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Optimum Model-Based Design of Diagnostics Experiments (DOE)
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Diagnostics of lithium-ion batteries are frequently performed in battery management systems for optimized operation of lithium-
ion batteries or for second-life usage. However, attempting to extract dominant degradation information requires long rest times
between diagnostic pulses, which compete with the need for efficient diagnostics. Here, we design a set of efficient optimal hybrid
pulse power characterization (HPPC) diagnostics using model-based design of experiment (DOE) methods, applying knowledge of
degradation effects on pulse kinetics and cell properties. We validate that these protocols are effective through minimization of
uncertainty, and robust with Markov Chain Monte Carlo (MCMC) simulations. Contrary to traditional HPPC diagnostics which use
fixed pulse magnitudes at uniformly distributed state of charges (SOC), we find that well-designed HPPC protocols using our
framework outperform traditional protocols in terms of minimizing both parametric uncertainties and diagnostic time. Trade-offs
between minimizing parametric uncertainty and total diagnostic time can be made based on different diagnostics needs.
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As the energy industry moves toward renewable and environ-
mentally friendly resources such as solar and wind, energy storage is
becoming increasingly important.1 Lithium-ion batteries are ubiqui-
tous energy storage devices that use electrochemically active
particles to store and release energy through chemical reactions.2

As lithium-ion batteries operate, degradation occurs on the active
material particles while being observed at the electrode level through
capacity and power loss. Battery degradation is typically assessed
with macroscopic observables such as estimated reduction in
capacity, which reveals little information on the internal degradation
mechanisms of the active material (Fig. 1a). Determining the
mechanisms behind battery failure, however, can be important to
the continuous operation of a battery by the battery management
system,3 or to second-life usage and recycling procedures.4 Direct
reuse of specific electrodes is possible depending on the state of
degradation of each electrode, but the design of specific second-life
usage strategies is difficult unless methods are available to determine
and separate the physical degradation mechanisms.5,6

To extract and separate degradation mechanisms dominating
an electrode, many diagnostic methods have been proposed.
Symptoms of degradation such as loss of lithium inventory and
cathode/anode loss of active material have been extracted by recent
phenomenological diagnostic methods,7 such as area-specific im-
pedance measurements extracted by Electrochemical Impedance
Spectroscopy (EIS). However, none of these methods capture the
microscopic physics behind degradation. These degradation mechan-
isms include formation of the solid electrolyte interphase6 or the
cathode electrolyte interphase,8 loss of lithium in electrolyte from
side reactions,9 phase transitions and densification at the surface of
nickel-rich materials,10 particle cracking and contact loss,11 and
others. However, in many regimes, battery operation parameters
(and thus degradation mechanisms) have been found to be
nonidentifiable,12–14 which indicates that mechanisms are difficult
to separate from each other. Thus, well-designed diagnostics that can
extract physical mechanisms accurately are both difficult to design
and invaluable for diagnosing battery failure.

Common precise electrochemical diagnostics such as EIS are
difficult to apply in battery management systems,3 which require

real-time monitoring of degradation. Data-driven methods such as
(artificial) neural networks,15,16 dynamic programming,17 and ge-
netic algorithms18 have been applied to battery management systems
to assess degradation and optimize operation.19 The lack of physical
modeling included in these methods, however, causes a significant
loss of useful information since these systems are heavily reliant on
physical mechanisms. In recent work,20 we have shown through
electrochemical simulations that pulse diagnostics can accurately
extract dominant degradation mechanisms with modified Hybrid
Pulse Power Characterization (HPPC) methods. However, a large
amount of time is still spent performing diagnostics in these
protocols.

Reducing diagnostic time while retaining accuracy is imperative
for enabling online monitoring of battery health diagnostics,
especially important in battery management systems for the opti-
mized and safe operation of electric vehicles, or for efficient
diagnostics to determine second-life usage of lithium-ion
batteries.21,22 Modified HPPC methods apply intermittent pulses
and rests, where pulses can be powerful indicators of the power
capability of a cell after degradation.23,24 However, each pulse in a
protocol requires not only a long rest time to ensure that the initial
point is near equilibrium, but also a shifting time in between
different values of the State of Charge (SOC). Thus, the number
of accurate pulse measurements is limited. Each measurement is
time-intensive, and ensuring that the necessary information is
extracted and near equilibrium is crucial.

Here, we propose a framework to design the model/material-
specific optimal HPPC protocol that is effective, efficient, and robust
for identifying individual degradation parameters. The paper is
organized as follows: The Model description Section describes the
physical battery models applied in this study. The Design of optimal
HPPC protocols Section describes how a set of optimal HPPC
protocols are designed based on the parametric uncertainties and the
total diagnostic time. The Results and Discussion Section provides
the results and discussions of the proposed framework when applied
to the Nickel-Cobalt-Aluminum (NCA)-graphite full-cell batteries.
Finally, the Conclusion Section summarizes the overall results.

Methods

Lithium-ion batteries consist of two active material electrodes in
an electrolyte bath. During (dis)charge, electrochemical energy iszE-mail: braatz@mit.edu
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stored and released through reactions occurring at the surface of
active material particles in electrodes,25 with electrode-scale gradi-
ents supported by electrolyte transport processes. This process
occurs reversibly, with intercalation switching between the cathode
and the anode to transition between discharge and charge, with
current or voltage control. Higher voltages release more current,
providing increased power. Reaction models capture the relationship
between applied current and voltage released by the electrode. Thus,
accurate characterization of reaction models for current released at
high voltage pulses is imperative to understanding the optimized
operation of cells. As defined in Refs. 20 and 26, degradation can be
characterized with the full-cell fitness W, the degraded current
response relative to the nondegraded current response of a specific
voltage pulse. As the current response behaves as a saturation curve
after the voltage pulse (see Fig. 1b), the initial current measurement
after the pulse was used for calculating W to accurately capture the
kinetic information.

In Fig. 1b, in a full diagnostic protocol, the sequences usually
alternate between the resting step, for equilibrating initial config-
urations; the pulsing step, where the current response is captured
from a near-equilibrium initial state with a far-from-equilibrium
perturbation for diagnostics; and the switching step, where the SOC
in the cell is shifted. The expensive time requirements for each pulse
from relaxation and shifting between SOCs indicate that character-
izing the information content from each pulse can save expended
effort in diagnostics, ultimately reducing time and energy spent on
diagnostic protocols. Ultimately, enough information on the degra-
dation state of the system needs to be extracted while minimizing the
diagnostic time. In this section, we describe the simplified battery
model used in this study to predict diagnostics response and our
framework to design a set of optimal HPPC protocols.

