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N-glycosylation is a critical quality attribute of monoclonal antibodies (mAbs), the dominant class of biopharma-
ceuticals. Controlling glycosylation remains difficult due to intrinsic pathway complexity, limited online mea-
surements, and a lack of tailored control strategies. This work applies an adaptive nonlinear model predictive
control (ANMPC) framework to a fed-batch mAb production process, using a multiscale model that links extracel-
lular conditions to intracellular Golgi reactions to predict glycan profiles. Model parameters are updated online
as new measurements arrive, after which a shrinking-horizon optimization computes the control inputs; only the
first control move is implemented each cycle. Case studies show that, with a minimal day-1 galactose excitation,
ANMPC mitigates model-plant mismatch and achieves up to 130% and 96% higher performance than open-loop
optimization and state NMPC, respectively. Under more realistic conditions (partial measurement availability
and longer preparation time), ANMPC maintains comparable performance, indicating robustness to practical
limitations. Overall, the results demonstrate that ANMPC can actively shape glycan distributions in silico and

offers a viable path toward closed-loop control of mAb glycosylation.

1. Introduction

Monoclonal antibodies (mAbs) are among the highest-revenue bio-
pharmaceuticals, representing US $217 billion of the global biopharma-
ceutical market (US $343 billion) in 2021 (Walsh & Walsh, 2022). They
are widely administered to treat cancer, infectious diseases, and inflam-
matory disorders (Mullard, 2021). The N-linked glycans attached to the
Fc region of a mADb profoundly influence its bioactivity and therapeutic
efficacy (Jefferis, 2009; Majewska et al., 2020). Because the glycan dis-
tribution must remain within tight limits, regulatory guidelines classify
glycosylation as a critical quality attribute (CQA) for mAb products (Ba-
tra & Rathore, 2016). Variations in core fucosylation and terminal galac-
tosylation, for example, directly modulate antibody-dependent cellular
cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC)-the
primary mechanisms through which mAbs destroy target cells (James,
2005; Matsumiya et al., 2007; Sha et al., 2016). Conversely, an increased
proportion of high-mannose glycans accelerates serum clearance and re-
duces therapeutic potency (Goetze et al., 2011).

Although essential for mAb bioactivity and therapeutic effi-
cacy, achieving a consistent batch-to-batch glycan profile remains a
formidable challenge for biopharmaceutical manufacturers (Federici
et al., 2013; McCamish & Woollett, 2013; Michaela M. et al., 2014a).
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Chinese hamster ovary (CHO) cells are the industry workhorse for mAb
production because they perform complex post-translational modifica-
tions and secrete proteins that are both human-compatible and biolog-
ically active (Kotidis et al., 2019). The CHO-based production work-
flow comprises a sequence of template-driven steps—DNA transcrip-
tion, mRNA translation—followed by protein folding and glycosylation,
which, unlike the earlier stages, do not rely on a nucleic acid template
(Michaela M. et al., 2014b; Spahn et al., 2016). Instead, glycosylation
emerges from a non-template enzymatic network of thousands of cou-
pled reactions in the endoplasmic reticulum and Golgi apparatus, all
modulated by diverse intracellular factors (Kornfeld & Kornfeld, 1985).
Consequently, glycan biosynthesis and conjugation to the antibody fre-
quently yield a heterogeneous mixture of glycoforms (Michaela M. et al.,
2014b). Overall, the inherent complexity of the glycosylation process,
the lack of robust real-time glycan analytics, and the absence of dedi-
cated control strategies have so far limited the implementation of online
glycosylation control (Michaela M. et al., 2014b).

Most published control strategies for mAb bioprocesses have targeted
the productivity of mAb or the concentrations of extracellular metabo-
lites (e.g., glucose, glutamine, lactate) rather than the glycan profile
itself (Dan et al., 2025; Dewasme et al., 2015; Lu et al., 2013; Sarna
et al., 2023; Sauer et al., 2000). The emphasis on productivity reflects
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\begin {align}&\frac {dV}{dt}=F_{\text {in}}-F_{\text {out}} \label {eq:1} \\ &\frac {d(VX)}{dt}=\mu VX_{\text {v}}-F_{\text {out}} X \label {eq:2} \\ &\frac {d(VX_{\text {v}})}{dt}=\left (\mu - \mu _{\text {death}}\right )VX_{\text {v}} - F_{\text {out}} X_{\text {v}} \label {eq:3}\end {align}


$V$


$\mathrm {L}$


$F_{\text {in}}$


$F_{\text {out}}$


$\mathrm {L}\,\mathrm {h}^{-1}$


$X$


$X_{\text {v}}$


$\mathrm {cells}\,\mathrm {L}^{-1}$


$\mu $


$\mu _{\text {death}}$


$\mathrm {h}^{-1}$


\begin {equation}\text {viability}=\frac {X_\text {v}}{X} \label {eq:4}\end {equation}


$\mu $


$\mu _{\text {death}}$


\begin {equation}\mu =\mu _\text {max}f_\text {lim}f_\text {inh} \label {eqnA1}\end {equation}


\begin {equation}f_{\text {inh}}=\frac {\text {KI}_\text {Amm}}{[\text {Amm}]+\text {KI}_\text {Amm}}\frac {\text {KI}_\text {Lac}}{[\text {Lac}]+\text {KI}_\text {Lac}}\frac {\text {KI}_\text {Urd}}{[\text {Urd}]+\text {KI}_\text {Urd}} \label {eqnA4}\end {equation}


\begin {equation}\frac {d(V[\text {Met}])}{dt}=F_{\text {in}}[\text {Met}]_{\text {in}}-F_\text {out}[\text {Met}]+q_\text {Met}VX_\text {v} \label {eq:9}\end {equation}


$[\text {Met}]_{\text {in}}$


$[\text {Met}]$


$\si {\milli \gram \per \liter }$


$\text {mAb}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$q_{\text {Met}}$


$\si {\pico \gram \per \cell \per \hour }$


$\text {mAb}$


$\si {\milli \mole \per \cell \per \hour }$


$\text {Amm}$


$\text {Asn}$


$\text {Asp}$


$\text {Glc}$


$\text {Gal}$


$\text {Gln}$


$\text {Glu}$


$\text {Lac}$


$\text {Urd}$


\begin {equation}q_\text {Glc}=\left (-\frac {\mu }{Y_{X_\text {Glc}}}-m_\text {Glc}\right )\left (\frac {K_{C_\text {Gal}}}{K_{C_\text {Gal}}+[\text {Gal}]}\right )^{\!\!n_\text {Gal}} \label {eqnA5}\end {equation}


\begin {equation}q_\text {mAb}=Y_{\text {mAb}_\text {X}} \mu +m_\text {mAb} \label {eqnA15}\end {equation}


$\text {GLY}_{i}$


\begin {equation}\frac {d(V [\text {GLY}_{i}^\text {extra}])}{dt}=-F_{\text {out}} [\text {GLY}_{i}^\text {extra}]+V q_\text {mAb} X_\text {v} Y_{i}^\text {intra} \label {eq:21}\end {equation}


$[\text {GLY}_i^{\text {extra}}]$


$\bigl (\si {\milli \gram \per \liter }\bigr )$


$\text {GLY}_i$


$Y_i^{\text {intra}} = [\text {GLY}_i^{\text {intra}}]/[\text {mAb}^{\text {intra}}]$


$[\text {GLY}_i^{\text {intra}}]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$[\text {mAb}^{\text {intra}}]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$\qty {94}{\micro \mole \per \liter }$


$Y_i^{\text {extra}} = [\text {GLY}_i^{\text {extra}}]/[\text {mAb}]$


$N_{\text {R1}}$


$\nu ^{\text {nsd}}$


$i$


$(i=1,\dots ,N_{\text {NSD}}=7)$


\begin {equation}\begin {split} \frac {d([\text {NSD}_{i}^\text {intra}])}{dt}=& \sum _{j=1}^{N_{R1}} {\nu _{i,j}^\text {nsd} r_j^\text {nsd}}-f_{\text {NSD}_{i}}^\text {hcp/lipid}-f_{\text {NSD}_{i} }^\text {precursor}\\ & -f_{\text {NSD}_i}^\text {glyc}, \quad i=1, 2, \dots , N_\text {NSD} \end {split} \label {eq:22}\end {equation}


$[\text {NSD}_i^{\text {intra}}]$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$i$


$r_j^{\text {nsd}}$


$\bigl (\si {\milli \mole \per \liter \per \hour }\bigr )$


$j$


$f_{\text {NSD}_i}^{\text {hcp}/\text {lipid}}$


$f_{\text {NSD}_i}^{\text {precursor}}$


$f_{\text {NSD}_i}^{\text {glyc}}$


$\bigl (\si {\milli \mole \per \liter \per \hour }\bigr )$


\begin {equation}\label {eqnC1} r_{1}=V_\text {max,1}\frac {[\text {Gln}_\text {intra}]}{K_{\text {M1}_\text {Gln}}+[\text {Gln}_\text {intra}]}\end {equation}


\begin {equation}\text {vel}_\text {golgi}=\frac {2 \times 10^{-6}q_\text {mAb}}{60 ~ \text {MW}_\text {mAb} V_\text {golgi} \left [\text {OS}_1\right ](z=0)} \label {eqnC18}\end {equation}


$\text {OS}_i$


\begin {equation}\frac {\partial {\left [\text {OS}_i\right ]}}{\partial {t}}=-\text {vel}_\text {golgi}\frac {\partial {\left [\text {OS}_i\right ]}}{\partial {z}}+\sum _{j=1}^{N_{R2}} \nu _{i,j} r_j, i=1,\cdots {},N_\text {OS} \label {eq:41}\end {equation}


$\left [\text {OS}_i\right ]$


$\bigl (\si {\micro \mole \per \liter }\bigr )$


$\text {OS}_i$


$r_j$


$\bigl (\si {\micro \mole \per \liter \per \minute }\bigr )$


$j$


$\nu _{i,j}$


$\text {OS}_i$


$j$


$N_{R2}$


$33$


$43$


$r_j$


\begin {align}\label {eqnD1} r_{j}=\frac {k_{f,j} \left [E_{j}\right ] \left [\text {OS}_{i}\right ]}{K_{d,i}^{\text {enz}} \left (1+\sum _{k=1}^{NC} \frac {\left [\text {OS}_{k}\right ]}{K_{d,k}^{\text {enz}}}\right )}\end {align}


\begin {align}\label {eqnD2} r_j &= \frac { k_{f,j}\left [E_j\right ][\text {Mn}]\left [\text {NSD}_z\right ]\left [\text {OS}_i\right ] }{ K_{d,\text {Mn}}^{\text {enz}}K_{d,z}^{\text {enz}}K_{d,i}^{\text {enz}} \Bigl ( 1 + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}} + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}}\frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} + \frac {[\text {Mn}]}{K_{d,\text {Mn}}^{\text {enz}}}\frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} \sum _{\substack {k=1\\ k\ne i+1}}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}}\frac {\left [\text {OS}_{i+1}\right ]}{K_{d,i+1}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} \Bigr ) }\end {align}


