 𝑗𝜏 + Δ𝑡feed (𝑗 = 0,… , 𝑁 − 1), 
𝑡sample𝑗 = 𝑗𝜏 − Δ𝑡prep (𝑗 = 1,… , 𝑁). 
Initialize parameters 𝑝̂(0). 
Step 1: Parameter estimation 
If 𝑘 ≥ 1 and the 𝑘th sample has been analyzed, update 𝑝̂(𝑘) using all 
the available measurements {𝑦(𝑗)}𝑘𝑗=1; otherwise skip to Step 3. 
Step 2: State estimation 
Simulate the process model from 𝑡 = 0 to 𝑡𝑘 with 𝑝 = 𝑝̂(𝑘) and obtain 
the current state estimate 𝑥̂(𝑘). 
Step 3: Dynamic optimization 
Solve the dynamic optimization problem (soft-DO-𝑘) over 𝑡𝑘 ≤ 𝑡 ≤ 𝑇
with parameters 𝑝̂(𝑘) and initial condition 𝑥̂(𝑘), and generate the op-
timal control sequence 𝐮 =

[

𝑢(𝑘)⊤, 𝑢(𝑘 + 1)⊤,… , 𝑢(𝑁 − 1)⊤
]⊤. 

Step 4: Bioreactor operation & sampling Implement 𝑢(𝑘) over 𝑡𝑘 ≤
𝑡 ≤ 𝑡end𝑘 , and acquire a new sample at 𝑡sample𝑘+1  with the analysis results 
of 𝑦(𝑘 + 1). 
If 𝑡𝑘+1 < 𝑇 , set 𝑘 ← 𝑘 + 1 and return to Step 1; otherwise proceed to 
Step 5. 
Step 5: Harvest 
Shut down the bioreactor and harvest the product.

Fig. 4. Timeline of the ANMPC algorithm.

The timeline of the ANMPC algorithm is shown in Fig. 4. The prepa-
ration time Δ𝑡prep in ANMPC must exceed the combined duration of 
analytics, parameter estimation, state estimation, and optimization to 
guarantee real-time feasibility. This relies on the efficient optimization 
algorithm introduced later. For the case studies considered here, the al-
gorithm parameters are listed in Table 5.

The next subsections detail the dynamic optimization, parameter es-
timation, and state estimation components of the ANMPC.

4.1.  Dynamic optimization formulation

To generate the control actions at 𝑡𝑘 in Step 3 of ANMPC, the con-
troller solves the finite-horizon optimization (DO-𝑘):
(DO-𝑘)

max
𝑥(𝑡), 𝑢(𝑡)

GI(𝑇 ) (17)

s.t. 𝑥(𝑡) = glyco
(

𝑢(𝑡), 𝑝̂(𝑘)
)

, 𝑡 ∈ [0, 𝑇 ], (18)

𝑥(𝑘) = 𝑥̂(𝑘), (19)

𝑥pathlb ≤ 𝑥(𝑡) ≤ 𝑥pathub , 𝑡 ∈ (0, 𝑇 ), (20)

𝑥terminallb ≤ 𝑥(𝑇 ) ≤ 𝑥terminalub , (21)

𝑢lb(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢ub(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑇 ]. (22)

Relative to the offline problem (DO-offline), the model parameters 
𝑝 are replaced by their current estimates 𝑝̂(𝑘) in the problem (DO-𝑘), 
the initial conditions are substituted by the latest state estimate 𝑥̂(𝑘), 
and the horizon is shortened to [𝑡𝑘, 𝑇 ] because of the shrinking horizon 
in the fed-batch operation (Eaton & Rawlings, 1990; Nagy & Braatz, 
2003). It is expected that as data accumulate, 𝑝̂(𝑘) and 𝑥̂(𝑘) move closer 
to the ground-truth values, the optimization problem (DO-𝑘) will yield 
progressively better predictions than the static offline optimization that 
uses 𝑝̂(0).

Because parameter uncertainty can cause previously computed in-
puts to be overly aggressive, DO-𝑘 may become infeasible even when 
DO-0 was feasible. To reduce infeasibility in the optimization, we em-
ploy a soft-constraint formulation (Scokaert & Rawlings, 1999), 

soft-DO-𝑘:

max
𝑥(𝑡), 𝑢(𝑡),
𝑤,𝑤, 𝑣, 𝑣

GI(𝑇 ) − ∫

𝑇

𝑡𝑘
𝜌⊤𝑤

(

𝑤 +𝑤
)

𝑑𝑡 − 𝜌⊤𝑣
(

𝑣 + 𝑣
)

(23)

s.t. Eqs. (18)–(19)

𝑥hard,pathlb ≤ 𝑥hard(𝑡) ≤ 𝑥hard,pathub , 𝑡 ∈ (0, 𝑇 ) (24)

𝑥hard,terminallb ≤ 𝑥hard(𝑇 ) ≤ 𝑥hard,terminalub (25)

𝑥soft,pathlb −𝑤 ≤ 𝑥soft(𝑡) ≤ 𝑥soft,pathub +𝑤, 𝑡 ∈ (0, 𝑇 ) (26)

𝑥soft,terminallb − 𝑣 ≤ 𝑥soft(𝑇 ) ≤ 𝑥soft,terminalub + 𝑣 (27)

𝑤, 𝑤, 𝑣, 𝑣 ≥ 0 (28)

𝑢lb(𝑡) ≤ 𝑢(𝑡) ≤ 𝑢ub(𝑡), 𝑡 ∈ [𝑡𝑘, 𝑇 ] (29)

Here the state constraints are partitioned into hard constraints, 
which must always be respected, and soft constraints, which may be 
violated at the cost of penalty weights 𝜌𝑤 (path) and 𝜌𝑣 (terminal). The 
variables 𝑤(𝑡) and 𝑤(𝑡) are slack variables for the soft path constraints, 
whereas 𝑣 and 𝑣 are slack variables for the soft terminal constraints. 
Problem (soft-DO-𝑘) is solved only if the original problem (DO-𝑘) is in-
feasible.