Model description.—Full-cell battery models are introduced
through bridging individual electrode models for the cathode and
the anode. In this work, single-particle models are adopted for both
electrodes as in Ref. 20. Commonly, either voltage constraints or
current constraints are applied to a cell to extract electrochemical
power. Cell-level voltages are constrained through the voltage drop
between the cathode and the anode, φc − φa. The subscript “c”
indicates cathode, while the subscript “a” indicates anode, which
also holds for the later parts. Conservation between the full-cell is
constrained by equating the electrode-level currents at the cathode
(ic) and the anode (ia) to the cell-level current (icell) such that

ϕ ϕ( ˜ ) = − ( ˜ ) = [ ]+ +f i c R c c f i c R c c i, , , , , , , , , 1a a a a f,a a c c c c f,c c cell

where the reaction models constraining the applied current are
integral to the accurate solution of this approach. The first element
inside the parenthesis of each term indicates the filling fraction of
anode (ca) and cathode (cc), respectively. The last three elements
inside the parenthesis of each term are degradation parameters
where Rf,c and Rf,a are the film resistance of the cathode or anode,
respectively, c̃c and c̃a are the surface blockage of the cathode or
anode, respectively, and c+ is the electrolyte concentration of the
cell. Here, fc and fa relate the particle-level current to the electrode-
level for the cathode and anode, respectively, which are defined as

ε= ( − )
〈 〉

[ ]f L P
r

1
3

, 2L
p

where L is the electrode length, PL is the volume loading of the
active material, ε is the porosity of the electrode material, and 〈 〉rp is
the mean particle radius assuming the particles are spherical.
Electrode parameters used in our model are given in Appendix A
(Table A1), while solid diffusion parameters for the timescale
formulation were taken from Ref. 27.

An accurate reaction model is necessary for formulating parametric
uncertainties when designing the optimal HPPC protocols. Although the
standard thermodynamically reversible Butler-Volmer (BV) reaction
model25 is widely used to model electrochemical reactions, it often fails
to capture limitations from electron availability in the intercalation solid.
As such, the Coupled Ion-Electron Transfer (CIET) reaction model,28,29

which was verified with X-ray visualization of intercalation materials
during (dis)charge processes,30 was used in this work to model
electrochemical reactions in these materials. We can approximate this
reaction using Ref. 31 with

 
*

πλ
η λ η λ=

(˜ − )
( (− ) − ( )) [ ]+i

k c c
a c

4
, , , 30

f f

where *k0 is the exchange current density prefactor, c is the lithium
concentration in the intercalation solid, c̃ is the surface blockage
ratio from nickel-rich electrode surface reconstruction degradation,26

a+ is the activity of lithium ions in the electrolyte, and λ is the
Marcus reorganization energy indicating the environmental reorga-
nization energy in units of thermal energy (kBT/e). The function
 η λ( ),f is defined as

⎛

⎝
⎜

⎞

⎠
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λ
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Figure 1. a) Cartoon indicating full-cell capacity loss in lithium-ion batteries due to particle-level degradation mechanisms such as film resistance growth,
cracking, and surface blockage-related phase transformations. b) Diagram of an HPPC protocol, indicating the components of resting and switching times in
between pulses. Rests must occur before pulses to calibrate the initial state while switching times are necessary for navigating state of charge changes. The right
diagram indicates the use of current responses to voltage pulses to diagnose degradation mechanisms.
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where ηf is the dimensionless formal overpotential defined as
η η= − ( )+e e k T c alnf B (also in units of thermal energy), given
that η is the standard overpotential more common in electrochemical
reactions.32 The standard overpotential is described as

η ϕ μ ϕ= ( + ( )) − ( + ) + [ ]+ +e e c e k T a iRln , 5s B f

where μ(c) is the chemical potential of the lithium in the intercala-
tion solid, φ+ and φs are the electrical potentials of lithium ions in
the electrolyte and solid, respectively, and Rf is the increased film
resistance from degradation.

As derived in Ref. 20, the fitness response of the kth pulse for the
full-cell, Wk, can be expressed as

=

ˆ + ˆ

+
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where Ŵc and Ŵa are the half-cell fitness at the cathode and the anode,
respectively, which are expressed as
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for j= c, a.26,33 The differential conductance η∂¯ ∂i can be derived
from Eqs. 3 and 4.a

Design of optimal HPPC protocols.—We aim to design a set of
optimal pulse settings for HPPC protocols that efficiently explore
information-rich SOC range for distinguishing different degradation
mechanisms. To achieve this goal, we first consider physical
constraints for pulse settings. Then, we formulate the two objective
functions, the parametric uncertainties using model-based Design of
Experiments (DOE)34–36, and the total diagnostic time using scaling
analysis28, which are used for constructing Pareto fronts. Lastly, we
evaluate the robustness of the designed optimal HPPC protocols
using Markov Chain Monte Carlo (MCMC) method.

Constraints for pulse settings.—The competition of timescales in
the physical picture of a battery requires that specific physical
constraints must be applied to the magnitudes of applied pulses.
Different timescales from the particle-level reaction and diffusion
timescales28 to the electrode-scale transport timescales25 compete to
modify macroscopic behavior in an electrode. These constraints for
the pulse settings should be defined based on heuristics in order to
design practical HPPC protocols. In general, the HPPC protocol
should probe the SOC values either in monotonically increasing or
decreasing order to minimize the time of the total protocol (see
Fig. 1). Thus, we constrain the SOC values to be monotonically
increasing or decreasing in this work. The cathode filling fraction cc
was bounded from 0.4 to 0.8 to prevent extreme voltages in the
nickel-rich cathodes, which cause irreversible electrochemical or
mechanical damage to the electrode.37

Different regimes of timescale competition induce varying
macroscopic behavior, such as core-shell behavior or bulk/solid

quasi-equilibrium behavior28 in single particles. The bulk/surface
quasi-equilibrium behavior simplifies the understanding of degrada-
tion in a particle, which corresponds to the reaction-limitation
assumptions. Thus, the main physical constraint for applying the
fitness model is reaction-limitation,26 which constrains the bounds of
the voltage pulse magnitudes. Reaction-limitation is observed when
the ratio between the diffusion timescale and the process timescale is
small (if using parameters from the NCA-graphite electrode mate-
rials and the CIET reaction model presented in Appendix A).28 The
ratio is found to be

τ
τ ρ

=
∣ ∣〈 〉

∼ ( × ) × ∣ ∣ [ ]−i r

D F
i

3
1 10 , 8D,c

I,c

c p,c

min,c s,c

5
cell

for the cathode and

τ
τ

∼ ( ) × ∣ ∣ [ ]i0.1 , 9D,a

I,a
cell

for the anode, where τD and τI are the timescales for solid diffusion
and the process, respectively, icell is the cell-level applied current,
Dmin is the minimum diffusivity, F is Faraday’s constant, and ρs is
the lithium site density of active materials.