\begin {align}\label {eqnD3} r_j &= \frac {k_{f,j}\left [E_j\right ]\left [\text {NSD}_z\right ]\left [\text {OS}_i\right ]} {K_{d,z}^{\text {enz}}K_{d,i}^{\text {enz}} \Bigl ( 1 + \frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} + \sum _{k=1}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {NSD}_z\right ]}{K_{d,z}^{\text {enz}}} \sum _{\substack {k=1\\ k\ne i+1}}^{N_{\text {C}}} \frac {\left [\text {OS}_k\right ]}{K_{d,k}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} + \frac {\left [\text {Nuc}_n\right ]}{K_{d,n}^{\text {enz}}} \frac {\left [\text {OS}_{i+1}\right ]}{K_{d,i+1}^{\text {enz}}} \Bigr ) }\end {align}


\begin {equation}\left [E_j\right ](z) = E_{j,\text {max}} \exp \!\left [ -\tfrac {1}{2}\! \left ( \frac {z - z_{j,\text {max}}}{\sigma _j} \right )^{\!2} \right ], \label {eqnD6}\end {equation}


$T$


$\Delta t_{\text {feed}}$


$\tau = T/N$


$N$


$t = T$


\begin {equation}\text {GI}(T) = [\text {FA2G1}](T) + 2\,[\text {FA2G2}](T), \label {Xeqn9}\end {equation}


$u$


$x$


\begin {equation}u_{\text {lb}} \le u \le u_{\text {ub}}, \qquad x_{\text {lb}} \le x \le x_{\text {ub}}. \label {Xeqn10}\end {equation}


$F_s$


$s=1,\dots ,S$


$0 \le S \le 3$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


\begin {align}\max _{x(t),\,u(t)}\quad & \text {GI} (T) \\ \textrm {s.t.}\quad & x(t)=\text {glyco}\big (u(t),p\big ),\quad t\in [0,T], \\ & x(0)=x_{0}, \\ & x_{\text {lb}}^{\text {path}} \le x(t) \le x_{\text {ub}}^{\text {path}},\quad t\in (0,T), \\ & x_{\text {lb}}^{\text {terminal}} \le x(T) \le x_{\text {ub}}^{\text {terminal}}, \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [0,T].\end {align}


$\text {glyco}(u,p)$


$p$


$x_{0}$


$x^{\text {path}}$


$x^{\text {terminal}}$


$u_{\text {lb}}(t)$


$u_{\text {ub}}(t)$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\Delta t_{\text {prep}}$


$t_k$


$k$


$k$


\begin {align}\max _{x(t),\,u(t)}\quad & \text {GI}(T) \\ \textrm {s.t.}\quad & x(t)=\text {glyco}\big (u(t),\hat {p}(k)\big ),\quad t\in [0,T], \\ & x(k)=\hat {x}(k), \\ & x_{\text {lb}}^{\text {path}} \le x(t) \le x_{\text {ub}}^{\text {path}},\quad t\in (0,T), \\ & x_{\text {lb}}^{\text {terminal}} \le x(T) \le x_{\text {ub}}^{\text {terminal}}, \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [t_k,T].\end {align}


$p$


$\hat {p}(k)$


$k$


$\hat {x}(k)$


$[t_k,\,T]$


$\hat {p}(k)$


$\hat {x}(k)$


$k$


$\hat {p}(0)$


$\text {DO-}k$


$\text {DO-}0$


$k$


\begin {flalign}\max _{\substack {x(t),\,u(t),\\ \overline {w},\,\underline {w},\, \overline {v},\,\underline {v}}} &\mathrm {GI}(T) - \int _{t_k}^{T}\!\rho _w^{\top } \bigl (\overline {w}+\underline {w}\bigr ) dt - \rho _v^{\top } \bigl (\overline {v}+\underline {v}\bigr ) && \\ \textrm {s.t.} \quad &\text {Eqs.\,(18)--(19)} && \notag \\ & x_{\text {lb}}^{\text {hard,path}} \le x^{\text {hard}}(t) \le x_{\text {ub}}^{\text {hard,path}},\quad t\in (0,T) && \\ & x_{\text {lb}}^{\text {hard,terminal}} \le x^{\text {hard}}(T) \le x_{\text {ub}}^{\text {hard,terminal}} && \\ & x_{\text {lb}}^{\text {soft,path}} - \underline {w} \le x^{\text {soft}}(t) \le x_{\text {ub}}^{\text {soft,path}} + \overline {w},\quad t\in (0,T) && \\ & x_{\text {lb}}^{\text {soft,terminal}} - \underline {v} \le x^{\text {soft}}(T) \le x_{\text {ub}}^{\text {soft,terminal}} + \overline {v} && \\ & \overline {w},\; \underline {w},\; \overline {v},\; \underline {v} \ge 0 && \\ & u_{\text {lb}}(t) \le u(t) \le u_{\text {ub}}(t),\quad t\in [t_k,T] &&\end {flalign}


$\rho _{w}$


$\rho _{v}$


$\overline {w}(t)$


$\underline {w}(t)$


$\overline {v}$


$\underline {v}$


$(\text {soft-DO-}k)$


$(\text {DO-}k)$


$\sim $


$100$


$k$


$t_k^{\text {sample}}$


$k \ge 1$


$k$


\begin {align}\min _{{\hat p(k),\,x(t)}}\; \sum _{j=1}^{k}& \bigl (y(j)-\hat y(j)\bigr )^{\top } V_{\epsilon }(j)^{-1} \bigl (y(j)-\hat y(j)\bigr )\\ & + \bigl (\hat p(k)-\hat p(0)\bigr )^{\top } P\,\bigl (\hat p(k)-\hat p(0)\bigr )\nonumber \\ \textrm {s.t.}\; x(t)&=\text {glyco} \big (u(t),\hat p(k)\big ),\quad t\in \left [0,\,t_{k}^{\text {sample}}\right ], \\ x(0)&=x_{0}, \\ p_{\text {lb}} &\le \hat p(k) \le p_{\text {ub}}.\end {align}


$y(j)$


$\hat {y}(j)$


$V_{\epsilon }(j)$


$P$


$\hat {p}(0)$


$P=V_{p}^{-1}$


$P=0$


$[0,T]$


$t_{k}^{\text {sample}}$


$k$


\begin {align}\min _{{\hat p(k),\,x(t)}}\; & \text {Eq.\,(30)} \notag \\ \text {s.t.}\; & x(t)=\text {glyco}\big (u(t),\hat p(k)\big ),\quad t\in [0,\,T], \\ & \text {Eqs.~(32) and (33)}, \notag \\ & x_{\text {lb}} \le x(t) \le x_{\text {ub}},\quad t\in [0,\,T].\end {align}


$\bigl (P = V_{p}^{-1}\ \text {in Eq.~(30)}\bigr )$


$\bigl (P = 0\ \text {in Eq.~(30)}\bigr )$


$\ln \hat {p}(k)$


$\hat {p}(k)$


$Y_i^{\text {extra}}$


$Y_i^{\text {intra}}$


$\mathcal {T}$


$Y_i^{\text {extra}}$


$\mathcal {T}$


$100$


$[0,T]$


$\ln {p}^{*}$


$V_{\ln ({p})}$


$\ln {p}^{*}$


$\ln \hat {{p}}(0)$


$50\%$


$V_{\ln ({p})}$


$\ln \hat {{p}}(0)$


$V_{\ln ({p})}$


$2.30$


$\mathrm {GHz}$


$16$


$\mathrm {GB}$


$15$


$2$


$\mathrm {h}$


$\Delta t_{\text {prep}}=\SI {2}{\hour }$


$\Delta t_{\text {prep}}=\SI {4}{\hour }$


$42\%$


$64\%$


$0.3\%$


$20\%$


$\text {UDPGal}$


$\text {UDPGal}$


$V_{\text {Urd}}$


$0$


$\mathrm {mL}$


$20$


$\mathrm {mL}$


$0.014$


$\mathrm {mL}$


$405$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$1$


$\mathrm {mL}$


$350$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$V_{\text {Gal}}$


$15$


$\mathrm {mL}$


$3$


$\mathrm {a}$


$58$


$\mathrm {mL}$


$4$


$\mathrm {,}$


$V_{\text {Gal}}$


$10$


$\mathrm {mL}$


$V_{\text {Gal}}$


$5$


$\mathrm {mL}$


$\,p^{*}$


$\,p^{*}$


$\hat {p}(0)$


$\hat {p}(0)$


\begin {equation}\begin {aligned} \mathrm {Merit}=\mathrm {GI}(T) -\rho _{v,1}\max \bigl (0,\,60-\text {viability}\bigr ) - \rho _{v,2}\max \bigl (0,\,Y_{\text {Man5}}^{\text {extra}}-5\bigr ), \end {aligned} \label {Xeqn11}\end {equation}


$\rho _{v}$


$k$


$\mathrm {GI}$


$\text {FA2G2}$


$\text {FA2G1}$


$1\%$


$30\%$


$\mathrm {GI}$


$247$


$\mathrm {mg}\,\mathrm {L}^{-1}$


$^{-1}$


$^{-1}$


\begin {equation}\mu _{\text {death}}=\mu _{\text {death,max}}\left (\frac {[\text {Amm}]}{[\text {Amm}]+K_{\text {d,Amm}}}+\frac {[\text {Urd}]}{[\text {Urd}]+K_{\text {d,Urd}}}\right ) \label {eq:6}\end {equation}


\begin {equation}f_{\text {lim}}=\frac {[\text {Glc}]}{[\text {Glc}]+K_{\text {Glc}}}\frac {[\text {Asn}]}{[\text {Asn}]+K_{\text {Asn}}} \label {eq:7}\end {equation}


$\mu _\text {max}$


$\mu _\text {death, max}$


$\mathrm {h}^{-1}$


$f_{\text {lim}}$


$f_{\text {inh}}$


$K_{\text {Glc}}$


$K_{\text {Asn}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$K_\text {d,Amm}$


$K_\text {d,Urd}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$K_\text {I,Amm}$


$K_\text {I,Lac}$


$K_\text {I,Urd}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$[\text {Glc}]$


$[\text {Asn}]$


$[\text {Amm}]$


$[\text {Lac}]$


$[\text {Urd}]$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


\begin {equation}n_\text {Gal}=1-f_\text {Gal}\frac {q_\text {Gal}}{q_\text {Glc}} \label {eq:11}\end {equation}


\begin {equation}q_\text {Gln}=\frac {\mu }{Y_{X_\text {Gln}}}+q_\text {Amm} Y_\text {Gln/Amm} \label {eq:12}\end {equation}