Table 6 summarizes the constrained variables along with their per-
missible ranges and associated penalty weights. The lower bound of 5% 
for Man5 is based on Pacis et al. (2011). The penalty weights are cho-
sen based on the orders of magnitude of the three variables in the merit 
function: GI is on the order of 100, viability (in %) is on the order of 
10, and Man5 (in %) is on the order of 1. To ensure that each term has 
a comparable order of magnitude, the penalty weights of the viability 
and Man5 constraints are set to 10 and 100, respectively.

4.2.  Parameter estimation formulation

The multiscale model contains ∼100 kinetic and transport 
parameters–far too many to calibrate accurately from the limited data 
available in most cases. Consequently, the parameters are adapted 
online using every measurement collected to date, i.e., Step 1 in 
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Table 6 
Constraint bounds, types, and penalty weights.
 Variable  Description  Constraint type  Lower bound  Upper bound  Penalty weight
 viability (%)  Cell viability  Terminal, soft  60  –  10
𝑌 extra
Man5 (%)  Extracellular Man5 percentage  Terminal, soft  –  5  100

𝑉  (L)  Working volume  Terminal, hard  0.75  2.25  –
𝐹𝑠 (Lh−1) 𝑠 = 1, 2, 3  Feed flow rate  Input  0  100  –

ANMPC. Furthermore, the simulation with the updated parameters is 
used for state estimation, i.e., Step 2 in ANMPC.

We explore two windowing strategies for the online parameter esti-
mation problem–expanding horizon estimation (EHE) and full horizon 
estimation (FHE). In the fed-batch process, the former is more natural as 
the horizon with available data becomes longer over time, so we are in-
terested in the expanded horizon. In EHE, once the 𝑘th sample at 𝑡sample𝑘
(𝑘 ≥ 1) is available, we solve the problem
EHE-𝑘:

min
𝑝̂(𝑘), 𝑥(𝑡)

𝑘
∑

𝑗=1

(

𝑦(𝑗) − 𝑦̂(𝑗)
)⊤𝑉𝜖(𝑗)−1

(

𝑦(𝑗) − 𝑦̂(𝑗)
)

(30)

+
(

𝑝̂(𝑘) − 𝑝̂(0)
)⊤𝑃

(

𝑝̂(𝑘) − 𝑝̂(0)
)

s.t. 𝑥(𝑡) = glyco
(

𝑢(𝑡), 𝑝̂(𝑘)
)

, 𝑡 ∈
[

0, 𝑡sample𝑘

]

, (31)

𝑥(0) = 𝑥0, (32)

𝑝lb ≤ 𝑝̂(𝑘) ≤ 𝑝ub. (33)

where 𝑦(𝑗) and 𝑦̂(𝑗) are the measured and predicted outputs, 𝑉𝜖(𝑗) is the 
measurement-noise covariance, and 𝑃  penalizes deviation from the prior 
parameter vector 𝑝̂(0). When 𝑃 = 𝑉 −1

𝑝  (the prior covariance matrix), we 
obtain a maximum a posteriori (MAP) estimator (e.g., Gunawan et al., 
2003); when 𝑃 = 0, we get a maximum likelihood estimator (MLE) (e.g., 
Beck & Arnold, 1977).

EHE may overfit early data and predict physically impossible trajec-
tories (e.g., negative concentrations) in the later horizon, jeopardizing 
feasibility of the subsequent NMPC problem. To reduce overfitting, we 
instead fit the parameters over the entire horizon [0, 𝑇 ] even though data 
exist only up to 𝑡sample𝑘 , i.e., full-horizon estimation (FHE). In this way, 
parameters causing infeasible simulation beyond the measurement win-
dow are automatically discarded when solving the parameter estimation 
problem iteratively. To further protect against unphysical states, upper 
and lower bounds on the states can be incorporated into the estimation 
problem according to domain knowledge, resulting in the constrained 
FHE estimator
cons-FHE-𝑘:

min
𝑝̂(𝑘), 𝑥(𝑡)

Eq. (30)

s.t. 𝑥(𝑡) = glyco
(

𝑢(𝑡), 𝑝̂(𝑘)
)

, 𝑡 ∈ [0, 𝑇 ], (34)

Eqs. (32) and (33),
𝑥lb ≤ 𝑥(𝑡) ≤ 𝑥ub, 𝑡 ∈ [0, 𝑇 ]. (35)

There are two points to mention for the implementation of the online 
estimator:

(1) In the online parameter adaptation step, distinct estimators are ap-
plied to different submodels. Parameters in the cell culture submodel 
are updated with a MAP estimator (𝑃 = 𝑉 −1

𝑝 in Eq. (30)), whereas 
parameters in the NSD and Golgi submodels are fitted together by 
MLE (𝑃 = 0 in Eq. (30)). Alternative combinations were tested but 
proved inferior: applying MLE to the cell culture block led to se-
vere overfitting in the early phase of the run, which in turn drove 
the simulation and subsequent optimization to diverge; conversely, 
employing MAP for the NSD and Golgi blocks introduced an overly 
strong prior that resulted in underfitting and degraded ANMPC per-
formance. Fitting the NSD and Golgi models separately also produced 
underfitting and was therefore abandoned.

(2) Because the parameters span several orders of magnitude, the opti-
mization is performed in log-space for self-normalization; that is, we 
estimate ln 𝑝̂(𝑘) rather than 𝑝̂(𝑘). Without this approach, parameter 
estimation often fails due to divergence in the sensitivity-equation 
evaluations, where the Jacobian becomes highly ill-conditioned.

4.3.  Solution of the optimization problems

The above dynamic optimization and parameter estimation both re-
quire repeated solutions of optimization problems subject to the mul-
tiscale glycosylation model. We adopt the control vector parameteriza-
tion (CVP) method for the optimizations (Kraft, 1985; Vassiliadis et al., 
1994), which is more reliable than simultaneous methods for strongly 
nonlinear dynamics–constrained problems (Hong et al., 2006). In CVP, 
however, the large PDAE system described in Sections 2 and its sensitiv-
ity equations must be solved tens or hundreds of times with an implicit 
time-stepping scheme, which dominates the computational cost.