The diffusivity of the anode varies in orders of magnitude27 and
the metric is based on a rough scaling. If the upper bound for the
pulse magnitude ∣ΔV∣ is set to 200 mV, the ratio of timescales
approaches almost unity, indicating that the maximum voltage pulse
should be in that range. Additionally, the lower bound for the pulse
magnitude ∣ΔV∣ was set to 50 mV to ensure that the current response
to the voltage pulse is much larger than the measurement error,
which was the assumption used in Eqs. 15 and 18.

Formulation of parametric uncertainties.—In a pulse, mini-
mizing uncertainty is helpful in determining the extent to which
each degradation parameter influences the current response. From an
engineering perspective, the approach for finding the optimal HPPC
protocol can be formulated as model-based DOE, which searches for
the optimal model input u that results in a model output y that
minimizes the uncertainty of fitted model parameters θ.34,36 In this
system, u is a vector of pulse settings, θ is a vector of the
degradation parameters that capture cell degradation states, and y
is a vector of the HPPC results that is used for estimating θ. The
model-based DOE can be formulated as

* θ= Φ ( ) [ ]u uarg min , , 10
u

ED

where the superscript “ED” represents experiment design. The scalar
information content ΦED can be one of35

θ
θ

θλ

Σ
Σ

Σ

Φ = ( ( ))
Φ = ( ( ))
Φ = ( ( )) [ ]

θ

θ

θ

ˆ

ˆ

ˆ

u

u

u

tr , ,

det , ,

max , , 11
i

i

A

D

E

where θΣ ( )θ̂ u, is the covariance matrix of the estimated parameter,
( )Atr is the trace of the matrix A, ( )Adet is the determinant of A, and

λ(A) are the eigenvalues of A. We choose the D-optimality
(determinant) information content, ΦD, because of its ability to
accurately integrate over the degradation ranges in parameter
space.38

Each pulse experiment is performed at a specific SOC, defined
by cathode filling fraction cc, as well as an applied voltage ΔV
to the pulse. Therefore, each pulse is characterized by

= [ Δ ] ∈u c Vk k kc,
2. This implies that the full HPPC diagnostic

protocol can be designated through = [ ⋯ ] ∈u u uu N
N

1 2
2 ,

where uk is the input for the kth pulse and N is the total number
a  η∂ ∂ can be approximated to  η∂ ∂ f where the derivation can be found in Eq.
(D4) in Ref. 26.
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of pulses. Additionally, the degradation parameters θ are designated
through

θ = [ ˜ ˜ ] ∈ [ ]+R c R c c , 12f,c c f,a a
5

as described in the Model description Section. These are the main
physical degradation parameters assumed in this work. Other
degradation parameters can be included if their impact on reaction
kinetics can be analytically expressed.

The parameters in Eq. 12 represent the main degradation
mechanisms inside cells that fall into the reaction-limited
regime.28 For cells that fall into the diffusion-limited regime, other
parameters related to diffusion should be considered to accurately
investigate the degradation state. In this study, we assume reaction
limitation and the fitness measurements are the model output, which
can be expressed as = [ ⋯ ] ∈W W Wy N

N
1 2 .

The covariance matrix of the estimated parameters,
θΣ ( ) ∈θ̂

×u, 5 5 in Eq. 11, contains information related to the
uncertainty. For parameter estimation purposes, the Cramér-Rao
lower bound, which is the inverse of the Fisher Information Matrix
(FIM) I(u, θ),38,39 can be used to approximate the covariance matrix

θΣ ( )θ̂ u, .35,36 When assuming that the output vector y follows the
multivariate Gaussian distribution,  μ θ θΣ( ( ) ( )),N , the FIM is

T
⎜ ⎟
⎛
⎝
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θ θ θ θ
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2
tr , 13mn
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where Imn is mnth element of I, μ θ∂ ∂ ∈ ×
m

N 1 is a vector whose kth
element is ∂μk/∂θm, and θΣ∂ ∂ ∈ ×

m
N N is a matrix whose ijth

element is ∂Σij/∂θm.
When assuming sufficient rest time between each pulse, the

pulses are uncorrelated. Thus, the covariance matrix of the experi-
mental measurement as well as its inverse both become diagonal.
Then, Eq. 13 is simplified as

⎜ ⎟
⎛
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where Σkk is kkth element of Σ. Each diagonal element Σkk, which
corresponds to the measurement error ofWk, can be approximated by

∣Δ ∣ = − + Δ
¯ + Δ

≈ Δ
¯ ∣ − ∣ [ ]W W

i i

i i

i

i
W1 , 15cell

cell cell

where Δi is the current measurement error from the cycler
equipment, and icell and īcell are the cell-level current responses
from voltage pulses with and without degradation, respectively. The
last approximation in Eq. 15 holds under the assumption that the
current measurement error is much less than the current responses
measured. This approximation is reasonable as the measurement
error is ( )−10 4 A·m−2, whereas the current responses are ( )1
A·m−2 (when the voltage pulses are ( )102 mV). Thus, each
diagonal element Σkk can be approximated asb

⎜ ⎟
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By taking a partial derivative of Eq. 16 with respect to the
degradation parameter θm, the equation becomes
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Combining Eqs. 14–17 with the assumption that the current
measurement error is much less than the measurements themselves

(identical to the assumption used in Eq. 15), the approximation for
the FIM is

TΣ≈ [ ]−I S S, 181

where the kth row of the sensitivity matrix (i.e., the sensitivity of the
kth pulse), ∈ ×Sk

1 5, is defined as35,36
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The sensitivity matrix S captures the characteristics of the reaction
model (e.g., CIET model or BV model) and the electrode materials
(e.g., electrode size, particle size, porosity, site density, and volumetric
loading of active material), which enables our framework to
build model/material-specific optimal HPPC protocols. By applying
Eq. 6 to Eq. 19, the kth row of the sensitivity matrix Sk can be expressed
as
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Applying Eq. 7 to Eq. 21 results in
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for the sensitivity of the anode. Similarly, the derivation of Ŝ kc, and

Ŝ ka, in the BV model can be found in Appendix B.
Combining Eqs. 10, 11, and 18 leads to the final DOE

formulation for uncertainty minimization as

Tθ θ θ θΣ ΣΦ = ( ( )) ≈ ( ( ( ) ( ) ( ))) [ ]θ̂
− −u S u u S udet , det , , , , 24D 1 1

T* θ θ θΣ= Φ ≈ ( ( ( ) ( ) ( )))

[ ]

− −u S u u S uarg min arg min det , , , .