\begin {equation}\begin {split} q_\text {Lac}= \left (\frac {\mu }{Y_{X_\text {Lac}}}-Y_\text {Lac/Glc} \, q_\text {Glc}\right )\frac {\text {Lac}_\text {max1}-[\text {Lac}]}{\text {Lac}_\text {max1}} +m_\text {Lac}\frac {\text {Lac}_\text {max2}-[\text {Lac}]}{\text {Lac}_\text {max2}} \end {split} \label {eq:13}\end {equation}


\begin {equation}q_\text {Amm}=\frac {\mu }{Y_{X_\text {Amm}}}-Y_\text {Amm/Urd} \, q_\text {Urd} \label {eq:14}\end {equation}


\begin {equation}q_\text {Glu}=-\frac {\mu }{Y_{X_\text {Glu}}} \label {eq:15}\end {equation}


\begin {equation}q_\text {Gal}=-\frac {\mu }{Y_{X_\text {Gal}}}\frac {[\text {Gal}]}{[\text {Gal}]+K_\text {Gal}} \label {eq:16}\end {equation}


\begin {equation}q_\text {Urd}=\frac {\mu }{Y_{X_\text {Urd}}}\frac {[\text {Urd}]}{[\text {Urd}]+K_\text {Urd}} \label {eq:17}\end {equation}


\begin {equation}q_\text {Asn}=-\frac {\mu }{Y_{X_\text {Asn}}}-Y_\text {Asn/Asp} \, q_\text {Asp} \label {eq:18}\end {equation}


\begin {equation}q_\text {Asp}=-\frac {\mu }{Y_{X_\text {Asp}}}-Y_\text {Asp/Asn} \, q_\text {Asn} \label {eq:19}\end {equation}


$Y_{X_{\text {Met}}}$


$\bigl (\si {\cell \per \milli \mole }\bigr )$


$m_{\text {Met}}$


$\bigl (\si {\milli \mole \per \cell \per \hour }\bigr )$


$\text {mAb}$


$m_{\text {mAb}}$


$\bigl (\si {\pico \gram \per \cell \per \hour }\bigr )$


$\text {mAb}$


$f_{\text {Gal}}$


$Y_{\text {Met1}/\text {Met2}}$


$\bigl (\si {\milli \mole \per \milli \mole }\bigr )$


$K_{\text {Met}}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$\text {Lac}_{\text {max}1}$


$\text {Lac}_{\text {max}2}$


$\mathrm {mmol}\,\mathrm {L}^{-1}$


$Y_{\text {mAb}_X}$


$\bigl (\si {\pico \gram \per \cell }\bigr )$


\begin {equation}r_{1_\text {sink}}= V_{\text {max},1_\text {sink}} \frac {[\text {UDPGlcNAc}]}{\left (K_{\text {M1}_\text {sink}}+[\text {UDPGlcNAc}]\right ) \left (1+\frac {[\text {CMPNeu5Ac}]}{\text {KI}_{1_\text {sink}}}\right )} \label {eq:24}\end {equation}


\begin {equation}r_{2}=V_\text {max,2}\frac {[\text {Glc}]}{K_{\text {M2}_\text {Glc}}+[\text {Glc}]} \label {eq:25}\end {equation}


\begin {equation}r_{\mathrm {2b}} = V_{\max ,\mathrm {2b}} \frac {[\mathrm {UDPGal}]} {K_{\mathrm {M2b,UDPGal}} \Biggl ( 1 + \frac {[\mathrm {UDPGlcNAc}]}{K_{\mathrm {I2A}}} + \frac {[\mathrm {UDPGalNAc}]}{K_{\mathrm {I2B}}} + \frac {[\mathrm {UDPGlc}]}{K_{\mathrm {I2C}}} + \frac {[\mathrm {UDPGal}]}{K_{\mathrm {I2D}}} \Biggr ) + [\mathrm {UDPGal}]} \label {eq:26}\end {equation}


\begin {equation}r_{3}=V_\text {max,3}\frac {[\text {Glc}]}{K_{\text {M3}_\text {Glc}}+[\text {Glc}]} \label {eq:27}\end {equation}


\begin {equation}r_{4}=V_\text {max,4}\frac {[\text {UDPGlcNAc}]}{K_{\text {M4}_\text {UDPGlcNAc}}+[\text {UDPGlcNAc}]} \label {eq:28}\end {equation}


\begin {equation}r_{5}=\!V_\text {max,5}\frac {[\text {UDPGlcNAc}]}{K_{\text {M5}_\text {UDPGlcNAc}} \left (1\!+\!\frac {[\text {CMPNeu5Ac}]}{\text {KI}_{5}}\right )\!+\![\text {UDPGlcNAc}]} \label {eq:29}\end {equation}


\begin {equation}r_{6} = V_{\max ,6} \frac {[\mathrm {UDPGlc}]} {K_{\mathrm {M6,UDPGlc}} \Biggl ( 1 + \frac {[\mathrm {UDPGlcNAc}]}{K_{\mathrm {I6A}}} + \frac {[\mathrm {UDPGalNAc}]}{K_{\mathrm {I6B}}} + \frac {[\mathrm {UDPGal}]}{K_{\mathrm {I6C}}} \Biggr ) + [\mathrm {UDPGlc}]} \label {eq:30}\end {equation}


\begin {equation}r_{6_\text {sink}}= V_{\text {max},6_\text {sink}} \frac {[\text {UDPGal}]}{K_{\text {M6}_\text {sink}}\left (1+\frac {[\text {UDPGlc}]}{\text {KI}_{6_\text {sink}}}\right )+[\text {UDPGal}]} \frac {[\text {Gal}]}{[\text {Gal}] + K_\text {regulator}} \label {eq:31}\end {equation}


\begin {equation}r_{7}=V_\text {max,7}\frac {[\text {GDPMan}]}{\left (K_{\text {M7}_\text {GDPMan}}+[\text {GDPMan}]\right ) \left (1 + \frac {[\text {GDPFuc}]}{\text {KI}_{7}}\right )} \label {eq:32}\end {equation}


\begin {equation}r_{7_\text {sink}}=V_{\text {max},7_\text {sink}}\frac {[\text {GDPFuc}]}{K_{\text {M7}_\text {sink}}+[\text {GDPFuc}]} \label {eq:33}\end {equation}
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\begin {equation*}\text {Gln}_\text {intra} = f_\text {Gln} \, [\text {Gln}],\end {equation*}


$f_{\text {Gln}}$


\begin {equation}r_{j_\text {Urd}}=V_{\text {max}, j_\text {Urd}}\frac {[\text {Urd}]}{K_{Mj_\text {Urd}}+[\text {Urd}]},\quad j\in \{1, 2, 4, 6\}, \label {eq:34}\end {equation}


\begin {equation}r_{6_\text {Gal}}= \frac {V_{\text {max},6_\text {Gal}} [\text {Gal}]}{K_{M6_\text {Gal}}\Bigl (1+\frac {[\text {UDPGal}]}{\text {KI}_\text {6D}}+\frac {[\text {Gal}]}{\text {KI}_\text {6E}}+\frac {[\text {Urd}]}{\text {KI}_\text {6F}}\Bigr )+[\text {Gal}]}. \label {eq:35}\end {equation}
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\begin {equation}f_{i}^\text {precursor}=\frac {[\text {NSD}_{i}]}{K_{\text {TP},i}+[\text {NSD}_{i}]}\frac {\nu _{i}^\text {precursor} q_\text {mAb}}{V_\text {cell}}, \label {eq:37}\end {equation}


\begin {equation}f_{i}^\text {glyc}=\frac {[\text {NSD}_{i}]}{K_{\text {TP},i}+[\text {NSD}_{i}]}r_{i}^\text {glyc}, \label {eq:38}\end {equation}
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the historical absence of mechanistic models that couple extracellular
conditions to the intracellular glycosylation network-yet maximizing
titer (mAb concentration) can be at odds with meeting a specified glycan
distribution. Seeking to reconcile this tradeoff, Wong et al. (2005) inves-
tigated how dynamic feed profiles influence N-glycan quality, but their
policies were still framed in terms of holding nutrient concentrations at
preset levels rather than directly steering the glycosylation state space.
Reference (Zupke et al., 2015) introduced a model predictive control
(MPC) scheme to maintain a target high-mannose (HM) fraction, but the
underlying model only comprised a single manipulated variable and a
single glycoform, limiting its ability to balance yield enhancement with
multi-attribute quality specifications.

The emergence of multiscale mechanistic models that explicitly link
extracellular metabolism to intracellular glycosylation has enabled high-
fidelity open-loop optimizations capable of simultaneously boosting
product titer and shaping the glycan profile (Kappatou et al., 2020; Ko-
tidis et al., 2019). Reference (Kotidis et al., 2019) validated their opti-
mization experimentally, achieving an over 90% increase in the desired
glycoform and underscoring the promise of this approach. Nevertheless,
both studies generated feed trajectories offline; such open-loop policies
are vulnerable to model-plant mismatch and unanticipated disturbances
(Rawlings et al., 2017). Embedding the resulting partial-differential-
algebraic equation (PDAE) models directly in a nonlinear MPC (NMPC)
framework remains computationally prohibitive-a single optimization
may require 20 h (Ma et al., 2025) to 40 h (Kappatou et al., 2020). To
reduce this burden, several groups have linearized the multiscale model
into a process-gain matrix and applied the resulting controller in fed-
batch (Luo et al., 2023) and perfusion bioreactors (Maloney, 2021), but
such linearizations are accurate only near the operating point used for
their construction (Michaela M. et al., 2014b), limiting their robustness
for the wide excursions typical of industrial fed-batch or disturbance-
prone perfusion processes.

A second challenge is parameter identification for the multiscale
model. Adaptive MPC techniques—updating model parameters online
from process data-have been used to address model uncertainty with
promising results (Hajizadeh et al., 2018; Jabarivelisdeh et al., 2020;
Pickhardt, 2000). Motivated by these gaps, we develop an adaptive
NMPC (ANMPC) controller for a fed-batch mAb bioreactor using the
multiscale PDAE glycosylation model of Kotidis et al. (2019). At each
sampling time, ANMPC updates model parameters using all available
measurements and then recomputes the control moves via model-based
optimization. To solve the resulting dynamic optimization and param-
eter estimation problems efficiently and robustly, we employ control-
vector parameterization (CVP) with embedded simulations accelerated
by a parallel quasi-steady-state (QSS) approach proposed in our previous
work (Ma et al., 2025). Case studies initialized from multiple parameter
sets compare open-loop optimization, state NMPC, and ANMPC; AN-
MPC mitigates model-plant mismatch and achieves up to 130% higher
penalized merit than the alternatives. We further evaluate ANMPC un-
der more realistic measurement availability (no NSD measurements) and
with a 4 h analytics/actuation delay, observing no material performance
loss, which demonstrates robustness.

In what follows, Section 2 describes the multiscale glycosylation
model; Section 3 formulates the control problem; Section 4 presents the
ANMPC framework; Section 5 examines actuator choices and demon-
strates the algorithm through case studies; and Section 6 concludes.