To make the optimization tractable, we accelerate each model eval-
uation with the parallel QSS algorithm introduced in our earlier work, 
which reduces overall simulation/optimization time by two orders of 
magnitude (Ma et al., 2025). In the multiscale model, both the cell cul-
ture submodel and the NSD submodel consist solely of DAE equations, 
while the Golgi submodel involves PDEs in both the temporal and spa-
tial domains (along the length of the Golgi apparatus), making the en-
tire model a PDAE, which is computationally expensive. The QSS ap-
proach decouples the simulations in the temporal and spatial domains 
by exploiting the clear timescale separation: the Golgi reactions reach 
equilibrium much faster than the outer-layer dynamics. As a result, the 
Golgi submodel achieves a local steady state long before extracellular 
conditions change appreciably. Under steady-state conditions, the Golgi 
submodel simplifies to a DAE (in the spatial domain along the length 
of the Golgi apparatus), as opposed to the original PDAE. By connect-
ing a series of quasi-steady states of the Golgi submodel at different 
time points, we can obtain the trajectories of its variables. Finally, the 
extracellular glycan percentages (𝑌 extra𝑖 ) are derived by integrating the 
cell culture model, using the intracellular glycan percentages (𝑌 intra𝑖 ) as 
time-varying inputs. The complete QSS algorithm is illustrated by Fig. 5 
and described as Algorithm 2.

Algorithm 2 QSS algorithm.
Initialization. Choose a set of time points  = {𝑡𝑠}

𝑁QSS
𝑠=1 .

Step 1: Get env. Integrate the cell-culture model (omitting glycopro-
tein balances) and the NSD model to obtain the environmental states 
env(𝑡𝑠) at each 𝑡𝑠.
Step 2: Get 𝑌 intra𝑖 . For every 𝑡𝑠, solve the steady-state Golgi DAE with 
env(𝑡𝑠) as inputs, yielding intracellular glycoform fractions 𝑌 intra𝑖 (𝑡𝑠). 
The 𝑁QSS Golgi simulations are fully multithread parallelizable. 
Step 3: Get 𝑌 extra𝑖 . Reintegrate the complete cell culture model to 
produce the extracellular glycoform trajectories 𝑌 extra𝑖 (𝑡𝑠), where all 
the 𝑌 intra𝑖 (𝑡𝑠) in the model are treated as time-varying parameters and 
are obtained from Step 2.

The number and allocation of the time points in   determine the ac-
curacy of the trajectories of the intracellular variables. More time points 
potentially increase the accuracy, but increasing the number of DAEs for 
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Fig. 5. Quasi-steady-state simulation method for the multiscale glycosylation model.

steady-state Golgi submodel to solve and increasing computational cost. 
Following Ma et al. (2025), we achieve satisfactory accuracy for 𝑌 extra𝑖
when the QSS time grid   includes all event instants (feed start/stop, 
sampling, etc.) and is augmented with 100 uniformly spaced points over 
[0, 𝑇 ].

5.  Case study

To evaluate the proposed ANMPC framework, we first calibrate the 
multiscale model to the dataset of Kotidis et al. (2019), obtaining a 
MAP parameter vector ln 𝑝∗ and its covariance 𝑉ln(𝑝). We treat ln 𝑝∗ as 
the ground truth. Five distinct initial guesses ln 𝑝̂(0) are then generated 
on the boundary of the 50% confidence ellipsoid defined by 𝑉ln(𝑝) so that 
the conclusions based on the case studies are more reliable. These ln 𝑝̂(0)
vectors, together with 𝑉ln(𝑝), serve as the prior mean and covariance in 
the online estimation step. The ground-truth and initial parameter val-
ues are listed in Tables S2–S4, while the covariances for submodels are 
provided in the Excel file in Supplementary 2. For convenience, we de-
note the five initial parameter sets as Init_0, Init_1, Init_2, Init_3, 
and Init_4. The lower and upper bounds of the parameters are set to 
1/1000 and 1000 times the ground-truth values, respectively.

All computations are performed on a Windows 11 machine with 
a 12th-Generation Intel Core i7-12700H CPU (14 cores/20 threads, 
2.30GHz) and 16GB RAM. Python 3.9 (Van Rossum & Drake, 2009) 
and CasADi 3.6.5 (Andersson et al., 2019) were used as the computa-
tion platform. The nonlinear programs (NLPs) arising from the CVP for-
mulation are solved with PySQP, an in-house sequential quadratic pro-
gramming (SQP) solver based on the I-SQP algorithm (Ma et al., 2024) 
with a watchdog-technique enhancement. The DAE systems in the QSS 
algorithm are integrated with the IDAS solver (Gardner et al., 2022; 
Hindmarsh et al., 2005) via CasADi, using 15 threads for parallel com-
putation. Under these settings, the total runtime per control move (pa-
rameter estimation + state estimation + dynamic optimization) is less 
than 2 h in all case studies. In Sections 5.2 and 5.3, we assume rapid ana-
lytics and set the preparation time Δ𝑡prep = 2 h; in Sections 5.4 and  5.5, 
we use a more realistic Δ𝑡prep = 4 h to account for assay time.

5.1.  Open-loop optimization study

Because supplement medium is routinely fed whereas Gal and Urd 
are not, we first solve the open-loop optimization with different combi-
nations of feed streams to study the influence of Gal and Urd feeding. 
Here, the ground-truth parameters are used, and the optimization results 
are shown in Table 7.

Table 7 
Optimized fed-batch performance with different feeds.
 Feed streams  Harvest volume (L)  GI (mg L−1)
 None (batch)  1.38  174.27
 Medium only  2.18  247.28
 Medium + Gal  2.23  404.00
 Medium + Urd  2.23  405.25
 Medium + Gal + Urd  2.23  405.25

Adding only the supplement medium raises the galactosylation in-
dex (GI) by about 42% relative to the batch baseline. Supplementing the 
medium with either galactose or uridine produces a much larger bene-
fit: the optimal GI is roughly 64% higher than with medium alone (and 
more than double the batch value). Adding uridine gives a slightly (0.3%) 
higher GI than adding galactose. Introducing both galactose and uridine 
simultaneously provides no further gain, because the optimizer drives 
the galactose feed rate to zero whenever uridine is available. Thus, only 
one of the two supplemental streams is required; the decision between 
galactose and uridine should be based on robustness and operational 
practicality rather than peak GI alone.

