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SUMMARY
Optimization of the formation step in lithium-ion battery manufacturing is challenging due to limited physical
understanding of solid-electrolyte interphase formation and the long testing time (�100 days) for cells to
reach the end of life. We propose a systematic feature-design framework that requires minimal domain
knowledge for accurate cycle life prediction during formation. By only using two simple QðVÞ features de-
signed from our framework, extracted from formation data without any additional diagnostic cycles, we
achieved an average of 9.87% error for cycle life prediction. The physics-based investigation guided by
the two designed features shows that the voltage ranges identified by our framework capture the effects
of formation temperature and microscopic-particle resistance heterogeneity. By designing highly predictive,
robust, and interpretable features, our approach can accelerate industrial battery formation research,
leveraging the interplay between data-driven feature design and mechanistic understanding.
INTRODUCTION

Accurate lifetime prediction of lithium-ion batteries acceler-

ates battery optimization and improves safety.1–4 Although

this task is challenging due to complicated and convolved

degradation mechanisms, various studies have demonstrated

the potential in using data-driven approaches,5–13 physics-

based approaches,14–18 and hybrid approaches.19–26 For

accurate battery-health monitoring, diagnostic techniques

such as differential voltage fitting (DVF),27–30 incremental ca-

pacity analysis (ICA),31,32 electrochemical impedance spec-

troscopy (EIS),10,33–35 and hybrid pulse power characterization

(HPPC)36,37 were developed for physics-based feature extrac-

tion during battery operation. Further optimization of these

diagnostic techniques includes novel state of health (SoH)

feature development38–41 and diagnostic time reduction.42,43

Compared with the extensive research on lifetime prediction

during operation, there have been few studies on lifetime predic-

tion during the manufacturing process (i.e., extreme early cycle

life prediction) because of the limited availability of public

manufacturing data. In fact, the cycle life can vary greatly based

on the protocol used during formation, in which a passivation

layer of solid-electrolyte interphase (SEI) is rapidly formed on

the anode to limit further degradation during use. For example,
All rights are reserved, including those
Weng et al.44 showed that the nickel manganese cobalt (NMC)/

graphite pouch cells with the fast-formation protocol proposed

byWood et al.45 and An et al.46 had on average�25% longer cy-

cle lives than the pouch cells with a baseline formation protocol

when aging the cells in both room-temperature and high-tem-

perature (45�C) cases. Recently, Cui et al.47 showed that the cy-

cle life can vary 2-fold by only manipulating the formation proto-

cols. Moreover, the formation step is closely related to battery

degradation and safety concerns,48 highlighting the importance

of optimizing formation.

Extreme early cycle life prediction usingmachine learning (ML)

can accelerate the optimization of formation protocols and help

build mechanistic understanding to the extent that features

correlated with cycle life can be identified in the formation

data. Weng et al.44 proposed the low state-of-charge (SoC)

resistance ðRLSÞ as a feature for extreme early cycle life predic-

tion, achieving �8% error49 (�15% error for a dummy model)

over the dataset composed of 40 cells with two different forma-

tion protocols using the single feature based on the strong linear

correlation between RLS and the cycle life. RLS is not only predic-

tive but also practical since it does not require additional equip-

ment to be installed in the manufacturing process, unlike other

characterization techniques such as EIS,46,50,51 X-ray tomogra-

phy,52–54 or acoustic time of flight (ToF).55,56 Furthermore, RLS
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Figure 1. Schematic of formation protocols used for generating the

dataset

A total of 62 protocols were tested by manipulating the six formation-protocol

parameters: C-rate for the two-step charging (CC1 andCC2), the cutoff voltage

between the two CC steps ðCVÞ, number of cycles between the first charge

and last discharge step ðnverÞ, formation temperature ðTÞ, and the rest time

ðtOCVÞ. Three common steps among various formation protocols are indicated

in blue: the first charge step (step A), the last discharge step (step B), and the

first discharge step (step C). The figure is modified from Figure 1 in Cui et al.47
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is easy to interpret since the feature is sensitive to lithium loss

during formation.44

While RLS is an interpretable, predictive, and an easy-to-

implement feature, there are areas for further improvement.