2. Glycosylation model

Fig. 1 illustrates the three-level multiscale glycosylation model em-
ployed in this work:

(1) Bioreactor-level cell culture model — predicts viable cell density, ex-
tracellular metabolite concentrations, specific productivity, and the
concentrations of secreted mAb.
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(2) Intracellular nucleotide sugar donor (NSD) synthesis model — con-
verts the extracellular metabolite information from the culture
model into intracellular NSD using a detailed synthesis pathway and
associated rate laws.

(3) Golgi-level glycosylation reaction model — receives the NSDs as sugar
donors and computes the fractional distribution of glycoforms leav-
ing the secretory pathway via a network of enzyme-catalyzed reac-
tions coupled with glycoprotein transport equations.

The overall structure follows Kotidis et al. (2019) and is extended to in-
corporate manganese- and ammonia-dependent kinetics reported by Vil-
liger et al. (2016). Information propagates downstream from the extra-
cellular environment through the NSD synthesis layer and to the Golgi
reaction network, and the resulting NSD consumption and glycoform
flux then feeds back to the NSD synthesis model and cell culture model-
closing the loop and capturing the two-way coupling between reactor
conditions and intracellular glycosylation.

The multiscale model is formulated as a large-scale PDAE system that
couples 30 ordinary differential equations (ODEs), 34 partial differential
equations (PDEs), and numerous highly nonlinear algebraic relations.
The remainder of this section introduces each submodel in turn.

2.1. Cell culture model

At the reactor scale, we employ an unstructured differential algebraic
equation (DAE) model to describe cell growth, death, and metabolism
(Kontoravdi et al., 2010; Kotidis et al., 2019). The dynamic balances for
cell culture volume and cell populations are

dVv

ar = Fin — Four )
dVx
(dt ) =uVX,— FouX (@3]
dlV X,
dt == (” - ”death)VXv — FoutXy 3

where V' (L) is the cell culture volume, F, and F,,, (Lh™!) are the inlet
and outlet flow rates, X and X, (cells L) denote the total and viable
cell densities, and p and pge.n (h™') are the specific cell growth and
death rates, respectively.

The viability is defined as the fraction of living cells:

X
viability = YV 4)

The specific growth (4) and death (uge,,) rates are determined by
nutrient availability and by the buildup of inhibitory byproducts. Glu-
cose and asparagine supply is growth-limiting, whereas lactate, ammo-
nia, and uridine exert inhibitory effects-with ammonia and uridine also
driving cell death. The rate expressions are given in Egs. (A.1)-(A.4).

The extracellular mass balance for each metabolite is described by

d(V[Met])
dt
where [Met];,, is the metabolite concentration in the feed stream, [Met] is
its concentration in the culture, and their units are mgL~! for mAb and
mmol L~! for the other metabolites. gy, is the cell-specific production
or consumption rate, which is expressed in pgcell™' h~! for mAb and in
mmol cell”! h~! for the remaining metabolites. Metabolites considered in
the model include ammonia (Amm), asparagine (Asn), aspartate (Asp),
glucose (Glc), galactose (Gal), glutamine (Gln), glutamate (Glu), lactose
(Lac), and uridine (Urd). Fig. 2 depicts the corresponding metabolic net-
work, and the individual reaction rates are given in Egs. (A.5)-(A.15).
The extracellular mass balance equation for each glycoform GLY; is

d(V[GLY{X"))
dt

= Fip[Met]y, — Foue[Met] + gyecV Xy )

[ Out[GLfotra] + quAvaYiintm (6)

where [GLY®"™] (mgL~!) is the extracellular concentration of glyco-
form GLY;, and Y2 = [GLYntra]/ [mAb™™?] is its intracellular frac-
tional abundance. Here, the intracellular glycoform concentration
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(a) Cell culture model

(b) NSD synthesis model
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(c) Golgi model

Fig. 1. Multiscale glycosylation model.

Amm
Urd GIn
Asp Lac

Viable cell

Asn Glc
mAb Glu Gal

Fig. 2. The metabolic reaction network in the cell culture. The start of an arrow
refers to the reactant, while the end of the arrow denotes the product.

[GLY?‘tra] (umol L~1) is obtained from the Golgi model, while the
total intracellular mAb level [mAb™™?] (wmolL~!) is approximately
94 umol L~! (Kotidis, 2021). By analogy, the extracellular fractional
abundance is Y, = [GLY®*"]/[mAb]. Nine frequently observed gly-
cans are considered in this work: HM, FA1G1, FA2G0, FA2G1, FA2G2,
SIA, GO, G2, and Man5. Their full names are provided in Appendix B.

2.2. NSD synthesis model

NSDs provide monosaccharides for the glycosylation reactions, and
they are synthesized inside the cells. Therefore, the NSD synthesis
model consisting of a DAE system is used to track the intracellu-
lar concentrations of seven monosaccharide donors: guanosine diphos-
phate mannose (GDP-Man), guanosine diphosphate fucose (GDP-Fuc),
uridine diphosphate galactose (UDP-Gal), uridine diphosphate glucose
(UDP-Glc), uridine diphosphate N-acetylgalactosamine (UDP-GalNAc),
uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), and cytidine
monophosphate N-acetylneuraminic acid (CMP-Neu5Ac). The reaction
network, depicted in Fig. 1(b), comprises Ng; enzyme-catalyzed steps
whose stoichiometry is encoded in the matrix v*d, For each donor i
(i=1,..., Nysp = 7), the mass balance is
d([NSDimraD & nsd _nsd hep/lipid precursor
— % - Z vioar f —

ij "j  ~ /NSD; NSD;
j=1 ' ' @)

_ g8lyc P
Nep» =12 Nygp

where [NSD;‘ma] (mmol L) is the intracellular concentration of donor

i rj.‘Sd (mmol L=1h=!) is the rate of a reaction j; and the sink terms
hep/lipid precursor glyc

Iasy s Frsp s and S (mmolL™'h™!) are consumption rates
of the donor for host cell prétein and glycolipid synthesis, precursor
oligosaccharide assembly, and N-linked glycosylation, respectively. All
reaction rates follow Michaelis-Menten kinetics that depend on the

intracellular NSD concentrations together with extracellular glucose,

galactose, and uridine concentrations and the intracellular glutamine
level. The explicit rates are given in Egs. (C.1)—(C.18).

2.3. Golgi model

The Golgi model predicts the intracellular glycoform distribution us-
ing a dynamic plug flow reactor (PFR) representation of the Golgi appa-
ratus, formulated as a PDAE system (Jimenez del Val-et al., 2011; Kotidis
et al., 2019). The spatiotemporal balance for each oligosaccharide OS;
is

0|0S; olos.] Ne
[at 1] = —velgygi [az 1] + Z{ Vi,j"jsi =1,-,Ngg (8)

where [0S;] (pmol L") is the local concentration of OS; in the Golgi
apparatus, r; (pmolL~' min™!) is the rate of reaction j, v;; is the stoi-
chiometric coefficient of OS; in reaction j, and Ny, is the total number
of glycosylation reactions. The glycosylation reaction network involving
33 oligosaccharides and 43 reactions is depicted in Fig. 3 (Villiger et al.,
2016).

The glycosylation reaction rates r; fall into three mechanistic classes:
Michaelis-Menten kinetics, sequential order Bi-Bi kinetics, and random-
order Bi-Bi kinetics (Jimenez del Val-et al., 2011; Villiger et al., 2016),
and the detailed equations are shown in Egs. (D.1)—(D.6).

3. Control problem

We focus on economic control of a fed-batch bioreactor—the mode
most employed in industry because of its operational flexibility. The
culture runs for a total duration 7. Nutrient supplements are added for
a short period Atg.q once every sampling interval z = T /N, where N is
the number of control intervals. No harvest stream is withdrawn until
the batch ends atr =T.

The goal is to maximize the harvest titer of the target glycoform
while satisfying all process and product constraints. A widely used per-
formance metric is the galactosylation index (GI) at harvest,

GIU(T) = [FA2G1](T) + 2 [FA2G2(T), 9

where the bracketed terms denote the extracellular concentrations of
the indicated glycoforms. Manipulated variables u (feed flow rates) and
state variables x (cell density, metabolite concentrations, glycoform per-

centages, etc.) are bounded by
up Su Sy, Xp <X S Xyp. (10)

The manipulated inputs are the feed stream flow rates F, for s =
I,...,S. Up to three feeds can be employed—supplement medium,
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Fig. 3. The glycosylation reaction network in the Golgi apparatus.

Table 1
Compositions of the feed streams (all concentrations
in mmol L~1).

Metabolite Medium Gal solution Urd solution
Gle 144.37 0 0

Gln 0 0 0

Lac 0 0 0

Amm 0.06 0 0

Glu 12.19 0 0

Asn 26.99 0 0

Asp 51.95 0 0

Gal 0 3600 0

Urd 0 0 2000

galactose solution, and uridine solution—so 0 < .S < 3. The composition
of each stream is listed in Table 1.

In an ideal scenario-perfect model, exact initial state, and no
disturbances-the economic optimization of the fed-batch process re-
duces to an offline dynamic optimization (DO-offline),

(DO-offline)
max GI(T) (€8 )
x(1), u(t)
st x(t) = glyco(u(t),p), 1€0,T], (12)
x(0) = x, 13
B <xny <P re 0.7, (14)
x{grmmal < X(T) < xtlelfminal’ (15)
up (1) < u() < ugp@. 1 €[0,T]. (16)

where glyco(u, p) denotes the implicit PDAE model parameterized by p
(the glycosylation model parameters); x, represents the initial values of
the state variables; xP2th and xterminal are path and terminal constraint
bounds; and the input bounds uy,(r) and u,(¢) are time-dependent, al-
lowing, for example, zero flow rates during hold periods.

In practice, the ideal assumptions rarely hold. We address model-
plant mismatch by embedding parameter adaptation within the NMPC
framework (ANMPC), while the remaining assumptions hold given care-
ful pre-start measurements and carefully controlled bolus feeding.

To evaluate the closed-loop performance of ANMPC, we inject mea-
surement noise into simulated data using the standard deviations (stds)
computed from the dataset of Kotidis et al. (2019). Two measurement
scenarios are considered:

(1) Full measurement — all state variables are available;

Table 2
Measurement variables and standard deviations in the
cell culture model.

Variables Std Variables Std
vV 0.001 ¢, (mmolL™") 0.2
X (cellspuL™h) 494.66  cgy (mmolL™") 3.80
X, (cellspuL™h) 494.66 ¢y (mmolL™1) 0.87
cgle (mmol L") 1.45 Cpgn (mmol L") 0.22
¢ (mmol L™1) 0.11 Cpsp (mmol L") 0.84
Clae (mmolL71) 0.48 Cmap (mmolL~1)  11.05
Camm (mmolL~1) 0.17

Table 3

Measurement variables and standard devi-
ations in the NSD model (all concentra-
tions/Stds are in mmolL™1).