Fig. 6 compares the optimal time courses obtained with different 
feed strategies. Fig. 6(a) confirms the ranking in Table 7: every feed-
ing strategy raises the harvest GI relative to the batch baseline, but the 
trajectories diverge markedly once galactose or uridine is introduced. 
When only supplement medium is added, the improvement in extra-
cellular GI stems almost entirely from biomass growth–the viable cell 
density roughly doubles (Fig. 6(b))–even though the intracellular GI 
falls slightly (Fig. 6(d)). Adding galactose or uridine in addition to the 
medium changes the picture: both supplements elevate the intracellu-
lar GI by roughly 20% (Fig. 6(d)), on top of the higher viable cell den-
sity achieved with medium feeding, yielding the pronounced increase 
in extracellular GI shown in Fig. 6(a). The increase in intracellular GI is 
driven by an elevated UDPGal concentration, a key donor for galacto-
sylation (Fig. 6(c)). Once the UDPGal concentration is sufficiently high, 
however, the incremental benefit plateaus; this is evident from the close 
overlap of the green dash–dot and red dotted curves in Fig. 6(d), which 
correspond to Gal and Urd supplement scenarios, respectively.

Although supplementing the reactor with Urd yields a slightly higher 
GI than Gal, the process is much more sensitive to Urd dosing. We quan-
tify the response to the initial Urd pulse volume 𝑉Urd by varying its value 
from 0mL to 20mL while holding the medium feed fixed. Fig. 7 shows a 
sharp optimum at 0.014mL, giving a harvest GI of 405mgL−1. Increasing 
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Fig. 6. Optimal trajectories of crucial variables when using different feed 
streams.

Fig. 7. a) Sensitivity of harvest GI to the Urd feed volume on day 1, b) viable 
cell density trajectories for three pulse feed volumes, and c) intracellular GI 
trajectories for the same three different three pulse feed volumes.

Fig. 8. Sensitivity of harvest GI to the Gal feed volume, a) vary cap V sub Gal 
simultaneously on days 1–4, b) vary cap V sub Gal on day 3, c) vary cap V sub 
Gal on day 4.

the pulse to just 1mL lowers GI to about 350mgL−1—a 13.6% drop—
demonstrating that small deviations from the optimum can markedly 
degrade product quality and, therefore, robustness in the presence of 
model–plant mismatch or input disturbances. Fig. 7(b)-(c) further indi-
cate that the GI loss is driven primarily by reduced viable cell density 
throughout the run and by lower intracellular GI during the high cell 
density phase.

In contrast, the harvest GI is far less sensitive to the galactose pulse 
volume 𝑉Gal near its optimum–15mL on day 3 and 58mL on day 4 , with 
no Gal on the other days. Fig. 8(a)–(c) illustrate this robustness. When 
𝑉Gal is above 10mL on each of the first four days (Fig. 8(a)), the harvest 
GI changes only slowly, and declines rapidly only when 𝑉Gal falls below 
5mL. Moreover, varying the Gal dose on a single day while keeping the 
other days at their optimal values (Fig. 8(b)-(c)) produces only minor 
changes in GI. These results confirm that galactose feeding is a potent 
yet forgiving lever for glycosylation control, whereas uridine requires 
near-perfect tuning to realize its modest advantage.

Given the above analysis, the subsequent closed-loop studies employ 
medium+Gal as the manipulated streams and omit Urd.

Table 8 
Merits under different control algorithms.

 Init_0  Init_1  Init_2  Init_3  Init_4

 Open loop  185.88  272.64  231.17  219.86  274.78
 State NMPC  276.08  —a  —a  202.26  367.22
 ANMPC  216.82  362.89  220.38  218.30  380.92
 Cell culture  8.70
 Ground truth  404.00
a State NMPC terminated prematurely for Init_1 and Init_2.

5.2.  Open-loop optimization vs. state NMPC vs. ANMPC

To benchmark the ANMPC scheme, we compared five controllers, all 
initiated from the same inaccurate parameter vector:

(1) Ground truth – dynamic optimization with the ground-truth param-
eters 𝑝∗.

(2) Cell culture – dynamic optimization with the objective of maximizing 
titer, which is a common scenario when there is only the cell culture 
model. Here, Ground-truth parameters 𝑝∗ are used.

(3) Open loop – dynamic optimization with the inaccurate parameters 
𝑝̂(0).

(4) State NMPC – including feedback on measured states and using fixed 
parameters 𝑝̂(0).

(5) ANMPC – adjust parameters online with the measured states.

To compare with state NMPC more easily, we assume full state mea-
surement in this section, while the more realistic measurement scheme 
is considered in Sections 5.4 and  5.5.

Given the importance of the constraints on the cell viability and 
Man5 fraction in Table 6, the controllers are compared in terms of the 
penalized merit function

Merit = GI(𝑇 ) − 𝜌𝑣,1 max
(

0, 60 − viability
)

− 𝜌𝑣,2 max
(

0, 𝑌 extraMan5 − 5
)

,

(36)

using the same penalty weights 𝜌𝑣 as in the soft-constrained formula-
tion (soft-DO-𝑘; see Table 6). Table 8 reports the merits across the five 
parameter scenarios.

From Table 8, optimizing the cell culture model only will cause ex-
tremely low GI (50 times smaller than the ground-truth solution) be-
cause the operating condition of maximizing titer leads to very little 
FA2G2 and FA2G1 synthesized in the Golgi apparatus (less than 1%
for most of the culture time). Open-loop optimization performs second 
worst for most initializations, producing merits roughly one-half of the 
ground-truth optima. ANMPC shows a substantial gain (over 30%) for
Init_1 and Init_4, but offers only marginal or no improvement over 
open-loop optimization for the other runs. State NMPC terminates pre-
maturely for Init_1 and Init_2 due to infeasible simulations during 
optimization. Overall, none of the controllers consistently achieve sat-
isfactory performance.

A closer look at the ANMPC operation strategies shows that the low-
merit cases (Init_0, Init_2, Init_3) never feed Gal, whereas the high-
merit cases (Init_1, Init_4) apply appropriate Gal dosing (Fig. 9). Con-
sistent with Table 7, omitting Gal caps the ground-truth optimal GI at 
just 247mgL−1. This behavior occurs because the inaccurate initial pa-
rameters undervalue Gal’s positive impact on galactosylation, so the op-
timizer chooses not to add Gal. Without Gal feeding, the Gal-related pa-
rameters are not excited and therefore cannot be updated, which masks 
the potential advantage of ANMPC.