For example, the RLS feature is highly sensitive to the SoC value

where the resistance was measured, and thus its use requires

accurate SoC estimation. According to Weng et al.,44 the RLS

difference between the two formation protocols is roughly 10

mU (see Figure 3C in Weng et al.44). Given that the resistance

varies roughly 75 mU with respect to 4% change in SoC at a

low-SoC region (see Figure S9A in Weng et al.44), even a 0.5%

error in SoC estimation can smear out the strong negative cor-

relation between RLS and the cycle life. Therefore, an additional

low-rate cycle, which roughly takes a day to complete, is

needed after the formation step to accurately calculate the

full-cell SoC. Furthermore, RLS only works for cells that undergo

the same formation temperature (see Note S1). This fact indi-

cates that a single RLS feature is insufficient for optimizing for-

mation, especially given that the formation temperature greatly

impacts the cycle life.47 These limitations motivate the develop-

ment of new features that are (1) obtainable without additional

diagnostic cycles and (2) capable of comparing formation proto-

cols with different temperatureswhile still retaining the strengths

of RLS.

In this work, we propose a systematic framework to automat-

ically design predictive yet interpretable features (i.e., transfor-

mation of input data) for regression problems. This framework
2 Joule 9, 101884, May 21, 2025
is especially useful for investigating systems with complicated

physics, such as SEI formation,57 where automatic feature

extraction can be more effective than handcrafted features that

are limited by themany unknown aspects of the underlying phys-

ics. The performance of the designed features (i.e., the features

designed from the proposed framework) for predicting the cycle

life is then compared with agnostic and autoML approaches.

Finally, we conduct a physics-based investigation, which is

guided by the designed features, using a distributed-resistance

model to explain the outstanding performance of the designed

features.

METHODS

Description of the dataset
A dataset of 186 single crystal Li½Ni0:5Mn0:3Co0:2�O2 (SC-

NMC532)/artificial graphite (AG) pouch cells with 62 different for-

mation protocols (i.e., 3 cells per formation protocol) and an

identical aging protocol, generated by Cui et al.,47 was used in

this study. The dataset includes 10 fast-formation protocols

where both C-rates during the two-step charging step are

greater than 1 C, which recently gained interest for improving

the cell performance while reducing production costs.44–47

Among the 186 pouch cells, we used 178 cells that reached

the end of life (i.e., having a discharge capacity measured at

0.75 C constant current (CC) discharge step below 80% of its

initial value measured at 0.75 C CC discharge step) without

experimental failures such as shorting or broken tabs. Six pa-

rameters were varied in the dataset: the current for two-step

CC at the first charge step (CC1 and CC2), the cutoff voltage be-

tween the two CC steps ðCVÞ, the number of cycles between the

first charge and last discharge step ðnverÞ, the temperature dur-

ing the formation step ðTÞ, and the rest time after the formation

step ðtOCVÞ. The six parameters were chosen using Latin hyper-

cube sampling (LHS) for its ability to explore the parameter

space efficiently.58 Detailed data interrogation results using the

six formation-protocol parameters and cycle life can be found

in Note S2. We define three common steps that appear in all

62 formation protocols (see Figure 1): the first charge step

(step A), the last discharge step (step B), and the first discharge

step (step C). Most variations among the formation protocols are

encoded in step A whereas steps B and C undergo the identical

operating protocol at each T.

As a preliminary analysis, we constructed physics-agnostic

ML models that map the six formation-protocol parameters to

the cycle life. While the agnostic models cannot capture cell-

to-cell variability (i.e., the variability between the cells that un-

dergo the same protocol), they serve as a good baseline for eval-

uating model performance since the features directly encode the

formation protocol. In this work, we used nested cross-validation

to avoid information leakage,59–62 with the detailed description

provided in Note S3.