Variables Std Variables Std
CUDP-GleNAc 0.25 €upP-Gle 0.22
€GDP-Fuc 0.004 €GDP-Man 0.003
CUDP-Gal 0.18 CUDP-GalNAc 0.03
€CMP-NeuSAc 0.005

Table 4

Measurement variables and standard
deviations in the Golgi model (all vari-
ables/Stds are in %).

Variables Std Variables Std

e 0.64 e 0.12
extra extra

yFAllGl 0.15 yGO[ 0.42
extra extra

yFAIZGO 1.05 yG2[ 0.49
extra extra

yFA[2G1 0.99 Yians 0.90
extra

YFA2G2 0.82

(2) Industry-realistic measurement — NSDs and certain metabolites
(Asn, Asp) and glycoforms (HM, FA1G1, SIA) remain unobserved,
reflecting current analytical limitations.

The potential measurement variables and their standard deviations
are summarized in Tables 2-4.

4. Adaptive NMPC (ANMPC) framework

The adaptive NMPC loop iteratively updates model parameters, state
estimates and future control actions using online measurements. Algo-
rithm 1 summarizes the procedure:
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Table 5
Parameters in the ANMPC algorithm for the glycosylation process control problem.
Parameter  Description Value
T (h) Total culture time 288
Vy (L) Initial working volume 1.5
Atgeeq (h) Feed window length 0.01
Atprep (h) Preparation time 2 in Sections 5.2- 5.3; 4 in Sections 5.4-5.5
7 (h) Length of each control interval 24
N (=) Number of control intervals 12

Algorithm 1 ANMPC algorithm.
Initialization
Set counter k =0, current time ¢ = 0. Specify: total batch duration
T; number of control intervals N and length = = T/N; feed window
Altfeeq; Preparation time Afpp,,.
Times: 7; =)t (j=0,....N), 1™ =7+ Algeeq (j=0,....N 1),

sample _ . .
7 —jT—Atprep (G=1,...,N).

Initialize parameters p(0).

Step 1: Parameter estimation

If k > 1 and the kth sample has been analyzed, update p(k) using all
the available measurements {y(j)} :.‘=1; otherwise skip to Step 3.

Step 2: State estimation

Simulate the process model from 7 = 0 to 7, with p = p(k) and obtain
the current state estimate %(k).

Step 3: Dynamic optimization

Solve the dynamic optimization problem (soft-DO-k) over 1, <t <T
with parameters p(k) and initial condition %(k), and generate the op-
timal control sequence u = [u(k)",u(k + 1)7, ..., u(N — I)T]T.

Step 4: Bioreactor operation & sampling Implement u(k) over 7, <
t <1, and acquire a new sample at tf_’:'l‘ple
of y(k + 1).

If 1) <T, set k « k+ 1 and return to Step 1; otherwise proceed to
Step 5.

Step 5: Harvest

Shut down the bioreactor and harvest the product.

with the analysis results

Interval 0 Interval k
=0 Ty L =T
Atreea Atprep Atfeeq Atprep
T T

Fig. 4. Timeline of the ANMPC algorithm.

The timeline of the ANMPC algorithm is shown in Fig. 4. The prepa-
ration time Afp., in ANMPC must exceed the combined duration of
analytics, parameter estimation, state estimation, and optimization to
guarantee real-time feasibility. This relies on the efficient optimization
algorithm introduced later. For the case studies considered here, the al-
gorithm parameters are listed in Table 5.

The next subsections detail the dynamic optimization, parameter es-
timation, and state estimation components of the ANMPC.

4.1. Dynamic optimization formulation

To generate the control actions at ¢, in Step 3 of ANMPC, the con-
troller solves the finite-horizon optimization (DO-k):

(DO-k)
max  GI(T) a7

x(t), u(r)
st x(t) = glyco(u(r), p(k)), 1€1[0,T], (18)
x(k) = %(k), 19)

path

B <) <P re©.7), (20)
xltgrminal <x(T) < xtuebrminal’ 21
up () S u@®) <ug (@), tet, Tl (22)

Relative to the offline problem (DO-offline), the model parameters
p are replaced by their current estimates p(k) in the problem (DO-k),
the initial conditions are substituted by the latest state estimate %(k),
and the horizon is shortened to [7,, T'] because of the shrinking horizon
in the fed-batch operation (Eaton & Rawlings, 1990; Nagy & Braatz,
2003). It is expected that as data accumulate, p(k) and %(k) move closer
to the ground-truth values, the optimization problem (DO-k) will yield
progressively better predictions than the static offline optimization that
uses p(0).

Because parameter uncertainty can cause previously computed in-
puts to be overly aggressive, DO-k may become infeasible even when
DO-0 was feasible. To reduce infeasibility in the optimization, we em-
ploy a soft-constraint formulation (Scokaert & Rawlings, 1999),

soft-DO-k:
T
i(tn)l,%?t),GI(T) - /tk p;; (E + Q)dt - p;)r (3 + 2) (23)
W, w, s, v
s.t. Egs. (18)-(19)
AP o chard gy < harbeath g e (0, 7) 24)
?;rd,ten‘ninal < xhard(p) < xﬂ;rd,terminal (25)
PPy < 3ol < XM L e 0.7) (26)
xlssft’terminal —v< xsoft(T) < xi%ft,terminal +7 27)
w, w, v, v>0 28)
up (1) < u(t) Suyp(®), teft,T] (29)

Here the state constraints are partitioned into hard constraints,
which must always be respected, and soft constraints, which may be
violated at the cost of penalty weights p,, (path) and p, (terminal). The
variables w(t) and w(r) are slack variables for the soft path constraints,
whereas v and v are slack variables for the soft terminal constraints.
Problem (soft-DO-k) is solved only if the original problem (DO-k) is in-
feasible.

Table 6 summarizes the constrained variables along with their per-
missible ranges and associated penalty weights. The lower bound of 5%
for Manb5 is based on Pacis et al. (2011). The penalty weights are cho-
sen based on the orders of magnitude of the three variables in the merit
function: GI is on the order of 100, viability (in %) is on the order of
10, and Man5 (in %) is on the order of 1. To ensure that each term has
a comparable order of magnitude, the penalty weights of the viability
and Man5 constraints are set to 10 and 100, respectively.

4.2. Parameter estimation formulation

The multiscale model contains ~100 kinetic and transport
parameters—far too many to calibrate accurately from the limited data
available in most cases. Consequently, the parameters are adapted
online using every measurement collected to date, i.e., Step 1 in
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Table 6
Constraint bounds, types, and penalty weights.
Variable Description Constraint type ~ Lower bound  Upper bound  Penalty weight
viability (%) Cell viability Terminal, soft 60 - 10
Yﬁ’;‘rfg (%) Extracellular Man5 percentage Terminal, soft - 5 100
Vv (L) Working volume Terminal, hard 0.75 2.25 -
F,(Lh™")s=1,2,3  Feed flow rate Input 0 100 -

ANMPC. Furthermore, the simulation with the updated parameters is
used for state estimation, i.e., Step 2 in ANMPC.

We explore two windowing strategies for the online parameter esti-
mation problem—expanding horizon estimation (EHE) and full horizon
estimation (FHE). In the fed-batch process, the former is more natural as
the horizon with available data becomes longer over time, so we are in-
terested in the expanded horizon. In EHE, once the kth sample at tzample
(k > 1) is available, we solve the problem

EHE-k:
: T
min Y (y() = 3()) V(i)™ (y0) - $U)) (30)
Pk), x(1) =l
+ (ptk) = () " P (p(k) - p(0))
s.t. x(r) = glyco(u(), (k)), 1€ [o, sz‘“"le], (31)
x(0) = xo, (32)
P < P(K) < pyp- (33)

where y(j) and j(j) are the measured and predicted outputs, V,(j) is the
measurement-noise covariance, and P penalizes deviation from the prior
parameter vector p(0). When P = Vp’1 (the prior covariance matrix), we
obtain a maximum a posteriori (MAP) estimator (e.g., Gunawan et al.,
2003); when P = 0, we get a maximum likelihood estimator (MLE) (e.g.,
Beck & Arnold, 1977).

EHE may overfit early data and predict physically impossible trajec-
tories (e.g., negative concentrations) in the later horizon, jeopardizing
feasibility of the subsequent NMPC problem. To reduce overfitting, we
instead fit the parameters over the entire horizon [0, T'] even though data
exist only up to tiamp]e, i.e., full-horizon estimation (FHE). In this way,
parameters causing infeasible simulation beyond the measurement win-
dow are automatically discarded when solving the parameter estimation
problem iteratively. To further protect against unphysical states, upper
and lower bounds on the states can be incorporated into the estimation
problem according to domain knowledge, resulting in the constrained
FHE estimator
cons-FHE-k:

in Eq. (30
b(k), x(1) 4. (30)

s.t. x(t) = glyco(u(?), p(k)), €10, T], (34)
Egs. (32) and (33),
X1b <x() < Xup, [ E [0, T]. (35)

There are two points to mention for the implementation of the online
estimator:

(1) In the online parameter adaptation step, distinct estimators are ap-
plied to different submodels. Parameters in the cell culture submodel
are updated with a MAP estimator (P = Vp‘1 in Eq. (30)), whereas
parameters in the NSD and Golgi submodels are fitted together by
MLE (P =0 in Eq. (30)). Alternative combinations were tested but
proved inferior: applying MLE to the cell culture block led to se-
vere overfitting in the early phase of the run, which in turn drove
the simulation and subsequent optimization to diverge; conversely,
employing MAP for the NSD and Golgi blocks introduced an overly
strong prior that resulted in underfitting and degraded ANMPC per-
formance. Fitting the NSD and Golgi models separately also produced
underfitting and was therefore abandoned.

(2) Because the parameters span several orders of magnitude, the opti-
mization is performed in log-space for self-normalization; that is, we
estimate In p(k) rather than p(k). Without this approach, parameter
estimation often fails due to divergence in the sensitivity-equation
evaluations, where the Jacobian becomes highly ill-conditioned.

4.3. Solution of the optimization problems

The above dynamic optimization and parameter estimation both re-
quire repeated solutions of optimization problems subject to the mul-
tiscale glycosylation model. We adopt the control vector parameteriza-
tion (CVP) method for the optimizations (Kraft, 1985; Vassiliadis et al.,
1994), which is more reliable than simultaneous methods for strongly
nonlinear dynamics—constrained problems (Hong et al., 2006). In CVP,
however, the large PDAE system described in Sections 2 and its sensitiv-
ity equations must be solved tens or hundreds of times with an implicit
time-stepping scheme, which dominates the computational cost.