5.3.  Enforcing a minimum galactose dose

The previous section showed that, when ANMPC selects zero galac-
tose feeding, the Gal-related parameters cannot be updated and per-
formance stalls. To force at least minimal excitation, we impose a lower 
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Fig. 9. Gal feed rate profiles under ANMPC for different initial parameter sets. 
The feed window duration is 0.01 h.

Table 9 
Merits after imposing a 1mL Gal feeding lower bound on day 1.

 Init_0  Init_1  Init_2  Init_3  Init_4

 Open loop  183.36  324.88  197.27  166.23  201.67
 State NMPC  224.55  —a a  197.11  378.11
 ANMPC  380.37  398.29  389.53  386.79  387.06
 Ground truth  404.00
a State NMPC terminated prematurely for Init_1 and Init_2.

bound of 1mL on the Gal feed volume during day 1–a negligible volume 
compared with over 1 L working volume. Table 9 compares the resulting 
merits for the various control strategies under this specification.

Comparing Table 8 (no Gal feed lower bound) with Table 9 (1mL 
lower bound on day 1), the open-loop and state-NMPC controllers show 
almost no progress: their merits remain roughly half of the 404 bench-
mark, and state NMPC still fails to converge for two of the five initial-
izations. By contrast, ANMPC improves markedly once the small day-1 
galactose dose is enforced. Its merits lie within 6% of the ground-truth 
optimum for every initialization and exhibit little scatter, indicating sub-
stantially greater robustness. Relative to ANMPC without a Gal lower 
bound, the merit increases by more than 75% for Init_0, Init_2, and
Init_3. Compared with open-loop optimization and state NMPC under 
the same Gal feed constraint, ANMPC delivers gains of up to 130% and 
96% (Init_3), respectively. These results confirm that introducing even 
a minimal Gal feed early in the cell culture provides sufficient excitation 
to update Gal-related parameters and enables the adaptive controller to 
approach its full potential.

Fig. 10 illustrates the input profiles and trajectories for Init_0 along-
side the ground-truth policy. The ground-truth optimization splits the 
medium addition into two pulses–one at the start of culture and a sec-
ond after nine days (Fig. 10(a)). This staged strategy moderates the late-
phase viability drop and satisfies the terminal viability limit (Fig. 10(c)). 
In contrast, the other controllers deliver nearly the entire medium vol-
ume at the outset, pushing the broth quickly to the reactor’s upper vol-
ume limit and leaving little capacity for a compensatory feed later; the 
resulting nutrient depletion leads the NMPC variants to violate the via-
bility constraint. The second key difference appears in Fig. 10(b): sub-
stantial Gal supplementation occurs only in the ground-truth and AN-
MPC policies, yielding a markedly higher GI in Fig. 10(d). Like open-
loop and state NMPC, ANMPC omits Gal during the first three days due 
to initial model mismatch. Once the parameter estimates improve, how-
ever, ANMPC initiates Gal feeding; from that point forward, its GI trajec-
tory closely tracks the ground-truth benchmark and remains well above 
the curves from the other two controllers.

The contrasting control performances can be traced to how each al-
gorithm handles model–plant mismatch, as illustrated by the evolution 
of the GI prediction errors at the harvest time in Fig. 11. At the start of 
the run (day 0) the three schemes—open-loop optimization, state NMPC, 

Fig. 10. Control inputs and key state trajectories for the control schemes start-
ing from Init_0 and the ground-truth optimization: (a) medium feed flow rate, 
(b) Gal feed flow rate, (c) cell viability, and (d) GI.

Fig. 11. Evolution of the GI prediction error at harvest time when starting from 
Init_0.

and ANMPC—share the same parameter set, so their GI prediction errors 
are identical, about 200mgL−1. Thereafter, the open-loop error remains 
unchanged because no feedback is used to refine the model. In both state 
NMPC and ANMPC, the error decreases as new measurements arrive, 
but ANMPC’s errors are consistently smaller than those of state NMPC. 
Within two days, the GI error under ANMPC drops below 50mgL−1 (ex-
cept on days 3–5), whereas state NMPC does not reach this level until 
about day nine. The rapid improvement in ANMPC stems from its online 
parameter adaptation, whereas the slower drift in state NMPC reflects 
only the shrinking prediction horizon and the availability of full-state 
measurements, not improved model accuracy. By the time state NMPC 
finally achieves a similar error magnitude, only three days remain to 
influence the harvest GI, leaving ANMPC with the practical advantage.

5.4.  ANMPC with fewer measurements and longer preparation time

Here we evaluate ANMPC under more realistic conditions: (1) partial 
measurement availability–no readings for extracellular Asn-and Asp, the 
extracellular glycan fractions HM, FA1G1, and SIA, or any intracellular 
NSD concentrations; (2) a longer preparation time of 4 h to account 
for computation and assay turnaround. The results are summarized in 
Table 10.

Table 10 shows that, for a given initial parameter set, the penalized 
merit varies by less than 2% across different measurement schemes and 
preparation times. In particular, using partial measurements and a 4 h 
preparation window does not necessarily degrade performance relative 
to the full measurements and 2 h baseline. Therefore, a leaner measure-
ment set and a relaxed preparation window can be adopted as a more 
economical choice without sacrificing control quality.
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Table 10 
ANMPC under different measurements and preparation time.

 Init_0  Init_1  Init_2  Init_3  Init_4  Avg
 Fulla + Δ𝑡prep = 2 h  380.37  398.29  389.53  386.79  387.06  388.41
 Partialb + Δ𝑡prep = 2 h  387.81  395.60  392.24  388.52  384.52  389.74
 Partialb + Δ𝑡prep = 4 h  386.18  395.25  387.89  386.62  379.40  387.07
a “Full” = all variables measured.
b “Partial” = excludes extracellular Asn-and Asp, extracellular glycan frac-

tions (HM, FA1G1, SIA), and all intracellular NSD concentrations.

Glycans are measured only at the end of a batch in many compa-
nies. Regarding employment of the multiscale model in that scenario, 
any company can take glycosylation experiments once a day by man-
ual sampling during the fed-batch run, freeze the samples, and an-
alyze all samples after the fed-batch experiment – to generate time-
series data for use in estimating model parameters. Once the multiscale 
model has been validated offline, the multiscale model is still appro-
priate for predicting glycan trajectories (time series). The closed-loop 
performance obtained by the MPC algorithm will be lower if the glyco-
sylation is only measured at the end of each batch run, since there would 
be less data for updating the glycosylation model parameter estimates. 
The MPC algorithm would still function, with the real-time update of 
the glycosylation model parameter estimates turned off since those pa-
rameters would only be updated after each batch, although with lower
performance.