A total of 62 formation protocols were grouped into five sets,

where one set was used as the test set and the remaining four

as the training set in each outer fold to evaluate themodel perfor-

mance (see Figure S3). Within each outer fold, the inner loop was

performed by dividing the training set into ten subsets, with one

being used as the validation set and the others as the training set



Table 1. Hyperparameters of ML algorithms

ML algorithm Hyperparameters #

RR L2 penalty term 1

EN L1 penalty term, L2 penalty term 2

PLS number of principal components (PCs) 1

SPLS number of PCs, sparsity 2

RF maximum depth of trees 1

SVR regularization parameter, kernel coefficient,

margin of tolerance

3

XGB maximum depth of trees, L2 penalty term 2

ALVEN degree, L1 penalty term, L2 penalty term 3

LCEN degree, L1 penalty term, L2 penalty term 3

Table 2. Description of three categories for constructing

agnostic models

Category description Options #

Formation protocol

parameters

full set (CC1, CC2, CV , nver; T, tOCV) 2

subset (CC1, CC2, CV, T )

Log-transformed output yes, no 2

ML algorithms (linear) RR, EN, PLS, SPLS 13

(nonlinear) RF, SVR, XGB

(nonlinear quantifiable) ALVEN,

LCEN with degree of 1, 2, 3

The subset of formation protocol parameters was selected based on

shapley additive explanations (SHAP) analysis73 conducted by Cui et al.47
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in each inner fold for optimizing the hyperparameters listed in Ta-

ble 1. A total of 52 agnostic models were constructed based on

the combination of categories listed in Table 2. Smart process

analytics (SPA) software63 was used for model construction,

which includes a suite of static ML algorithms: ridge regression

(RR),64 elastic net (EN),65 partial least squares (PLS),66 sparse

partial least squares (SPLS),67 random forest (RF),68 support

vector regression (SVR),69 XGBoost (XGB),70 algebraic learning

via elastic net (ALVEN),71 and lasso-clip-EN (LCEN).72

In this work, the best model is defined as the one with the

smallest summation of themedian andmaximummean absolute

percentage error (MAPE) among the five outer folds to consider

both average and extrapolation performances. Among the 52

agnostic models, the best model was the case with a subset of

parameters, log-transformed output, and XGB algorithm (see

Table 2), which had median and maximum MAPE of 11.06 and

11.35, and root mean square error (RMSE) of 107.10 and

124.81, respectively. Although the best agnostic model performs

well, none of the agnostic models constructed in this study can

be used for evaluating formation protocols that do not follow

the (two CC charge step – nver CC charge/discharge cycles –

CC discharge – tOCV rest) template used by Cui et al.47 This lim-

itation arises because not all six formation-protocol parameters

used in the agnostic models can be extracted from such proto-

cols. Furthermore, the model cannot be used for diagnosing in-

dividual cell quality as it cannot capture the cell-to-cell variation.

Systematic feature-design framework
This section describes the workflow of the proposed systematic

feature-design framework asdisplayed in Figure 2.Webeginwith

extracting the input data (i.e., the source for designing features)

candidates from the raw measurements. Then, the promising-

ness of each candidate is evaluated based on the autoML

approach. After determining the promising input data types, we

determinewhich value of penalty term l to use for the fused-lasso

model. Then, the features are designed based on the fused-lasso

coefficient b that maps the selected input (QðVÞ in step B) to the

output (cycle life). Last, the features are downselected to finalize

the designed features.