25
u u

D 1 1

The determinant of the covariance matrix is reciprocal to the
determinant of FIM I.

bIn this article, the subscript k implies that the variable is dependent on
= [ ( ) Δ ]u c c Vork k k kc, a, .
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Solving Eq. 25 requires knowledge of degradation parameters, as
sensitivity S and the covariance matrix Σ are functions of the
degradation state θ. In practice, we do not know the state of
degradation before we perform the HPPC tests, which generates a
“chicken-and-egg” problem. Here, we use a simple mean-field
averaging approach over the feasible region Θ (that is, the range
for possible degradation parameter values), which is defined as the
feasible region for degradation parameters θ, to design a generalized
HPPC protocol. The practicality of the generalized HPPC protocol
will then be validated over various degradation states within the
feasible region Θ in the later sections.

One DOE formulation that employs averaging is

* Θ= 〈Φ 〉( ) [ ]u uarg min , , 26
u

D

where 〈Φ 〉D is defined as the average over Θ, which can be expressed
as
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However, there is no explicit solution for 〈Φ 〉D as Eq. 16 implies that
īcell, which cannot be solved explicitly, needs to be calculated for
finding Σ. Therefore, Latin hypercube sampling,40 widely used in
various applications such as DOE,41–43 uniformity analysis,44–46 and
uncertainty analysis47,48 for efficiently exploring the parameter
space, was used to numerically solve 〈Φ 〉D . Then, Eq. 27 is modified
as

T⎛

⎝
⎜

⎞

⎠
⎟∑ θ θ θΣ= ( ( ( ) ( ) ( ))) [ ]
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N
S u u S ulog
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1 1
Latin

where NLatin is the number of samples used in Latin hypercube
sampling from Θ and the logarithm is applied to deal with the
changes in orders of magnitude. The Δi term can be removed in Σ
when calculating funcertainty as the solution for minimizing Eq. 28
does not depend on Δi.

Formulation of diagnostic time.—The long rest times and
switching times between SOCs in full diagnostic protocols are
detrimental to industrial processes for batteries, such as the operation
of battery management systems and second-life recycling. A
practical and economic objective to minimize is the total time spent
on diagnostics. The total time includes the pulse times, times spent
switching between different SOCs, as well as times spent in rest
states between pulses, where the latter two dominate. Minimizing
total time for diagnostics while retaining information saves practical
time spent on diagnostic cycles.

Relaxation times are applied before pulses to ensure a near-
equilibrium initial state when a voltage pulse is applied. To
formulate the relaxation times for such a system before a pulse,
we use the fact that the longest timescales in battery relaxation are
often from solid diffusion.28 Thus, the most important timescale
to consider is the diffusion timescale from shifts in SOC. To
obtain the relaxation times for this scale, we observe the mass
conservation equation in a single-particle reaction-diffusion
equation,25,49

∂
∂

= −∇· [ ]c

t
j, 29

with the flux j defined as

μ= − ( ) ∇ [ ]cD c

k T
j , 30

B

from the gradient in lithium chemical potential in the solid μ, where
c is the concentration of lithium in the intercalation solid and D(c) is
the solid concentration-dependent diffusivity. Here, the reaction
boundary condition is −n · j= R, where R is the intercalation
reaction rate and n is an orthogonal vector to the reactive surface
pointing outward. A scaling relation over the volume-averaged
reaction-diffusion equation indicates that the relaxation time needed
to equilibrate the particle between SOC shifts based on Ref. 28 is

τ α= Δ
( ( ))

[ ]→

< <

−

−

L c
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, 31c c

c c c

time

2

k k
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1

where αtime is a scaling factor and L is a length factor which
corresponds to the mean particle size 〈 〉rp . The change in the filling
fraction of the electrode, Δc, includes not only the shift between the
SOCs of the previous and next pulse (ck−1 and ck, respectively) but
also the change of SOC due to the previous pulse such that

ρ
Δ = ∣ − ∣ +

∣ Δ ∣
[ ]−

−
c c c

i t

p
, 32k k 1

cell,k 1 pulse

s

where Δtpulse is the pulse time, p is an areametric capacity, ρs is the
lithium site density of active material, and icell,k−1 is the cell-level
applied current density during the previous pulse. As icell,k−1 is
dependent on the degradation state, which is problematic as
discussed in the Formulation of parametric uncertainties Section,
it can be replaced by the nondegraded current ¯ −i kcell, 1, which serves
as an upper limit for the change of SOC. The second term in Eq. 32
is not considered when calculating the relaxation time before the first
pulse.

Eq. 31 is the minimum necessary relaxation time based on the
slowest timescale (solid diffusion) after a pulse. Thus, this necessary
relaxation time in the HPPC protocol can be separated into a
constant current shifting step with a specified C-rate and a relaxation
step with zero applied current. There are two distinct advantages of
formulating the total diagnostic time using the necessary relaxation
time indicated in Eq. 31. First, Eq. 31 is a conservative metric that
depends only on material properties, which ensures near-equilibrium
before applying the voltage pulse. Additionally, the necessary
relaxation time framework removes the dependence on the constant
current step on the C-rate, simplifying the understanding of relaxa-
tion.

Therefore, the nondimensionalized total diagnostic time can be
formulated by summing the necessary relaxation times indicated in
Eq. 31 for each pulse, which is expressed as
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where the longer relaxation time between the cathode and the anode
is selected throughmax. Note that the scaling factor is removed from
Eq. 33 as the total diagnostic time is proportional to the scaling
factor, which is independent of the choice of HPPC protocol.c

Construction of Pareto front.—Although it is desired to minimize
the parametric uncertainty extracted from the protocol, at the same
time, the total time spent performing diagnostics must also be

cThe appropriate value for αtime can be found based on either experimental data or
physics-based simulation. The total diagnostic time will be (ftimeαtime) h.
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controlled to reduce economic costs. Thus, optimizing the HPPC
protocol can be viewed as solving the multi-objective optimization
with two objective functions, funcertainty and ftime, with physics-based
constraints on pulse settings u. The Pareto front is constructed50,51 to
visualize the trade-off between the parametric uncertainty and
diagnostic time. We transform a multi-objective optimization into
a single-objective problemd for minimizing funcertainty while setting
ftime as a time constraint, which is formulated as

Θ( )

( ) ⩽
( ) ⩽ [ ]

f

f t

u

u

c u 0

min ,

s.t.