6.  Conclusions

We applied an ANMPC framework to regulate the N-glycosylation in 
a fed-batch mAb bioreactor. The controller uses a high-fidelity multi-
scale PDAE model that links extracellular operating conditions to intra-
cellular Golgi reactions to predict both mAb productivity and glycan 
profiles. To mitigate model–plant mismatch, parameters are updated
online as new measurements arrive, after which a shrinking-horizon 
optimization recomputes the inputs. When the nominal dynamic op-
timization becomes infeasible, a soft-constraint formulation preserves 
solvability. To prevent unphysical predictions (e.g., negative concentra-
tions), parameter estimation is performed over the full fed-batch hori-
zon with state bounds. Computationally, parameter estimation and dy-
namic optimization yield large-scale, model-constrained problems that 
are challenging to solve. We therefore employ the control-vector pa-
rameterization (CVP) method for reliable convergence and accelerate 
embedded simulations via a parallel QSS algorithm.

Sensitivity studies show that both Gal and Urd can raise GI by about 
64% relative to feeding medium alone to the bioreactor, but Urd is 
overly dosage-sensitive for control. Across case studies with multiple ini-
tial parameter sets, ANMPC delivers up to 130% and 96% higher penal-
ized merit than open-loop optimization and state NMPC, respectively–

provided a small day-1Gal lower bound is imposed to excite Gal-related 
dynamics and enable adaptation. Moreover, using fewer measurements 
and a longer preparation time (4 h) did not materially degrade ANMPC 
performance, supporting practical deployability.

Regarding implementation, experimental validation of the control 
algorithm requires the implementation of an automated glycan assay, 
which requires additional equipment and software beyond what is avail-
able at some companies. Future work will explore stochastic ANMPC 
(e.g., chance-constrained MPC) to balance constraint satisfaction and 
performance under uncertainty, and experimental validation of the pro-
posed strategies.
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Appendix A.  Kinetic equations in the cell culture model

The equations for computing the cell growth and death rates are

𝜇 = 𝜇max𝑓lim𝑓inh (A.1)

𝜇death = 𝜇death,max

(

[Amm]
[Amm] +𝐾d,Amm

+ [Urd]
[Urd] +𝐾d,Urd

)

(A.2)

𝑓lim = [Glc]
[Glc] +𝐾Glc

[Asn]
[Asn] +𝐾Asn

(A.3)

𝑓inh =
KIAmm

[Amm] + KIAmm

KILac
[Lac] + KILac

KIUrd
[Urd] + KIUrd

(A.4)

where 𝜇max and 𝜇death, max (h−1) are the maximum specific growth and death rates, respectively; 𝑓lim and 𝑓inh are the substrate-limiting and metabolite-
inhibiting factors, respectively; 𝐾Glc and 𝐾Asn (mmol L−1) are the Monod half-saturation constants for glucose and asparagine; 𝐾d,Amm and 𝐾d,Urd
(mmol L−1) are the death constants for ammonia and uridine; 𝐾I,Amm, 𝐾I,Lac, and 𝐾I,Urd (mmol L−1) are inhibition constants for ammonia, lactate, and 
uridine; and [Glc], [Asn], [Amm], [Lac], and [Urd] (mmol L−1) denote the extracellular concentrations of glucose, asparagine, ammonia, lactose and 
uridine, respectively.

The kinetic equations for cell metabolism are

𝑞Glc =

(

−
𝜇

𝑌𝑋Glc
− 𝑚Glc

)(

𝐾𝐶Gal
𝐾𝐶Gal + [Gal]

)𝑛Gal

(A.5)

𝑛Gal = 1 − 𝑓Gal
𝑞Gal
𝑞Glc

(A.6)

𝑞Gln =
𝜇

𝑌𝑋Gln
+ 𝑞Amm𝑌Gln/Amm (A.7)

𝑞Lac =

(

𝜇
𝑌𝑋Lac

− 𝑌Lac/Glc 𝑞Glc

)

Lacmax1 − [Lac]
Lacmax1

+ 𝑚Lac
Lacmax2 − [Lac]

Lacmax2
(A.8)

𝑞Amm =
𝜇

𝑌𝑋Amm
− 𝑌Amm/Urd 𝑞Urd (A.9)

𝑞Glu = −
𝜇

𝑌𝑋Glu
(A.10)

𝑞Gal = −
𝜇

𝑌𝑋Gal

[Gal]
[Gal] +𝐾Gal

(A.11)

𝑞Urd =
𝜇

𝑌𝑋Urd

[Urd]
[Urd] +𝐾Urd

(A.12)

𝑞Asn = −
𝜇

𝑌𝑋Asn
− 𝑌Asn/Asp 𝑞Asp (A.13)

𝑞Asp = −
𝜇

𝑌𝑋Asp
− 𝑌Asp/Asn 𝑞Asn (A.14)

𝑞mAb = 𝑌mAbX𝜇 + 𝑚mAb (A.15)

In these expressions, the model parameters to be estimated include the yield coefficients 𝑌𝑋Met
(

cell mmol−1
)

, maintenance terms 𝑚Met
(

mmol cell−1 h−1
) for metabolites excluding mAb, maintenance term 𝑚mAb

(

pg cell−1 h−1
) for mAb, the fraction 𝑓Gal (–), cross-yield ratios 𝑌Met1∕Met2

(

mmolmmol−1
)

, saturation or inhibition constants 𝐾Met (mmol L−1), the empirical limits Lacmax1 and Lacmax2 (mmol L−1), and the product formation 
yield 𝑌mAb𝑋

(

pg cell−1
)

.
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Appendix B.  Full names of glycans

The full names of the glycans in the current model are

• HM: High-mannose–type (oligomannose) N-glycan(s), i.e., the high-mannose family such as Man5–Man9.
• FA1G1: Core-fucosylated, mono-antennary, mono-galactosylated complex-type N-glycan.
• FA2G0: Core-fucosylated, bi-antennary, agalactosylated complex-type N-glycan.
• FA2G1: Core-fucosylated, bi-antennary, mono-galactosylated complex-type N-glycan.
• FA2G2: Core-fucosylated, bi-antennary, di-galactosylated (asialo) complex-type N-glycan.
• SIA: Sialylated N-glycan(s), i.e., glycans bearing terminal sialic acid residues.
• G0: Agalactosylated bi-antennary complex-type N-glycan (no core fucose).
• G2: Di-galactosylated bi-antennary complex-type N-glycan (no core fucose).
• Man5: Oligomannose-5 (high-mannose) N-glycan with five mannose residues.