Extraction of input data
The dataset contains seven measurements as a function of time

ðtÞ during the formation process: current ðIÞ, voltage ðVÞ, capac-
ity ðQÞ, energy ðEÞ, temperature ðTÞ, cycle index, and step index,

where each measurement was taken at every 3 mV or 5 s for the

CC step and at every 3 mA or 5 s for the constant voltage (CV)

step, whichever comes first. Among various possible input

data combinations, where the input variable (i.e., x in fðxÞ) and
the function (i.e., f in fðxÞ) are selected from the measurements

mentioned above, domain knowledge can be used to narrow

down the most promising input data candidates. For example,

the current I can be discarded because I is constant for most

of the process. While t, V , and Q are monotonic functions within

each step A, B, and C, and thus can be considered as input vari-

ables, the range for V is identical for all formation protocols

whereas the range for t and Q within each step may vary from

cell to cell. Therefore, the t and Q should be normalized when

used as the input variable (i.e., ~t; ~Q˛ ½0; 1�). However, we may

not use ~t and ~Q as input variables in step A since a single ~t cannot

specify the SoC of the cell whereas a single ~Qmasks the impact

of C-rate, which greatly affects the electrode-utilization range,47

given that the C-rates vary by orders of magnitude across

different formation protocols in step A. In addition, any input

data of fð~tÞ and fð ~QÞ are redundant for the CC steps due to

Q = It, implying that only one may be considered for steps B

and C. Thus, six input data types74 are considered for the candi-

dates: QAðVÞ, tAðVÞ, QBðVÞ, VBð~tÞ, QCðVÞ, and VCð~tÞ.

Evaluation of input data
To design regression models with high prediction accuracy and

robust generalization performance, we propose a method to

select the input data that is promising for designing highly predic-

tive features in this section. First, we construct autoML models

using each input data candidate to evaluate their overall perfor-

mance. Here, the autoMLmodel refers to anMLmodel using fea-

tures that are automatically extracted and selected without hu-

man assistance.75 The tsfresh package,76 which is a highly

parallelized package recently used in lithium-ion battery applica-

tions35,77,78 for extracting roughly 800 features from time-series

data and guiding feature selection based on the feature impor-

tance,79–81wasused in this step. From the featuresgeneratedus-

ing tsfresh, we can construct a total of 2,448 autoML models

based on the five categories listed in Table 3. For example, the

autoML model with the first element in each category is con-

structed by first feeding QAðVÞ to the tsfresh.extract_features
Joule 9, 101884, May 21, 2025 3



Figure 2. Systematic feature-design frame-

work for extreme early cycle life prediction

The input to the framework is the measurements

collected during the formation and the output is

the two QBðVÞ features where which (1) portion of

the data to be used (e.g., steps A, B, or C), (2) data

type to be used (e.g., QðVÞ, tðVÞ, or VðtÞ), and (3)

voltage or time values to be used for partitioning

the input data are all systematically determined

within the framework. The two QBðVÞ features are

used to evaluate the formation protocol during the

formation step.
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function, followed by pre-screening the features with p values

larger than 100, followed by further feature selection using the

tsfresh.select_features function with log-transformed cycle life.

Then, these selected features are mapped onto the log-trans-

formed cycle life using elastic net regression.

Similar to the evaluation of agnostic models, the median and

the maximum of MAPE and RMSE among the outer folds were

used as the performance metrics to evaluate each input data

candidate (see Note S4). Given that we are constructing 408 au-

toML models for each input data type based on the combina-

tions of categories listed in Table 3, where the number of features

spans from one to more than hundreds, the input data type is not

considered promising if none of the autoML models from the

input data type outperform the best agnostic model in any of

the four performance metrics.

The best autoMLmodel with four input data types from stepsB

and C outperforms the best agnostic model in either MAPE or

RMSE metrics, whereas the best model with two input data

types from step A is strictly worse (see Figure S4). While this

may seem counterintuitive as the features from step A directly

encode the protocol-to-protocol variability and thus have more

information than those from steps B and C, it can be explained

by the discussion in Geslin et al.61 According to Geslin et al.,61

the features that encode operational variations (e.g., features

from step A) are less capable of capturing cell-to-cell variability.