. 34

u
uncertainty

time const

ineq

An example of the inequality constraints cineq for the input vector u
(state of charge and voltage pulse magnitudes for each pulse) is
described in the Constraints for pulse settings Section. The
constructed Pareto front guides the choice of specific diagnostics
protocol under pre-defined time constraints.

In this study, Latin hypercube sampling in Eq. 28 was performed
with NLatin = 1,000, which is sufficient to explore a five-dimensional
degradation parameter space Θ, using pyDOE3 package.52 The
maximum diagnostic time tconst in Eq. 34 was gradually decreased
from 60 to 1.5, where the upper and lower bounds were chosen
based on system-dependent heuristics. The feasible region for Θ was
set to

⩽ { } ⩽ Ω·
⩽ {˜ ˜ } ⩽

⩽ ⩽ [ ]+

R R

c c
c

0 , 10.0 m ,

0.8 , 1.0,
0.8 1.0, 35

f,c f,a
2

c a

where the values were chosen based on the heuristics. Note that the
film resistances have units of Ω · m2 while the other degradation
parameters are non-dimensionalized. Degradation parameters out-
side these boundaries imply that the cell is significantly degraded
beyond future use.

The Python package pygmo, which is the Python implementation
of pagmo,53 with the Improved Harmony Search (IHS) algorithm54

was used to solve the constrained optimization in Eq. 34. In order to
efficiently apply the constraint that the cathode filling fractions
should be a monotonic function, the input variables cc,k can be
transformed as
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where v1,...,vN+1 are nonnegative values between 0 and 1 while 0.8
and 0.4 are for the upper and lower boundse of cc as described in the
Constraints for pulse settings Section. As a result, solving Eq. 34
finds the optimal ′* = [ * ⋯ * Δ * ⋯ Δ *] ∈+

+v v V Vu N N
N

1 1 1
2 1.

While this problem setting does not converge well even with
10,000N generations, we can effectively reduce the parameter space
for vi for faster convergence by integrating the domain knowledge
into the optimization, which was shown in various studies.55–57 For
our study, we first start with solving Eq. 34 by setting vN+1 = 0 to
allow the protocol to explore the full SOC range with a loose time
constraint, which converges quickly. Then, we can fix vN+1 to a
positive constant that is proportional to the tightness of the time
constraint (that is, how much the diagnostic time should be further
reduced). For example, the protocol can only explore up to
N/(N+ vN+1) of the full SOC range for vN+1 > 0 given that
v1,...,vN ⩽ 1 (see Eq. 36). Therefore, having a large vN+1 would
lead to a shorter diagnostic time based on our physical intuition that
the total diagnostic time is proportional to the SOC range the

protocol explores (see Fig. 5). In this way, the convergence speed is
improved by (1) decreasing the probability of guesses activating the
time constraint by reducing the SOC range and (2) reducing the
number of optimized parameters by one. Algorithm 1 leads to a
convergence within 1,000N generations, which leads to an order of
magnitude reduction in computational cost.

Algorithm 1. Modification of Eq. 34 for faster convergence

′* ←u0 Solution for Eq. 34 with =+v 0N 1

and =t 60const ▹ Converges quickly.

← ( ′*)t f u0 time 0

if ⩾t tconst 0 then ▹ Time constraint is not activated.

′* ← ′*u u0

else ▹ Time constraint is activated.

← ×−v t t

t

N
ref 5

0 const

0
▹ Tightness of tconst.

′* ←u Solution for Eq. 34 with =+v vN 1 ref and the given tconst

end if

Evaluation of robustness via Markov Chain Monte Carlo
(MCMC).—The robustness of the HPPC protocol (that is, how
well the given HPPC protocol can identify various degradation
states) is significant for diagnostic purposes given that there is no
available degradation information before performing the test. In this
work, MCMC simulations58 are used to evaluate the robustness of
the designed HPPC protocols. NMCMC samples are randomly chosen
from Θ and then MCMC simulations are performed to obtain the
posterior distributions of each degradation parameter. The samples
of θ in this section are different from the NLatin samples used for
calculating funcertainty to avoid overly optimistic results.

The emcee package with the parallel stretch move was used in
this work, which outperforms the standard Metropolis-Hastings
algorithm with a shorter correlation time and higher computational
efficiency through parallelization.59 The prior for degradation
parameters was assumed to follow the uniform distribution within
the feasible region Θ since there is no available information before
performing the HPPC test. Initial guesses were set by uniformly
distributing 24 walkers within the feasible region and we used
10,000 steps where the number of steps was chosen from the
autocorrelation analysis to ensure convergence of MCMC results.59

Results and Discussion

This section displays the results for the Pareto front and MCMC
simulations when our framework for optimizing the HPPC protocol
is applied to an NCA-graphite full-cell electrode20 with the CIET
reaction model. It should be noted that the same framework can be
applied to any kind of electrode combination and kinetic reaction
models.

The Pareto front was constructed as shown in Fig. 2 by solving
the optimization problem in Eq. 34 with the constraints cineq defined
as in the Constraints for pulse settings Section. Overall, Fig. 2
clearly displays the trade-off between the parametric uncertainty
(funcertainty) and the total diagnostic time (ftime). Changes in the Pareto
front while increasing the number of pulses were investigated in
Fig. 2a. The number of pulses was increased from five to thirteen,
which are respectively the minimum number needed for identifying
five degradation parametersf and the number of pulses where the
Pareto fronts begin to cross as shown in Fig. 2a, implying
convergence. It can be observed from Fig. 2a that using an increased
number of pulses reduces the parametric uncertainty under the
identical constraint for the total diagnostic time. Additionally, the
small amount of data points at ftime ⩾ 50 (that is, the time constraint
was not activated in that region) implies that 50αtime h (where αtime

can vary based on cell properties) is a sufficient diagnostic time fordConstrained single-objective optimization is used to deal with the specific time
constraint that will be given from the real application.

eThe upper and lower bounds should be swapped for the monotonically increasing
scenario.

fThe minimum number of required pulses is the same as the number of degradation
parameters based on Eq. 24.
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extracting the maximum identifiability performance. CPU times for
constructing the Pareto fronts can be found in Table I.