Appendix C.  Kinetic equations for the NSD reactions

The kinetic equations for intracellular NSD synthesis reactions are

𝑟1 = 𝑉max,1
[Glnintra]

𝐾M1Gln + [Glnintra]
(C.1)

𝑟1sink = 𝑉max,1sink
[UDPGlcNAc]

(

𝐾M1sink + [UDPGlcNAc]
)

(

1 + [CMPNeu5Ac]
KI1sink

) (C.2)

𝑟2 = 𝑉max,2
[Glc]

𝐾M2Glc + [Glc]
(C.3)

𝑟2b = 𝑉max,2b
[UDPGal]

𝐾M2b,UDPGal

(

1 + [UDPGlcNAc]
𝐾I2A

+ [UDPGalNAc]
𝐾I2B

+ [UDPGlc]
𝐾I2C

+ [UDPGal]
𝐾I2D

)

+ [UDPGal]

(C.4)

𝑟3 = 𝑉max,3
[Glc]

𝐾M3Glc + [Glc]
(C.5)

𝑟4 = 𝑉max,4
[UDPGlcNAc]

𝐾M4UDPGlcNAc + [UDPGlcNAc]
(C.6)

𝑟5 =𝑉max,5
[UDPGlcNAc]

𝐾M5UDPGlcNAc
(

1+ [CMPNeu5Ac]
KI5

)

+[UDPGlcNAc]
(C.7)

𝑟6 = 𝑉max,6
[UDPGlc]

𝐾M6,UDPGlc

(

1 + [UDPGlcNAc]
𝐾I6A

+ [UDPGalNAc]
𝐾I6B

+ [UDPGal]
𝐾I6C

)

+ [UDPGlc]

(C.8)

𝑟6sink = 𝑉max,6sink
[UDPGal]

𝐾M6sink

(

1 + [UDPGlc]
KI6sink

)

+ [UDPGal]

[Gal]
[Gal] +𝐾regulator

(C.9)

𝑟7 = 𝑉max,7
[GDPMan]

(

𝐾M7GDPMan + [GDPMan]
)(

1 + [GDPFuc]
KI7

) (C.10)

𝑟7sink = 𝑉max,7sink
[GDPFuc]

𝐾M7sink + [GDPFuc]
(C.11)

where 𝑉max,𝑗
(

mmol L−1 h−1
) is the maximum turnover rate of reaction 𝑗; 𝐾𝑀𝑗comp  (mmol L−1) is the Michaelis constant of a component (metabolite or 

NSD) in reaction 𝑗; KI𝑗 (mmol L−1) is the corresponding inhibition constant; and 𝐾regulator (mmol L−1) is introduced so that the factor [Gal]
[Gal] +𝐾regulator

becomes zero when extracellular Gal is absent.
The intracellular glutamine concentration (mmol L−1) in Eq.  (C.1) is estimated through

Glnintra = 𝑓Gln [Gln],

where 𝑓Gln is a constant parameter to connect intracellular Gln concentration with its extracellular counterpart.
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The NSD synthesis reaction rates that depend on Urd or Gal are

𝑟𝑗Urd = 𝑉max,𝑗Urd
[Urd]

𝐾𝑀𝑗Urd + [Urd]
, 𝑗 ∈ {1, 2, 4, 6}, (C.12)

𝑟6Gal =
𝑉max,6Gal [Gal]

𝐾𝑀6Gal

(

1 + [UDPGal]
KI6D

+ [Gal]
KI6E

+ [Urd]
KI6F

)

+ [Gal]
. (C.13)

Additional intracellular fluxes for each NSD𝑖 are

𝑓hcp/lipid𝑖 =
[NSD𝑖]

𝐾TP,𝑖 + [NSD𝑖]
𝜈hcp/lipid𝑖 𝜇

𝑉cell
, (C.14)

𝑓precursor𝑖 =
[NSD𝑖]

𝐾TP,𝑖 + [NSD𝑖]
𝜈precursor𝑖 𝑞mAb

𝑉cell
, (C.15)

𝑓 glyc𝑖 =
[NSD𝑖]

𝐾TP,𝑖 + [NSD𝑖]
𝑟glyc𝑖 , (C.16)

where 𝐾TP,𝑖 (mmol L−1) is the transport protein saturation constant for NSD𝑖; 𝜈hcp∕lipid𝑖
(

mmol cell−1
) and 𝜈precursor𝑖  (mmol pg−1) are the stoichiomet-

ric requirements for host cell protein/glycolipid synthesis and precursor oligosaccharide assembly, respectively; 𝑉cell (L cell−1) is the specific cell 
volumeand the NSD𝑖 consumption rate in glycosylation reactions 𝑟glyc𝑖

(

mmol L−1 h−1
) is (Kotidis et al., 2019)

𝑟glyc𝑖 = velgolgi
(𝑉golgi

𝑉cell

)𝑁OS
∑

𝑗=1

{

𝜈𝑖,𝑗
[

𝑂𝑆𝑗
]

(𝑧 = 1)
}

(C.17)

velgolgi =
2 × 10−6𝑞mAb

60 MWmAb𝑉golgi
[

OS1
]

(𝑧 = 0)
(C.18)

where velgolgi
(

Golgi length min−1
) is the length-normalized transit velocity, 𝑉golgi

(

L cell−1
) is the Golgi volume, 𝑣𝑖,𝑗 is the number of NSD𝑖 molecules 

required for one oligosaccharide 𝑗 molecule, [OS𝑗 ](𝑧) (mmol L−1) is the oligosaccharide concentration at axial position 𝑧 (with 𝑧 = 0 at entry and 
𝑧 = 1 at exit), and MWmAb is the molecular weight of mAb

(

165 × 103 gmol−1
)

.