This limitation arises because the predictive power of such fea-

tures heavily depends on the characteristics of the protocols
4 Joule 9, 101884, May 21, 2025
used for training. Therefore, the autoML

models from step A would perform worse

than the autoML models from steps B

and C for predicting the cycle life of cells

with untrained formation protocols (i.e.,

the extrapolation case; see the first row

of Table 2 and the first panel of Figure S6

in Geslin et al.61). Note that the 62 forma-

tion protocols used in the dataset from

Cui et al.47 were designed using the

LHS method over six formation-protocol

parameters, indicating that the five outer

folds in the nested cross-validation have

a high level of extrapolation. Thus, the re-

sults in Figure S4 emphasize the impor-

tance of features that do not explicitly

encode the operational variations for pre-
dicting the cycle life of the cells during formation for untrained

formation protocols. While there are four input data types from

steps B and C, we focus on QBðVÞ in the subsequent parts since

it showed the best performance in the MAPE metrics (see Note

S9 for feature-design results with VBð~tÞ, QCðVÞ, and VCð~tÞ).

Determination of the linear-regression coefficient from
input data
As an alternative to using nonlinear features, linear regression on

high-dimensional data can also learn a nonlinear response.82

One advantage of using linear-regression models is that we

obtain a regression coefficient b that can give insights on how

each portion of the input data contributes to the output estima-

tion.13,83 Among various linear models, we use the generalized

lasso with penalty on the differences of adjacent coefficients

(often referred to as fused-lasso84):

min
b˛Rp

1

2
ky � Xbk22 + lkDbk1 with

D =

26664
� 1 1 0 / 0

0 � 1 1 1 «

« 1 1 1 0

0 / 0 � 1 1

37775˛Rðp� 1Þ3p;

(Equation 1)

to obtain regression coefficients b. Standardized input data

X and output y are used when solving Equation 1 since the



Table 3. Description of five categories for constructing autoML

models

Category description Options #

Input data types QAðVÞ, tAðVÞ, QBðVÞ,
VBð~tÞ, QCðVÞ, VCð~tÞ

6

p values from univariate

statistical test

100, 10�0:5, /, 10�7:5, 10�8 17

Further feature selection

using tsfresh

yes, no 2

Log-transformed output yes, no 2

ML algorithms EN, RF, SVR, XGB,

ALVEN, LCEN

6

The features extracted from the tsfresh package are first pre-screened

based on the univariate statistical test (F-statistics) with the p value

threshold chosen as in the second category. The features are further

selected using select features function in tsfresh package if the third

category is ‘‘yes.’’ The degree for ALVEN and LCEN was fixed to 1 as

tsfresh package already contains various nonlinear transformations.

Article
ll
fused-lasso method uses a norm-based penalty term, where

every column in X is divided by its maximum column-wise stan-

dard deviation (i.e., maxj = 1;/;pstdðX:;jÞ). Unlike standardizing

each column of the input data, this method preserves the unique

characteristic (e.g., trend of column-wise variance) of the raw

data. This model yields sparsity in regression-coefficient differ-

ence (i.e., piecewise constant regression coefficients) roughly

in line with physical expectations that neighboring regression co-

efficients should be similar and only change at specific locations.

In turn, the fused-lasso regression coefficients can guide the

partitioning of the input data into smaller sections and improve

interpretability. Even from the same X ˛Rn3p and y˛ Rn31, we

can obtain various b by changing the penalty term l. For

example, having a larger l would place a stronger penalty for b

changing its values, making b simpler (see Figure S5D).