To make the optimization tractable, we accelerate each model eval-
uation with the parallel QSS algorithm introduced in our earlier work,
which reduces overall simulation/optimization time by two orders of
magnitude (Ma et al., 2025). In the multiscale model, both the cell cul-
ture submodel and the NSD submodel consist solely of DAE equations,
while the Golgi submodel involves PDEs in both the temporal and spa-
tial domains (along the length of the Golgi apparatus), making the en-
tire model a PDAE, which is computationally expensive. The QSS ap-
proach decouples the simulations in the temporal and spatial domains
by exploiting the clear timescale separation: the Golgi reactions reach
equilibrium much faster than the outer-layer dynamics. As a result, the
Golgi submodel achieves a local steady state long before extracellular
conditions change appreciably. Under steady-state conditions, the Golgi
submodel simplifies to a DAE (in the spatial domain along the length
of the Golgi apparatus), as opposed to the original PDAE. By connect-
ing a series of quasi-steady states of the Golgi submodel at different
time points, we can obtain the trajectories of its variables. Finally, the
extracellular glycan percentages (Y,*") are derived by integrating the
cell culture model, using the intracellular glycan percentages (Y[.i““a) as
time-varying inputs. The complete QSS algorithm is illustrated by Fig. 5
and described as Algorithm 2.

Algorithm 2 QSS algorithm.

s . - N
Initialization. Choose a set of time points 7 = {r; }S=QlSS

Step 1: Get env. Integrate the cell-culture model (omitting glycopro-
tein balances) and the NSD model to obtain the environmental states
env(t,) at each 7,.

Step 2: Get Y,.i“m‘. For every ¢, solve the steady-state Golgi DAE with
env(t,) as inputs, yielding intracellular glycoform fractions Yiimra(ts).
The Nqgs Golgi simulations are fully multithread parallelizable.
Step 3: Get Y **'*2, Reintegrate the complete cell culture model to
produce the extracellular glycoform trajectories Y*"(z,), where all
the Yii“tra(ts) in the model are treated as time-varying parameters and
are obtained from Step 2.

The number and allocation of the time points in 7 determine the ac-
curacy of the trajectories of the intracellular variables. More time points
potentially increase the accuracy, but increasing the number of DAEs for
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Step 1: Dynamic simulation
based on cell culture and
NSD submodels

Step 2: Parallel steady-
state simulations of Golgi
submodel
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extra
Y;

Step 3: Extracellular glycans
from cell culture simulation

Step 2: Intracellular
glycans

Fig. 5. Quasi-steady-state simulation method for the multiscale glycosylation model.

steady-state Golgi submodel to solve and increasing computational cost.
Following Ma et al. (2025), we achieve satisfactory accuracy for Y
when the QSS time grid 7 includes all event instants (feed start/stop,
sampling, etc.) and is augmented with 100 uniformly spaced points over
[0,T].

5. Case study

To evaluate the proposed ANMPC framework, we first calibrate the
multiscale model to the dataset of Kotidis et al. (2019), obtaining a
MAP parameter vector Inp* and its covariance V.. We treat Inp* as
the ground truth. Five distinct initial guesses In p(0) are then generated
on the boundary of the 50% confidence ellipsoid defined by ¥}, so that
the conclusions based on the case studies are more reliable. These In p(0)
vectors, together with ¥}, serve as the prior mean and covariance in
the online estimation step. The ground-truth and initial parameter val-
ues are listed in Tables S2-S4, while the covariances for submodels are
provided in the Excel file in Supplementary 2. For convenience, we de-
note the five initial parameter sets as Init_0, Init_1, Init_2, Init_3,
and Init_4. The lower and upper bounds of the parameters are set to
1/1000 and 1000 times the ground-truth values, respectively.

All computations are performed on a Windows 11 machine with
a 12th-Generation Intel Core i7-12700H CPU (14 cores/20 threads,
2.30GHz) and 16 GB RAM. Python 3.9 (Van Rossum & Drake, 2009)
and CasADi 3.6.5 (Andersson et al., 2019) were used as the computa-
tion platform. The nonlinear programs (NLPs) arising from the CVP for-
mulation are solved with PySQP, an in-house sequential quadratic pro-
gramming (SQP) solver based on the I-SQP algorithm (Ma et al., 2024)
with a watchdog-technique enhancement. The DAE systems in the QSS
algorithm are integrated with the IDAS solver (Gardner et al., 2022;
Hindmarsh et al., 2005) via CasADi, using 15 threads for parallel com-
putation. Under these settings, the total runtime per control move (pa-
rameter estimation + state estimation + dynamic optimization) is less
than 2 h in all case studies. In Sections 5.2 and 5.3, we assume rapid ana-
lytics and set the preparation time A, = 2h; in Sections 5.4 and 5.5,

we use a more realistic Af,., = 4h to account for assay time.

5.1. Open-loop optimization study

Because supplement medium is routinely fed whereas Gal and Urd
are not, we first solve the open-loop optimization with different combi-
nations of feed streams to study the influence of Gal and Urd feeding.
Here, the ground-truth parameters are used, and the optimization results
are shown in Table 7.

Table 7

Optimized fed-batch performance with different feeds.
Feed streams Harvest volume (L) GI (mg L")
None (batch) 1.38 174.27
Medium only 2.18 247.28
Medium + Gal 2.23 404.00
Medium + Urd 2.23 405.25
Medium + Gal + Urd 2.23 405.25

Adding only the supplement medium raises the galactosylation in-
dex (GI) by about 42% relative to the batch baseline. Supplementing the
medium with either galactose or uridine produces a much larger bene-
fit: the optimal GI is roughly 64% higher than with medium alone (and
more than double the batch value). Adding uridine gives a slightly (0.3%)
higher GI than adding galactose. Introducing both galactose and uridine
simultaneously provides no further gain, because the optimizer drives
the galactose feed rate to zero whenever uridine is available. Thus, only
one of the two supplemental streams is required; the decision between
galactose and uridine should be based on robustness and operational
practicality rather than peak GI alone.

Fig. 6 compares the optimal time courses obtained with different
feed strategies. Fig. 6(a) confirms the ranking in Table 7: every feed-
ing strategy raises the harvest GI relative to the batch baseline, but the
trajectories diverge markedly once galactose or uridine is introduced.
When only supplement medium is added, the improvement in extra-
cellular GI stems almost entirely from biomass growth-the viable cell
density roughly doubles (Fig. 6(b))—even though the intracellular GI
falls slightly (Fig. 6(d)). Adding galactose or uridine in addition to the
medium changes the picture: both supplements elevate the intracellu-
lar GI by roughly 20% (Fig. 6(d)), on top of the higher viable cell den-
sity achieved with medium feeding, yielding the pronounced increase
in extracellular GI shown in Fig. 6(a). The increase in intracellular GI is
driven by an elevated UDPGal concentration, a key donor for galacto-
sylation (Fig. 6(c)). Once the UDPGal concentration is sufficiently high,
however, the incremental benefit plateaus; this is evident from the close
overlap of the green dash—dot and red dotted curves in Fig. 6(d), which
correspond to Gal and Urd supplement scenarios, respectively.

Although supplementing the reactor with Urd yields a slightly higher
GI than Gal, the process is much more sensitive to Urd dosing. We quan-
tify the response to the initial Urd pulse volume V45,4 by varying its value
from 0 mL to 20 mL while holding the medium feed fixed. Fig. 7 shows a
sharp optimum at 0.014 mL, giving a harvest GI of 405 mgL~!. Increasing
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Fig. 6. Optimal trajectories of crucial variables when using different feed
streams.
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Fig. 7. a) Sensitivity of harvest GI to the Urd feed volume on day 1, b) viable
cell density trajectories for three pulse feed volumes, and c) intracellular GI
trajectories for the same three different three pulse feed volumes.
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Fig. 8. Sensitivity of harvest GI to the Gal feed volume, a) vary cap V sub Gal
simultaneously on days 1-4, b) vary cap V sub Gal on day 3, c) vary cap V sub
Gal on day 4.

the pulse to just 1 mL lowers GI to about 350 mgL~'—a 13.6% drop—
demonstrating that small deviations from the optimum can markedly
degrade product quality and, therefore, robustness in the presence of
model-plant mismatch or input disturbances. Fig. 7(b)-(c) further indi-
cate that the GI loss is driven primarily by reduced viable cell density
throughout the run and by lower intracellular GI during the high cell
density phase.

In contrast, the harvest GI is far less sensitive to the galactose pulse
volume Vg, near its optimum-15mL on day 3 and 58 mL on day 4, with
no Gal on the other days. Fig. 8(a)—(c) illustrate this robustness. When
Vgal is above 10mL on each of the first four days (Fig. 8(a)), the harvest
GI changes only slowly, and declines rapidly only when V5, falls below
5mL. Moreover, varying the Gal dose on a single day while keeping the
other days at their optimal values (Fig. 8(b)-(c)) produces only minor
changes in GI. These results confirm that galactose feeding is a potent
yet forgiving lever for glycosylation control, whereas uridine requires
near-perfect tuning to realize its modest advantage.

Given the above analysis, the subsequent closed-loop studies employ
medium + Gal as the manipulated streams and omit Urd.
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Table 8
Merits under different control algorithms.
Init_O Init_1 Init_2 Init_3 Init_4

Open loop 185.88 272.64 231.17 219.86 274.78
State NMPC 276.08 — —a 202.26 367.22
ANMPC 216.82 362.89 220.38 218.30 380.92
Cell culture 8.70
Ground truth 404.00

2 State NMPC terminated prematurely for Init_1 and Init_2.

5.2. Open-loop optimization vs. state NMPC vs. ANMPC

To benchmark the ANMPC scheme, we compared five controllers, all
initiated from the same inaccurate parameter vector:

(1) Ground truth — dynamic optimization with the ground-truth param-
eters p*.

(2) Cell culture — dynamic optimization with the objective of maximizing
titer, which is a common scenario when there is only the cell culture
model. Here, Ground-truth parameters p* are used.

(3) Open loop — dynamic optimization with the inaccurate parameters
b0).

(4) State NMPC - including feedback on measured states and using fixed
parameters j(0).

(5) ANMPC - adjust parameters online with the measured states.

To compare with state NMPC more easily, we assume full state mea-
surement in this section, while the more realistic measurement scheme
is considered in Sections 5.4 and 5.5.

Given the importance of the constraints on the cell viability and
Manb fraction in Table 6, the controllers are compared in terms of the
penalized merit function

Merit = GI(T) — p,,; max (0, 60 — viability) — p,, max (0, Yz — 5),
(36)

using the same penalty weights p, as in the soft-constrained formula-
tion (soft-DO-k; see Table 6). Table 8 reports the merits across the five
parameter scenarios.

From Table 8, optimizing the cell culture model only will cause ex-
tremely low GI (50 times smaller than the ground-truth solution) be-
cause the operating condition of maximizing titer leads to very little
FA2G2 and FA2G1 synthesized in the Golgi apparatus (less than 1%
for most of the culture time). Open-loop optimization performs second
worst for most initializations, producing merits roughly one-half of the
ground-truth optima. ANMPC shows a substantial gain (over 30%) for
Init_1 and Init_4, but offers only marginal or no improvement over
open-loop optimization for the other runs. State NMPC terminates pre-
maturely for Init_1 and Init_2 due to infeasible simulations during
optimization. Overall, none of the controllers consistently achieve sat-
isfactory performance.