From the Pareto fronts constructed in Fig. 2, different optimal
HPPC protocols can be selected based on the given diagnostic
time constraint or the minimum requirement for accuracy. In this
study, four HPPC protocols indicated as the red, green, blue, and
orange stars (see Table II for descriptions) are selected for
performance comparison. The specific pulse settings u for the
chosen protocols are shown in Table III and the profiles are
displayed in Fig. 3. MCMC simulations are performed on
NMCMC = 100 randomly sampled θ from the feasible region Θ
where the results are demonstrated in Fig. 4. In this study, Δi was
set to 1 mA, which is the measurement error of the Maccor Series
4000. MCMC results for different Δi can be found in Appendix C
(Figs. C·1 and C·2). Runtime for MCMC simulations was roughly
13.5 hours and 19 hours for N = 10 and N = 13 cases, respec-
tively, on 3.2 GHz 16-Core Intel i9 personal computer with 32 GB
of RAM.

The HPPC protocol is considered robust if it can accurately
identify various combinations of degradation states θ. The perfor-
mance of each HPPC protocol was evaluated using two metrics,
error and uncertainty,

θ
θ θ

θ
( ) =

∣ ( ) − ∣
× [ ]

P
% error 100, 37n

n n

n

50% ,MCMC ,true

,true

θ
θ θ

θ
( ) =

( ) − ( )
×

[ ]

P P
% uncertainty 100,

38

n
n n

n

95% ,MCMC 5% ,MCMC

,true

where Px%(θn,MCMC) indicates the xth percentile over the posterior
distribution of θn obtained via MCMC. The main plot of each panel
in Fig. 4a displays the histogram of the percentage error for 100
different degradation states θ, whereas the inset shows the histogram

Figure 2. a) Pareto fronts for different N at a standard NCA-graphite cell. The black star indicates the standard HPPC protocol using uniformly distributed cc
values and the fixed ∣ΔV∣ value. The red and green stars are the two optimal HPPC protocols with N = 10, and the blue and orange stars are the optimal protocols
with N = 13 chosen for further analysis. b) Pareto fronts for high (circle) and low (cross) initial cc from overpotential unbalanced to balanced cells for N = 5.
( *k0,c, *k0,a) values for each color are (74, 0.6), (1, 1), and (0.141, 7.08) in A · m−2 units where the last two are hypothetical scenarios.

Table I. CPU time for constructing Pareto front in units of minutes. Each Pareto front was obtained from 35 different tconst values varying from 60
to 1.5 with Algorithm 1. Computation was performed on 3.2 GHz 16-Core Intel i9 personal computer with 32 GB of RAM.

Fig. 2a N = 5 N = 6 N = 7 N = 8 N = 9 N = 10 N = 11 N = 12 N = 13
(UB*/High**) 26 29 35 43 56 62 62 71 79

Fig. 2b UB/High UB/Low MB/High MB/Low B/High B/Low
(N = 5) 26 26 24 27 27 28

* UB, MB, and B stand for unbalanced, mid-balanced, and balanced scenarios, respectively, as used in Fig. 2b.
** High and Low indicate whether the initial cc of the protocol is either 0.8 or 0.4.

Table II. Description of five HPPC protocols chosen for MCMC validation.

Name Color Description

Standard (N = 10) Black Traditional protocol with fixed ∣ΔV∣ and uniformly distributed cc
Optimal 1 (N = 10) Red Protocol minimizing funcertainty in a smaller ftime than standard
Optimal 2 (N = 10) Green Protocol minimizing ftime while maintaining funcertainty
Optimal 3 (N = 13) Blue Protocol minimizing funcertainty in a smaller ftime than standard
Optimal 4 (N = 13) Orange Protocol minimizing ftime while maintaining funcertainty
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of percentage uncertainty. Fig. 4b demonstrates the predicted vs.
exact plots for each degradation parameter with P50% in bold lines
and a 90% confidence region (that is, P95% and P5%) around them.
Spikes in Fig. 4b indicate that the upper or lower bound of the
confidence region deviates much from the exact value, implying that
the associated degradation parameter is not well identified using the
given HPPC protocol.

Comparison between the standard and optimal HPPC proto-
cols.—The traditional approach for HPPC diagnostics uses
equally spaced intervals at 10% capacity increments with equal
and arbitrarily chosen rest times between the pulses.60 Overall,
the traditional approach is (1) not efficient as it does not consider
the asymmetric information contained in each pulse and (2)
not rigorous as it does not consider that the required rest time
depends on SOC due to the order-of-magnitude changes in solid
diffusivity.27,61 In comparison, our approach starts with a sensi-
tivity analysis comparing the information content between the
pulses, assigning heavier weights to information-rich pulses. We
account for the SOC dependence on relaxation time by estimating
the solid diffusivity of the material to formulate the physics-based
constraint on the total diagnostic time. Our approach allows an
implementation of model-based optimization (funcertainty) with

physics-based constraints (ftime), which gives us reliable optimal
solutions.

Fig. 4a demonstrates that optimal 3 has better performance than
the standard in identifying the cathode parameters by having a larger
proportion with low error and uncertainty. In other words, the
effectiveness of the HPPC protocol in identifying all degradation
parameters improved using the proposed framework. In addition,
ftime of optimal 4 is 20.68, which is only 45% of the standard
protocol (46.09, see Figs. 2a and 3). The proposed framework can
dramatically reduce the diagnostic time while retaining performance
in identifiability. The trade-off between parametric uncertainties and
diagnostic time is observed when comparing optimal 1/2 and 3/4,
respectively, in Figs. 3 and 4a.

Overall, our framework can be used to optimize the HPPC
protocol in two ways: (1) reduce the parametric uncertainties and (2)
reduce the diagnostic time. While the optimal protocols chosen in
this work are extreme cases where only one out of two objectives
was considered, the user can balance the two objectives based on
demand and the nature of physics inside the battery. For example,
the MCMC results in Fig. 4 show that the improvement of optimal 3
is not large. As large improvements in identifiability are not
expected, the user might focus on reducing the diagnostic time.
That being said, our overall recommendation is for the optimal 4
protocol to be applied.

The position of spikes of the confidence interval varying for
different HPPC protocols in Fig. 4b implies that there is no single
ultimate HPPC protocol that shows good performance for every
degradation state. In addition, the size of the confidence region for
Rf,c tends to increase as the cell degrades. This implies that
identifying the degradation parameters is harder as the cell degrades.
This phenomenon indicates the importance of having a good feasible
region (that is, having a small volume around the exact degradation
parameters) when designing the HPPC protocols, especially near
end-of-life.