Considering the l-dependency of b, we should determine

which value of l leads to b for guiding the design of predictive

yet interpretable features. For this process, we propose to deter-

mine l based on three criteria: predictiveness, robustness, and

interpretability. For predictiveness, the average of MAPE among

five inner folds is used as the representative metric to evaluate

how well the model predicts the cycle life of the cells with un-

trained formation protocols. The dynamic time warping (DTW)

distance ratio metric85,86 is used to quantify the robustness

(i.e., how consistent the shape of b is for different training-test

splits). Last, the average of path length along b among five inner

folds is used for assessing the interpretability of b. Details for

determining l can be found in Note S5. Then, the final b is ob-

tained by solving Equation 1 with the determined l.

Feature design based on b

In this step, we use the determined b as a template for designing

predictive and interpretable features. The key advantage of

using a linear model is that the regression problem can be

split into smaller problems with a much simpler shape of X or

b (i.e., by = Xb =
PM

m = 1Xmbm where X = ½X1;/;XM� and b =

½bT
1 ;/;bT

M�
T
). Taking advantage of linearity, we can partition the
input data into smaller sections based on the shape of b, which

makes b to be a flat line within each section. Figure 3A displays

the standardized QBðVÞ (Equation 2) of cells in the training set in

colored solid lines and the determinedb in black solid line for outer

fold 1. The standardized QBðVÞ of the i th cell is calculated as

~QB
i ðVjÞ =

QB
i ðVjÞ � QBðVjÞ

max std
�
QBðVÞ

� ; (Equation 2)

where QB is the column-wise average and maxstdðQBðVÞÞ is the

maximumcolumn-wise standard deviation ofQBðVÞ in the training
set. The vertical dotted lines in Figure 3A indicate the boundaries

for partitioning input data based on the indices where a jump (i.e.,��bj+1 � bj

��R0:0013 ðmax b � min bÞ) occurred.
Within each section partitioned by jumps in b, it can be

observed from Figure 3A that ~QB
i ðVÞ can be approximated into

a line (e.g., ~QB
i ðVÞ = aiV +bi). This linear approximation leads

to the fact that only two features, the difference and the mean

feature, are sufficient to represent each section. For example,

such approximation leads to the relationship:

bysection
i ðV1;V2Þ : =

XindðV2Þ

j = indðV1Þ
~QB
i ðVjÞbjz

XindðV2Þ

j = indðV1Þ
ðaiVj +biÞbj

= ai

 XindðV2Þ

j = indðV1Þ
Vjbj

!
+bi

 XindðV2Þ

j = indðV1Þ
bj

!

= aiC
y
1 +biC

y
2;

(Equation 3)

where the ind function is for finding the index (i.e., VindðVjÞ = Vj),

andCy
1,C

y
2 are constants. Here, the slope ai can be expressed as

ai =
~QB
i ðV2Þ � ~QB

i ðV1Þ
V2 � V1

=
QB

i ðV2Þ � QB
i ðV1Þ+QBðV1Þ � QBðV2Þ

ðV2 � V1Þmax std
�
QBðVÞ

�
=
�
QB

i ðV2Þ � QB
i ðV1Þ

�
Ca

1 +Ca
2; (Equation 4)

where Ca
1 and Ca

2 are constants. While various metrics

can be used for representing the y-intercept bi, we use

meanðQB
i ðV1 �V2ÞÞ given that b is generally flat in each section.

The value of bi can be expressed as

bi = mean
�
QB

i ðV1 � V2Þ
�
Cb

1 +Cb
2 ; (Equation 5)

whereCb
1 andC

b
2 areconstants.BycombiningEquations 3, 4, and

5, we conclude that only two features are needed to describe

each section: QB
i ðV2Þ � QB

i ðV1Þ and meanðQB
i ðV1 � V2ÞÞ.