A closer look at the ANMPC operation strategies shows that the low-
merit cases (Init_0, Init_2, Init_3) never feed Gal, whereas the high-
merit cases (Init_1, Init_4) apply appropriate Gal dosing (Fig. 9). Con-
sistent with Table 7, omitting Gal caps the ground-truth optimal GI at
just 247 mgL~!. This behavior occurs because the inaccurate initial pa-
rameters undervalue Gal’s positive impact on galactosylation, so the op-
timizer chooses not to add Gal. Without Gal feeding, the Gal-related pa-
rameters are not excited and therefore cannot be updated, which masks
the potential advantage of ANMPC.

5.3. Enforcing a minimum galactose dose
The previous section showed that, when ANMPC selects zero galac-

tose feeding, the Gal-related parameters cannot be updated and per-
formance stalls. To force at least minimal excitation, we impose a lower
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Fig. 9. Gal feed rate profiles under ANMPC for different initial parameter sets.
The feed window duration is 0.01 h.

Table 9
Merits after imposing a 1 mL Gal feeding lower bound on day 1.
Init_0 Init_1 Init_2 Init_3  Init_4
Open loop 183.36 324.88 197.27 166.23 201.67
State NMPC 224.55 — a 197.11 378.11
ANMPC 380.37 398.29 389.53 386.79 387.06
Ground truth 404.00

a State NMPC terminated prematurely for Init_1 and Init_2.

bound of 1 mL on the Gal feed volume during day 1-a negligible volume
compared with over 1 L working volume. Table 9 compares the resulting
merits for the various control strategies under this specification.

Comparing Table 8 (no Gal feed lower bound) with Table 9 (1 mL
lower bound on day 1), the open-loop and state-NMPC controllers show
almost no progress: their merits remain roughly half of the 404 bench-
mark, and state NMPC still fails to converge for two of the five initial-
izations. By contrast, ANMPC improves markedly once the small day-1
galactose dose is enforced. Its merits lie within 6% of the ground-truth
optimum for every initialization and exhibit little scatter, indicating sub-
stantially greater robustness. Relative to ANMPC without a Gal lower
bound, the merit increases by more than 75% for Init_0, Init_2, and
Init_3. Compared with open-loop optimization and state NMPC under
the same Gal feed constraint, ANMPC delivers gains of up to 130% and
96% (Init_3), respectively. These results confirm that introducing even
a minimal Gal feed early in the cell culture provides sufficient excitation
to update Gal-related parameters and enables the adaptive controller to
approach its full potential.

Fig. 10 illustrates the input profiles and trajectories for Init_0 along-
side the ground-truth policy. The ground-truth optimization splits the
medium addition into two pulses—one at the start of culture and a sec-
ond after nine days (Fig. 10(a)). This staged strategy moderates the late-
phase viability drop and satisfies the terminal viability limit (Fig. 10(c)).
In contrast, the other controllers deliver nearly the entire medium vol-
ume at the outset, pushing the broth quickly to the reactor’s upper vol-
ume limit and leaving little capacity for a compensatory feed later; the
resulting nutrient depletion leads the NMPC variants to violate the via-
bility constraint. The second key difference appears in Fig. 10(b): sub-
stantial Gal supplementation occurs only in the ground-truth and AN-
MPC policies, yielding a markedly higher GI in Fig. 10(d). Like open-
loop and state NMPC, ANMPC omits Gal during the first three days due
to initial model mismatch. Once the parameter estimates improve, how-
ever, ANMPC initiates Gal feeding; from that point forward, its GI trajec-
tory closely tracks the ground-truth benchmark and remains well above
the curves from the other two controllers.

The contrasting control performances can be traced to how each al-
gorithm handles model-plant mismatch, as illustrated by the evolution
of the GI prediction errors at the harvest time in Fig. 11. At the start of
the run (day 0) the three schemes—open-loop optimization, state NMPC,

Control Engineering Practice 169 (2026) 106731

Fi(Lh™ F2(Lh™)

(b) - True
Open loop
m State NMPC

- ANMPC

704 fJ@ - True
Open loop
60 mmm State NMPC
50 m— ANMPC

"
&
e kN W & v oo

1 '

0 24 48 72 96 120 144 168 192 216 240 264 0 24 48 72 96 120 144 168 192 216 240 264
Time (h) Time (h)

Viability (%) Gl (mg L™

TN — Tue 2001 (@)

Open loop
—- State NMPC
=+ ANMPC

300

— True

Open loop
2001 —.. state NMPC
- ANMPC
100

0 48 96 144 192 240 288 0 48 96 144 192 240 288
Time (h) Time (h)

Fig. 10. Control inputs and key state trajectories for the control schemes start-
ing from Init 0 and the ground-truth optimization: (a) medium feed flow rate,
(b) Gal feed flow rate, (c) cell viability, and (d) GI.

350 A

-~
300 o ’ \
- / X
o .
£ 2504 / \
= oo
2 200 - ..
S) N
8 150 ~.
b5 .,
c AN
S 100 4 ..
Q0 h
< .
o 50 - Ne—.
S .
o
0_
T T T T T T T T T T T T
0 1 2 3 4 5 6 7 8 9 10 11
Time (h)
—e— Open loop —e- State NMPC ANMPC

Fig. 11. Evolution of the GI prediction error at harvest time when starting from
Init_0.

and ANMPC—share the same parameter set, so their GI prediction errors
are identical, about 200 mg L.~!. Thereafter, the open-loop error remains
unchanged because no feedback is used to refine the model. In both state
NMPC and ANMPC, the error decreases as new measurements arrive,
but ANMPC’s errors are consistently smaller than those of state NMPC.
Within two days, the GI error under ANMPC drops below 50 mgL~! (ex-
cept on days 3-5), whereas state NMPC does not reach this level until
about day nine. The rapid improvement in ANMPC stems from its online
parameter adaptation, whereas the slower drift in state NMPC reflects
only the shrinking prediction horizon and the availability of full-state
measurements, not improved model accuracy. By the time state NMPC
finally achieves a similar error magnitude, only three days remain to
influence the harvest GI, leaving ANMPC with the practical advantage.

5.4. ANMPC with fewer measurements and longer preparation time

Here we evaluate ANMPC under more realistic conditions: (1) partial
measurement availability-no readings for extracellular Asn-and Asp, the
extracellular glycan fractions HM, FA1G1, and SIA, or any intracellular
NSD concentrations; (2) a longer preparation time of 4 h to account
for computation and assay turnaround. The results are summarized in
Table 10.

Table 10 shows that, for a given initial parameter set, the penalized
merit varies by less than 2% across different measurement schemes and
preparation times. In particular, using partial measurements and a 4 h
preparation window does not necessarily degrade performance relative
to the full measurements and 2 h baseline. Therefore, a leaner measure-
ment set and a relaxed preparation window can be adopted as a more
economical choice without sacrificing control quality.
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Table 10
ANMPC under different measurements and preparation time.
Init_0 Init_1 Init_2 1Init_3 Init_ 4 Avg
Full* + At ., =2h 380.37 398.29 389.53 386.79 387.06 388.41
Partial® + Aty =2 h 387.81 395.60 392.24 388.52 384.52 389.74
Partial® + At =4h 386.18 395.25 387.89 386.62 379.40 387.07

prep

a “Full” = all variables measured.
b “partial” = excludes extracellular Asn-and Asp, extracellular glycan frac-
tions (HM, FA1G1, SIA), and all intracellular NSD concentrations.

Glycans are measured only at the end of a batch in many compa-
nies. Regarding employment of the multiscale model in that scenario,
any company can take glycosylation experiments once a day by man-
ual sampling during the fed-batch run, freeze the samples, and an-
alyze all samples after the fed-batch experiment — to generate time-
series data for use in estimating model parameters. Once the multiscale
model has been validated offline, the multiscale model is still appro-
priate for predicting glycan trajectories (time series). The closed-loop
performance obtained by the MPC algorithm will be lower if the glyco-
sylation is only measured at the end of each batch run, since there would
be less data for updating the glycosylation model parameter estimates.
The MPC algorithm would still function, with the real-time update of
the glycosylation model parameter estimates turned off since those pa-
rameters would only be updated after each batch, although with lower
performance.

6. Conclusions

We applied an ANMPC framework to regulate the N-glycosylation in
a fed-batch mADb bioreactor. The controller uses a high-fidelity multi-
scale PDAE model that links extracellular operating conditions to intra-
cellular Golgi reactions to predict both mAb productivity and glycan
profiles. To mitigate model-plant mismatch, parameters are updated
online as new measurements arrive, after which a shrinking-horizon
optimization recomputes the inputs. When the nominal dynamic op-
timization becomes infeasible, a soft-constraint formulation preserves
solvability. To prevent unphysical predictions (e.g., negative concentra-
tions), parameter estimation is performed over the full fed-batch hori-
zon with state bounds. Computationally, parameter estimation and dy-
namic optimization yield large-scale, model-constrained problems that
are challenging to solve. We therefore employ the control-vector pa-
rameterization (CVP) method for reliable convergence and accelerate
embedded simulations via a parallel QSS algorithm.

Sensitivity studies show that both Gal and Urd can raise GI by about
64% relative to feeding medium alone to the bioreactor, but Urd is
overly dosage-sensitive for control. Across case studies with multiple ini-
tial parameter sets, ANMPC delivers up to 130% and 96% higher penal-
ized merit than open-loop optimization and state NMPC, respectively—
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provided a small day-1 Gal lower bound is imposed to excite Gal-related
dynamics and enable adaptation. Moreover, using fewer measurements
and a longer preparation time (4 h) did not materially degrade ANMPC
performance, supporting practical deployability.

Regarding implementation, experimental validation of the control
algorithm requires the implementation of an automated glycan assay,
which requires additional equipment and software beyond what is avail-
able at some companies. Future work will explore stochastic ANMPC
(e.g., chance-constrained MPC) to balance constraint satisfaction and
performance under uncertainty, and experimental validation of the pro-
posed strategies.
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Appendix A. Kinetic equations in the cell culture model

The equations for computing the cell growth and death rates are

H = Hmax Slim finh (A1)

_ [Amm] [Urd] (A.2)
Hdeath = Hdeath,max [Amm] + Kd,Amm [Urd] + Kd,Urd .
[Glc] [Asn]
im = A.3
Jim = {GIer + Kgie [Asn] + Kpgn (A-3)
finh — KIAmm KILac KIUrd (A4)

[Amm] + Kl [Lac] + K1, [Urd] + K4

where g, and pgeah, max (h™!) are the maximum specific growth and death rates, respectively; fji, and f;,, are the substrate-limiting and metabolite-
inhibiting factors, respectively; Kgj. and Kug, (mmol L~!) are the Monod half-saturation constants for glucose and asparagine; K4 amm and Kg yrq
(mmol L™!) are the death constants for ammonia and uridine; Kj amm» K 1ac> and K yyq (mmol L™1) are inhibition constants for ammonia, lactate, and
uridine; and [Glc], [Asn], [Amm], [Lac], and [Urd] (mmol L~!) denote the extracellular concentrations of glucose, asparagine, ammonia, lactose and
uridine, respectively.