Information dependency on kinetic parameters.—The impact of
the overpotential balance based on kinetic properties20 on the Pareto
front is investigated in Fig. 2b. The overpotential balance of a cell is
the ratio between the required voltage drop on each electrode to
extract the same full-cell current, which is highly dependent on kinetic
properties as well as electrode design. Specifically, the overpotential
balance is related to the differential conductance of the electrode as
well as the ratio between particle-level and cell-level areas, expounded
in Ref. 20. For the application in this section, the graphite electrode
was found to be overpotential dominant since the NCA electrode has a
higher exchange current density, which caused higher sensitivity in
discharge pulses or high cathode filling fraction pulses. To understand
these effects, hypothetical cells with different overpotential balances
were considered by varying exchange current density prefactors at the
cathode and the anode. For the overpotential unbalanced cell, the

Table III. Pulse settings u for the chosen HPPC protocols.

Protocol Variable 1 2 3 4 5 6 7 8 9 10 11 12 13

Standard (Black) cc .800 .800 .700 .700 .600 .600 .500 .500 .400 .400
ΔV (mV) 200 −200 200 −200 200 −200 200 −200 200 −200

Optimal 1 (Red) cc .800 .800 .724 .678 .676 .606 .481 .410 .410 .408
ΔV (mV) −199 −199 −200 195 −200 200 −200 200 −200 200

Optimal 2 (Green) cc .800 .741 .707 .653 .645 .587 .530 .472 .418 .417
ΔV (mV) −200 −200 −200 199 200 200 −200 −200 −200 200

Optimal 3 (Blue) cc .800 .800 .726 .714 .662 .655 .636 .625 .510 .405 .403 .403 .400
ΔV (mV) −200 −200 −200 −198 195 −200 193 192 −198 200 −200 −200 200

Optimal 4 (Orange) cc .800 .800 .800 .799 .797 .734 .704 .682 .679 .664 .626 .626 .605
ΔV (mV) −198 200 −58 200 −199 −200 −53 −199 190 197 −196 199 −185

Figure 3. HPPC voltage pulse procedures plotted for standard, optimal 1,
optimal 2, optimal 3, and optimal 4 protocols for comparison with respect to
nondimensionalized time units rescaled by αtime.
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standard fitted values of exchange current densities at the cathode
( * = · −k 74 A m0,c

2) and the anode ( * = · −k 0.6 A m0,a
2) were chosen as

shown in Appendix A. Hypothetical overpotential balanced cells were
used for comparison, with the final cell in Fig. 2b being a completely
overpotential balanced state by setting the conductance ratio as
defined in Eq. (19) in Ref. 20 to unity using scaling analysis.g

These hypothetical cells have little variation in information extraction
ability related to the initial cathode filling fraction, while the
imbalanced cells vary on orders of magnitude based on the initial
cathode filling fraction. It can be observed from Fig. 4 that the cathode
parameters (Rf,c and c̃c) are much harder to identify than the anode
parameters (Rf,a and c̃a) and electrolyte parameter (c+). Difficulty in
identifying the cathode degradation parameters was expected, as the
graphite anode is the overpotential dominant electrode.20

Information dependency on the state of charge.—The initial
configuration, or whether the diagnostic protocol is performed at a
charged or discharged state, significantly influences the information
extraction from pulse diagnostics as observed in Fig. 2b. For an
overpotential balanced cell, the absolute information content does
not depend on the initial configuration. However, for an over-
potential unbalanced cell, the absolute information content from
different initial configurations can be off by many orders of
magnitude. Specifically, it is observed from Fig. 2b that even a
short diagnostic cycle from the discharged state can have the same
information content as a diagnostic cycle from the charged state with
a diagnostic time twenty times longer. In contrast, this change in

uncertainty is not observed for an overpotential balanced cell (note
that funcertainty is the logarithm of the information content). Thus,
based on whether the cell is overpotential balanced or not, the initial
configuration could be extremely important for designing an
accurate diagnostics protocol.

To further investigate this asymmetry in information in over-
potential unbalanced cells, we can track the trend of designed pulses
in Fig. 3 and Table III. As the diagnostic time constraint is tightened,
smaller changes in between the SOCs of the pulses are chosen. This
shortens the total diagnostic time by reducing shifting and relaxation
times required between pulses. When the time minimization is
weighed more heavily, most pulses are designed to be at a
discharged state with discharge voltage pulses (for the NCA-graphite
cell with the anode being the overpotential dominant electrode). This
correlates with observations in Ref. 20 where higher cathode filling
fractions and discharge pulses for a similar cell have more informa-
tion, decreasing parametric uncertainties. This asymmetry in in-
formation content based on SOC for an unbalanced cell explains
why protocols with a short diagnostic time requirement have
asymmetric information content between (dis)charged states.

To understand scaling in the trade-off of the Pareto front plot, we
display the range of the cathode filling fractions explored in the
protocol with respect to the diagnostic time constraint in Fig. 5. The
scaling of pulse range with respect to diagnostic time is nearly linear.
Additionally, the coefficients of the linear scaling between balanced
or unbalanced electrodes starting at (dis)charged states are extremely
similar. Practically, the range of the SOCs in a pulse protocol is
related to the total relaxation time for each pulse, as defined in
Eq. 33. When the cathode filling fraction changes in a pulse protocol
occur in a sequential fashion, the sum of the cathode filling fraction

Figure 4. The performance of the standard (black) and the four optimal (red, green, blue, and orange) HPPC protocols for identifying Rf,c, c̃c, Rf,a, c̃a, and c+ are
evaluated via MCMC results withΔi = 1 mA. One hundred different θ are randomly sampled from Θ to evaluate the robustness of HPPC protocols. a) The main
plot of each panel displays the histogram of the percentage error whereas the inset shows the histogram of the percentage uncertainty. b) Predicted vs. exact plots
for each degradation parameter with P50% in bold lines and 90% confidence region marked.

gFlip between high and low initial cathode filling fractions for the overpotential
balanced cell in Fig. 2b implies that such *k0 values caused an overcorrection that
the NCA cathode became overpotential dominant.
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changes in between pulses is equal to the total range of the cathode
filling fraction. Frequently, either the cathode or the anode diffu-
sivity dominates that of the entire cell, indicating that the relaxation
time can be approximated as

≈
〈 〉 ( − )

( ( ))
[ ]

= < <
f

r c c

c D c
max

min
, 39

j

j j j

c c c j j j
time

c,a

p,
2

,max ,min

j j,min ,max

where cj,min and cj,max indicate the minimum and maximum filling
fraction of either cathode or anode explored during the HPPC
protocol. Eq. 39 explains a nearly linear relationship between the
range of the cathode filling fraction and the diagnostic time where
the coefficient of this linear relationship is dependent only on
material properties, specifically the solid diffusivity of the material
as well as the particle size.