Appendix D.  Kinetic equations for glycosylation reactions

The kinetic equations for the glycosylation reactions in the Golgi apparatus are shown in Eqs. (D.1)–(D.3).

(i) Michaelis-Menten kinetics – used for enzymes Man I and Man II-catalyzed reactions 

𝑟𝑗 =
𝑘𝑓,𝑗

[

𝐸𝑗
][

OS𝑖
]

𝐾enz
𝑑,𝑖

(

1 +
∑𝑁𝐶

𝑘=1

[

OS𝑘
]

𝐾enz
𝑑,𝑘

) (D.1)

(ii) Sequential order Bi-Bi kinetics – used for enzymes GnT I, GnT II, and GalT-catalyzed reactions 

𝑟𝑗 =
𝑘𝑓,𝑗

[

𝐸𝑗
]

[Mn]
[

NSD𝑧
][

OS𝑖
]

𝐾enz
𝑑,Mn𝐾

enz
𝑑,𝑧 𝐾

enz
𝑑,𝑖

(

1 + [Mn]
𝐾enz
𝑑,Mn

+ [Mn]
𝐾enz
𝑑,Mn

[

NSD𝑧
]

𝐾enz
𝑑,𝑧

+ [Mn]
𝐾enz
𝑑,Mn

[

NSD𝑧
]

𝐾enz
𝑑,𝑧

∑𝑁C
𝑘=1
𝑘≠𝑖+1

[

OS𝑘
]

𝐾enz
𝑑,𝑘

+
[

Nuc𝑛
]

𝐾enz
𝑑,𝑛

[

OS𝑖+1
]

𝐾enz
𝑑,𝑖+1

+
[

Nuc𝑛
]

𝐾enz
𝑑,𝑛

)
(D.2)

(iii) Random-order Bi-Bi kinetics – used for enzymes FucT- and SiaT-catalyzed reactions 

𝑟𝑗 =
𝑘𝑓,𝑗

[

𝐸𝑗
][

NSD𝑧
][

OS𝑖
]

𝐾enz
𝑑,𝑧 𝐾

enz
𝑑,𝑖

(

1 +
[

NSD𝑧
]

𝐾enz
𝑑,𝑧

+
∑𝑁C

𝑘=1

[

OS𝑘
]

𝐾enz
𝑑,𝑘

+
[

NSD𝑧
]

𝐾enz
𝑑,𝑧

∑𝑁C
𝑘=1
𝑘≠𝑖+1

[

OS𝑘
]

𝐾enz
𝑑,𝑘

+
[

Nuc𝑛
]

𝐾enz
𝑑,𝑛

+
[

Nuc𝑛
]

𝐾enz
𝑑,𝑛

[

OS𝑖+1
]

𝐾enz
𝑑,𝑖+1

)
(D.3)

In these expressions, OS𝑖 and OS𝑖+1 are the reactant and product of reaction 𝑗, respectively; the set {OS𝑘 ∣ 𝑘 = 1, 2,… , 𝑁C} contains every 
oligosaccharide that can bind to the enzyme 𝐸𝑗 ; 𝐾enz

𝑑,𝑖  and 𝐾enz
𝑑,𝑘  (mmol L−1) are the dissociation constants for OS𝑖 and OS𝑘 bound to the enzyme 

enz ∈ {Man I,Man II,GnT I,GnT II,GalT, FucT, SiaT}, respectively; 𝐾enz
𝑑,𝑧  and 𝐾enz

𝑑,𝑛  (mmol L−1) are the dissociation constants for nucleotide sugar 
donor NSD𝑧 and nucleotide Nuc𝑛 bound to the enzyme enz, where 𝑛 ∈ {1, 2, 3, 4}; 𝐾enz

𝑑,Mn refers to the dissociation constants for manganese bound to 
enzymes enz ∈ {GnT I,GnT II,GalT}; [⋅] denotes the relevant intracellular concentration (mmol L−1); and 𝑘𝑓,𝑗

(

min−1
) is the kinetic rate constant of 

reaction 𝑗.
In Eqs. (D.2)–(D.3), the NSD concentration inside the Golgi apparatus, [NSD𝑧

]

, is assumed to equal 20 times of the corresponding cytosolic 
concentration, [NSD𝑖

]

, computed from the NSD synthesis model (Kotidis et al., 2019). The nucleotide concentration inside the Golgi apparatus, 
[

Nuc𝑛
]

, is taken to be saturating and is therefore fixed at the constant values reported in Table S1 (Kotidis et al., 2019).
The catalytic rate constant 𝑘𝑓,𝑗 follows the pH-dependent expression (Villiger et al., 2016):

𝑘𝑓,𝑗 = 𝑘max
𝑓,𝑗 exp

⎛

⎜

⎜

⎜

⎝

− 1
2

⎛

⎜

⎜

⎝

pHgolgi − pHgolgiopt

𝜔𝑓,𝑗

⎞

⎟

⎟

⎠

2
⎞

⎟

⎟

⎟

⎠

, (D.4)
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with the intra-Golgi pH estimated from the ammonia-based buffer relation

pHgolgi = pKgolgi𝐴 + log
⎛

⎜

⎜

⎝

[Amm]

𝑁golgi
𝐴 − [Amm]

⎞

⎟

⎟

⎠

, (D.5)

where 𝑘max
𝑓,𝑗

(

min−1
) is the maximal kinetic rate, pHgolgiopt  is the optimal pH for enzyme 𝑗, 𝜔𝑓,𝑗 is a dimensionless width parameter, pKgolgi𝐴  is the 

apparent acid dissociation parameter, and 𝑁golgi
𝐴  is a fitted buffer capacity.

Each enzyme concentration along the Golgi cisternae follows a Gaussian (bell-shaped) profile:
[

𝐸𝑗
]

(𝑧) = 𝐸𝑗,max exp

[

− 1
2

( 𝑧 − 𝑧𝑗,max
𝜎𝑗

)2
]

, (D.6)

where 𝐸𝑗,max (mmol L−1) is the peak concentration, 𝑧𝑗,max is the axial position of this peak (scaled 0–1 from cis to trans), and 𝜎𝑗 is the standard 
deviation that characterizes enzyme dispersion along the Golgi stack.
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