The kinetic equations for cell metabolism are

" KC "Gal
Gal
dale =\ — — mgj, TN (A.5)
‘ < YXGIC c>< KCGal + [Gal]>
q
ngal = 1 = fGal qilal (A.6)
c

u
4Gln = YX + qumYGln/Amm (A.7)

Gln

u Lac,.x1 — [Lac] Lac,,,4o — [Lac]
=X -y, + A8
qrac < YXLac Lac/Gle quc) Lacmaxl Mpac La Conax2 ( )
"
dAmm = 3 — YAmm/Urd 9urd (A.9)
XAmm
qGlu = — YM (A.10)
XGlu
U [Gal]
dGal =~ 5 o o (A11)
G Yy 1Gall + Kay
M [Urd]
urd = —— b SR (A.12)
U Yy 0rd] + Kigg
9Asn = — - YAsn/Asp 9Asp (A.13)
XAsn
u
dasp =~y T Yasp/Asn Asn (A.14)
XAsp
dmab = Ymaby # + Mimab (A.15)

In these expressions, the model parameters to be estimated include the yield coefficients Yy (cellmmol™"), maintenance terms e
(mmol cell™' h=!) for metabolites excluding mAb, maintenance term my,p, (pgcell™ h=!) for mAb, the fraction fg, (-), cross-yield ratios Yy /metz
(mmol mmol™"), saturation or inhibition constants Ky, (mmol L"), the empirical limits Lac,,,,; and Lacy,,, (mmol L"), and the product formation
yield Y, (pgeell™).
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Appendix B. Full names of glycans

The full names of the glycans in the current model are

e HM: High-mannose-type (oligomannose) N-glycan(s), i.e., the high-mannose family such as Man5-Man9.

e FA1G1: Core-fucosylated, mono-antennary, mono-galactosylated complex-type N-glycan.
e FA2GO: Core-fucosylated, bi-antennary, agalactosylated complex-type N-glycan.

e FA2G1: Core-fucosylated, bi-antennary, mono-galactosylated complex-type N-glycan.

e FA2G2: Core-fucosylated, bi-antennary, di-galactosylated (asialo) complex-type N-glycan.
¢ SIA: Sialylated N-glycan(s), i.e., glycans bearing terminal sialic acid residues.

¢ GO: Agalactosylated bi-antennary complex-type N-glycan (no core fucose).

e G2: Di-galactosylated bi-antennary complex-type N-glycan (no core fucose).

¢ Man5: Oligomannose-5 (high-mannose) N-glycan with five mannose residues.

Appendix C. Kinetic equations for the NSD reactions

The kinetic equations for intracellular NSD synthesis reactions are

[Glnintra 1

ry = —_—
KMlGln + [Glnintra]

max,1

[UDPGIcNAc]

[CMPNeu5Ac]
<KMlsmk + [UDPGlcNAc]) (1 + ?>

Mgk = Vmax, Lsink

[Glc]

=y,
"2 a2 e+ [Gle]

[UDPGal]
2 = Vinax 2o
UDPGIcNA UDPGalNA UDPGI UDPGal
KMZ"’UDPGM(l +1 K[zi R KIZdB 4L Kpe 4 K[deJ> +[UDPGal]
= [Glc]
P03 K, + [Glel
[UDPGIcNACc]
"4 = Vmaxa g + [UDPGIcNAC]
MA4yppGieNAc
[UDPGIcNAc]

s =Vmaxs [CMPNeu5Ac]

ST — ( S ) +[UDPGIcNAc]

[UDPGIc]
re = Vmax,6
[UDPGIcNAc] , [UDPGalNAc] , [UDPGal]

KM6,UDPGlc<1 ke T KT K > + [UDPGlc]
.y [UDPGal] [Gal]
Osink — ~ Max,bgink 1

[UDPGlc] [Ga ] + Kregulator
KMssink <1 + m) + [UDPGal]
[GDPMan]

"7 = Va7 [GDPFuc]

(KWGDPM&H + [GDPMan]) (1 + [oDFud] )
P -y [GDPFuc]
Tsink — "maxTsink g o+ [GDPFuc]

sink

where V.. i (

NSD) in reaction j; KI; (mmol L") is the corresponding inhibition constant; and Kegulator (mmol L~1) is introduced so that the factor

becomes zero when extracellular Gal is absent.
The intracellular glutamine concentration (mmol L~!) in Eq. (C.1) is estimated through

Glnintra = fGin [Gln],

where fq, is a constant parameter to connect intracellular Gln concentration with its extracellular counterpart.
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(Cn

(C.2)

(C.3)

(C4

(C.5)

(C.6)

(&)

(C.8)

(C9

(C.10)

(C11)

mmol L~' h~!) is the maximum turnover rate of reaction j; K, Jeommp (mmol L") is the Michaelis constant of a component (metabolite or
[Gal]
[Gal] + Kregulator
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The NSD synthesis reaction rates that depend on Urd or Gal are
[Urd]

i = Vinaxjn gy o0 € {1,2,4,6}, C.12
Tjgra = Vmax,jyq Kntpog + 1UTd] { } (C12)
60, [Gall
"6 = [UDPl:al)j Gal[G 1] | [Urd] ' (C.13)
a. al T
KM6G31(1 + Kigp + Kigg + = Kigp )+ [Gal]

Additional intracellular fluxes for each NSD; are

hep/lipid

fhcp/hpld [NSD;] iCP N H (C.19)
! Krp; +INSD;]  Veen

fprecursor _ [NSD,] vlprecursorq (C.15)
' Kip; +INSD,]  Vear '

NSD;
f,glyc [ ] rlglyc . (C.16)
Krp,; +[NSD;]

hep/lipid ( and v precursor

where Krp; (mmol L~ 1) is the transport protein saturation constant for NSD;; v, mmol cell‘l) (mmol pg‘l) are the stoichiomet-
ric requirements for host cell protein/glycolipid synthesis and precursor ohgosaccharlde assembly, respectlvely, en (Lcell™!) is the specific cell

volumeand the NSD; consumption rate in glycosylation reactions rgly (mmol L=1 h~!) is (Kotidis et al., 2019)

V. ..\ Nos
riglyc = velgolgi<%l§‘> Z {vi;l08;]z=1)} (C.17)
ce!

Jj=1

2% 107%ga
Velgolgi = Imab
60 MW a1 Vgotgi [0S, ] (z = 0)

(C.18)

where velgg; (Golgi length min~ ) is the length-normalized transit velocity, Vgg (L cell™! ) is the Golgi volume, v; ; is the number of NSD; molecules
required for one oligosaccharide j molecule, [OS 1(2) (mmol L") is the oligosaccharide concentration at axial position z (with z = 0 at entry and
z =1 at exit), and MW}, is the molecular weight of mAb (165 x 10> gmol™").

Appendix D. Kinetic equations for glycosylation reactions

The kinetic equations for the glycosylation reactions in the Golgi apparatus are shown in Egs. (D.1)—(D.3).

(i) Michaelis-Menten kinetics — used for enzymes Man I and Man II-catalyzed reactions

. ky;E;]]0S)] (D.1)

J
NC |0S
k(125 )
d.k
(i) Sequential order Bi-Bi kinetics — used for enzymes GnT I, GnT II, and GalT-catalyzed reactions

k;;[E;|[Mn][NSD,] [0S;]

- : (D.2)
I Kenz KenzKenz(l 4+ Mn] |, [Mn] [NsD, | 4+ M) [NsD, | ZNC [08¢] . [Nuc,] [0Syi] | [Nuc,] )
enz enz enz enz enz enz enz enz enz
dMn™"d.z "rd i Kivn — Kavn Koz Kivn Kiz Kbt 1 Kk Kin  Kain Kin

(iii) Random-order Bi-Bi kinetics — used for enzymes FucT- and SiaT-catalyzed reactions

kr;[E;] [NSD.] [0S ]

. (D.3)
! KenzKenz(l 4 [NSDz] N¢ [Osk [NSD ] Z [Osk] [Nuc,,] [Nucn] [OSH-I] )
d,Z d,l Kenz k= l Kenz KEI‘IZ KEI‘IZ Kenz KE[!Z KEHZ
d.z dz k#l+1 d.k d.n d.n d,i+1

In these expressions, OS; and OS,,, are the reactant and product of reaction j, respectively; the set {OS, |k =1,2,..., Nc} contains every
oligosaccharide that can bind to the enzyme Ej; Ke“Z and Ke“Z (mmolL~!) are the dissociation constants for 0S; and OSk bound to the enzyme
enz € {Man [, Man IL, GnT I, GnT II, GalT, FucT, SiaT}, respectlvely, Ke“? and Ker:f (mmol L") are the dissociation constants for nucleotide sugar

donor NSD, and nucleotide Nuc, bound to the enzyme enz, where n € {1,2,3,4}; Ks‘;\fm refers to the dissociation constants for manganese bound to

enzymes enz € {GnT I,GnT II, GalT}; [-] denotes the relevant intracellular concentration (mmol L~!); and k 1 (min_l) is the kinetic rate constant of
reaction ;.

In Egs. (D.2)-(D.3), the NSD concentration inside the Golgi apparatus, [NSDZ], is assumed to equal 20 times of the corresponding cytosolic
concentration, [NSD,-], computed from the NSD synthesis model (Kotidis et al., 2019). The nucleotide concentration inside the Golgi apparatus,
[Nucn], is taken to be saturating and is therefore fixed at the constant values reported in Table S1 (Kotidis et al., 2019).

The catalytic rate constant k ;; follows the pH-dependent expression (Villiger et al., 2016):

. i\2
golgi _ golgi
max 1 pH pHOPt
k=K exp| 1] ————— 1 | (D.4)
@,
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with the intra-Golgi pH estimated from the ammonia-based buffer relation

[Amm)]

_ [Amm] (D.5)
N:‘i(’lgl — [Amm]

pHgolgi - pKi()lgi +log )

where K7 (min™") is the maximal kinetic rate, pHggltg' is the optimal pH for enzyme j, @, ; is a dimensionless width parameter, pKi‘)lgl is the

apparent acid dissociation parameter, and N §°lgi is a fitted buffer capacity.
Each enzyme concentration along the Golgi cisternae follows a Gaussian (bell-shaped) profile:

— 7. 2
[Ej](z) = Ej max €Xp [—%<“—1m> :| s (D.6)

0j

where E; ., (mmolL™!) is the peak concentration, z; ,y is the axial position of this peak (scaled 0-1 from cis to trans), and o; is the standard
deviation that characterizes enzyme dispersion along the Golgi stack.
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