We emphasize the importance of this work by showing that
diagnostics should not be arbitrarily designed, since pulse relaxation
times should be dependent on SOC as shown in Eq. 31. Solid
diffusivity changes in the material control the necessary relaxation
time for each pulse. If equal relaxation times are chosen for each
pulse as in arbitrarily designed HPPC, some SOCs may not have
complete relaxation, while unnecessary time may be spent ensuring
relaxation on others. Thus, for rigorous minimized total diagnostic
time, pulses and relaxation times should be designed based on
specific material properties.

Overall, we observe that the trade-off between time and accuracy
occur in diagnostics due to a nearly linear relationship between the
SOC range and the time constraint. However, choices of initial
configurations before diagnostics can significantly influence the
absolute amount of information content within the diagnostic pulses.

Figure 5. a) Minimum cathode filling fraction of optimally designed protocols applying different diagnostic time constraints for varying numbers of pulses
N = 5,…,13. Different optimal protocols and the standard protocol are indicated by red, green, blue, and orange stars or black stars. The initial configuration of
this cell is set to be cc = 0.8. b) Minimum or maximum cathode filling fraction of optimal protocols at different diagnostic time constraints comparing
overpotential balanced or unbalanced cells. Properties of the overpotential balanced or unbalanced cells are shown in Fig. 2b. The initial configuration of this cell
is either charged or discharged, indicated with different cathode filling fractions (cc = 0.4 or 0.8).

Figure 6. Graphical descriptions of the two possible approaches for incorporating the previous diagnostic results for setting the appropriate feasible region Θ.
The lower bound for Rf,j and the upper bound for c̃j and c+ are set to the estimated parameter values from the previous diagnostic results while a) the shrinking
window approach uses the fixed upper bound for Rf,j and the lower bound for c̃j and c+, and b) the sliding window approach uses the fixed length of the window.
(Θ is a five-dimensional space but was reduced into a three-dimensional space in this Fig. for simplicity by introducing j = c, a.)
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Incorporation of the previous diagnostic results.—As discussed
in the Comparison between the standard and optimal HPPC
protocols Section, it is important to set a good feasible region Θ
that leads to a high identifiability. One main novelty of this work is
how our framework adjusts the optimal HPPC protocol by incorpor-
ating previous diagnostic results. Since the degradation state of the
battery cell is a monotonic function with time (that is, film
resistances increase while the rescaled capacity and electrolyte
concentration decrease as a function of time), the feasible region
can be updated based on the previous diagnostic results. For
example, a shrinking window approach (see Fig. 6a) can be
considered where the least degraded corner of the feasible region
Θ (the lower bound of the film resistances and the upper bound of
rescaled capacity and electrolyte concentration) is updated to the
degradation state θ that was estimated from the previous diagnostic
cycle, reducing the hypervolume of the feasible region Θ. Similarly,
a sliding window approach (see Fig. 6b) can also be considered
where the feasible region Θ is sliding toward the direction that the
known degradation state θ will move in. Analogously to the
shrinking window approach, the least degraded corner of the feasible
region is set to the degradation state measured from the previous
diagnostics, with fixed lengths for each dimension. Overall, the
boundary of the hypervolume of the feasible region can be set based
on the physical heuristics of degradation bounds.

Conclusion

This study proposes a novel framework for optimizing HPPC
protocols for extracting degradation information in kinetics from
lithium-ion batteries by considering properties specific to the reaction
model and electrode materials. A two-objective optimization was
defined by formulating the parametric uncertainty for reaction-limited
degradation20 and the diagnostic time using scaling analysis.28 Model-
based DOE was used to minimize the parametric uncertainty while the
diagnostic time was used as a constraint to construct the Pareto front.
While the degradation state is not known a priori (which is necessary
for designing the optimal HPPC protocol), a generalized optimal HPPC
protocol was designed by applying the mean-field average approach
over an expected feasible region. The robustness of the designed HPPC
protocols was evaluated by performing MCMC simulations for various
degradation states.

While our framework can be applied to any kind of reaction
model and electrode material, the application to an NCA-graphite
electrode full-cell with the CIET reaction model was demonstrated.
A trade-off between the parametric uncertainty and the total
diagnostic time was observed from the Pareto front (see Fig. 2).

Several optimal HPPC protocols obtained from the Pareto front were
compared to the standard HPPC protocol with uniformly distributed
cathode filling fractions and fixed magnitude of voltage pulses. By
using our framework, the total diagnostic time could be reduced
relative to the standard protocol by 45% without sacrificing the
identifiability performance. The information dependency on the SOC
was also investigated using hypothetical overpotential balanced
cells.

Although much can be learned from our optimal model-based
DOE system, it must be emphasized that these methods are only
applicable in reaction-limited systems for extracting degradation.20

Exact knowledge of the relationship degradation has on the kinetics
is also necessary for this model. Additionally, our system lacks
experimental validation, which will be investigated in future work.
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Appendix A. Electrode Parameter Definitions62

Table A1. Electrode parameters used in the Results and Discussion Section.

Variable Name Definition NCA Cathode Graphite Anode Units

c0 Initial electrode concentration 0.8595 0.0142 —-
Dmin Minimum diffusivity27 2.9e-15 1.54e-15 m2 · s−1

f
Porous electrode rescaling ratio, ε( − )L P1

A

VL
p

p

551 10.98 —-

*k0 Prefactor for exchange current density63 74 0.6 A · m−2

L Length of electrode 6.4e-5 8.3e-5 m
PL Volumetric loading of active material 0.7452 0.8277 —-
〈 〉rp Mean particle radius 2e-7 1.6e-5 m

ε Porosity 0.2298 0.1473 —-
λ Reorganization energy of intercalation solid63 5 8 kBT
ρs Site density of electrode active materials 3.276e28 1.7438e28 m−3
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Appendix B. Sensitivity Analysis for Butler-Volmer Reaction

For different reaction models, the fitness values are different. For
the classical BV reaction model,25,49 the fitness at a half-cell
electrode is as in Ref. 26,
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Similarly, the sensitivities for the BV model can be calculated by
taking the partial derivative of Ŵ in Eq. B·1 over partial derivatives
of θ. The sensitivity of the half-cell fitness for the BV model with
α= 0.5 is
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Appendix C. MCMC results for Δi = 0.3 mA and Δi = 5 mA

Figure C·1. The MCMC results for Δi = 0.3 mA.
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