While there are 19 boundaries in Figure 3A, not all of

the boundaries might be necessary for partitioning the input
Joule 9, 101884, May 21, 2025 5



Figure 3. Input data partitioning for feature design

(A) Visualization of ~QB
i ðVÞ (colored solid lines) for all cells in the training set, b (solid black line), and partition boundaries where a jump occurred (vertical dotted

lines) for outer fold 1 with QBðVÞ.
(B)–(D) (B) QBðVÞ, (C) dQB=dVðVÞ, and (D) d2QB=dV2ðVÞ with the vertical dotted lines indicating boundaries selected after Algorithm S1 (thin) and the three

boundaries near 3:6 V selected after Algorithm S2 (thick). The colors indicate the normalized cycle life, and the thick black solid line in (D) is for the column-wise

average. The color of curves at each panel indicates the normalized cycle life of the i th cell where 1 (red) is for the longest and 0 (blue) is for the shortest in the

training set.
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data. For example, boundaries L and M seem to be very

close so that using only one might be sufficient. To determine

whether we can remove the boundary ind
�
Vj

�
, we can check

whether bysectioni ðVj� 1;Vj+1Þ can be well predicted with QB
i ðVj+1Þ�

QB
i ðVj� 1ÞandmeanðQB

i ðVj� 1 �Vj+1ÞÞ (seeNoteS6 for thedetails).
While boundary L is removed from Algorithm S1, we observe that

neither boundaries J nor K can be removed although they seem to

beveryclose toeachother inFigure3A.Thishighlights the fact that

Algorithm S1 is actually sensitive to the information encoded in

specific voltage ranges. In Figures 3B–3D, we plot the final parti-

tioning obtained from Algorithm S1 on top of QBðVÞ,
dQB=dVðVÞ, and d2QB=dV2ðVÞ graphs. From the figure, it is

observed that the boundaries well capture the characteristics of

d2QB=dV2ðVÞ curve, especially near the voltage range around

3:6 Vwhere the largestpeakandvalleyare identified (see thick ver-

tical dotted lines in Figures 3B–3D).

WhenAlgorithmS1yieldsNsec sections,wehave2Nsec features

(difference and mean features in each section) in total. Among

these, we can further down-select the features based on the cor-

relation plot as shown in Algorithm S2 (see Note S7). First, we

select the featurewith the highest Pearson correlationwith the cy-

cle life. Then, the features that have a high Pearson correlation

(e.g., >0.2)with theselected featuresarefilteredout toavoidmulti-

collinearity.87–89 This process can be iterated until there is no

feature left with a high Pearson correlation (e.g., >0.4) with the

output. As a result, the two features, QBð3:57 VÞ � QBð3:60 VÞ
and QBð3:60 VÞ � QBð3:66 VÞ, were selected using Algorithm

S2 for outer fold 1. The selected voltage valuesmatch with the in-

dex for the peak and valley of d2QB=dV2ðVÞ curve in Figure 3D,

implying that the designed features capture some physical

meaning.
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The feature design results from other outer folds are dis-

played in Table 4 (see Note S8 for partitioning results in other

outer folds). Consistency on the designed features among the

outer loop (i.e., QBðVÞ differences between � 3:57, � 3:60,

and � 3:66 V) indicates the robustness of the feature design

framework, which is remarkable given the high level of extrap-

olation at each outer fold since the 62 formation protocols used

in Cui et al.47 were designed using the LHS method.

RESULTS AND DISCUSSION

Evaluation of designed features
In this section, we evaluate the designed features by comparing

the performance of the agnostic model, the autoML model, and

the model trained by the designed features (i.e., designed

model). A total of 13 designed models were constructed using

the two features in Table 4with 13MLalgorithms listed in Table 2.

Table 5 displays the number of features, descriptions, and limita-

tions of the best models (i.e., having the smallest sum of median

and maximum MAPE among five outer folds) when using each

approach. The mean, Hodges-Lehmann (HL) estimator,90 me-

dian, and maximum for MAPE and RMSE metrics of the three

models are visualized in Figure 4A. The model with small

MAPE and RMSE metrics is placed at the lower-left corner of

each panel in Figure 4A. The detailed values of each metric are

given in Table 6.

From Figure 4A, we observe that the best designed model

that uses only two features (blue star) has a performance com-

parable to the best autoML model (black cross), while outper-

forming the best agnostic model (red star) for mean, HL, and

median metrics. This result is especially remarkable given that



Table 4. Feature design results for each outer fold when using

QBðVÞ
Outer fold Designed feature 1 Designed feature 2

1 QBð3:57 VÞ � QBð3:60 VÞ QBð3:60 VÞ � QBð3:66 VÞ
2 QBð3:58 VÞ � QBð3:61 VÞ QBð3:61 VÞ � QBð3:64 VÞ
3 QBð3:57 VÞ � QBð3:61 VÞ QBð3:61 VÞ � QBð3:64 VÞ
4 QBð3:58 VÞ � QBð3:60 VÞ QBð3:60 VÞ � QBð3:67 VÞ
5 QBð3:57 VÞ � QBð3:60 VÞ QBð3:60 VÞ � QBð3:64 VÞ

Table 5. Description of the best agnostic, autoML, and designed

models

Models # Features Description Limitation

Agnostic

(best)

4 subset (CC1, CC2,

CV, T )/yes/XGB

limited to specific

template

no cell-to-cell

variability

AutoML

(best)

155 QBðVÞ/10� 4:5/

yes/yes/SVR

nearly zero

interpretability

Designed

(best)

2 features in

Table 4 with RF

–

See Tables 2 and 3 for details on the best agnostic and autoML models,

respectively.
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the designed features overcome the main limitations of other

approaches; the agnostic model is limited to the specific format

of formation protocols and cannot capture cell-to-cell vari-

ability, whereas the autoML model is the extreme case where

the interpretability of the model is sacrificed to obtain a better

predictive model. On the other hand, the designed model

uses two simple QðVÞ features that can be applied to formation

protocols that do not necessarily follow the template used by

Cui et al.47 These facts provide the designed model with both

high flexibility and interpretability, which makes it appropriate

for evaluating various innovative formation protocols during

the formation step. Regarding the prediction errors of �9%–

10% MAPE, it should be noted that (1) the models here only

use the measurements collected during the formation step,

and (2) each outer fold has a high level of extrapolation since

the formation protocols were designed by the LHS method.47

In fact, the best achievable prediction error based on cell-to-

cell variation is �6% MAPE where the details are given in

Note S10.

Figure 4B visualizes the actual and predicted cycle lives of

the cells at each formation protocol, which indicates the accu-

racy and trustworthiness of the three models for evaluating un-

trained formation protocols. Predictions from the best agnostic

model tend to have large deviations from the experimental data

for themajority of formation protocols with long cycle life, which

are mostly unconventional formation protocols including the

fast-formation protocols and the high-temperature (i.e., T =

55�C) protocols. While the best autoML and designed models

also have some protocols with large deviations, many of them

have large variations within the predicted cycle lives (i.e., long

error bar). These variations indicate that the evaluation of

such formation protocols may not be trustworthy, and thus

additional cell testing could lead to a better evaluation. The

agnostic model cannot give such guidance to the user since it

does not capture any cell-to-cell variability, implying the limita-

tion of the agnostic model. The best autoML model shows a big

prediction error (i.e., >250 cycles) in two fast-formation proto-

cols, especially for the formation protocol with the longest cycle

life where the prediction error is �350 cycles. Thus, it can be

risky to rely on autoML models to evaluate fast-formation pro-

tocols. The best designed model shows a prediction error of

�250 cycles for protocol 34, which has an average cycle life

of �1,000 while not being a fast-formation nor high-tempera-

ture protocol. However, it should be noted that the best autoML

model also shows a prediction error of�200 cycles for that pro-

tocol, and thus this poor prediction is likely due to the limitation

of using only QBðVÞ data for constructing the models. Overall,
the best designed model shows a prediction error of fewer

than 200 cycles for all fast-formation and high-temperature for-

mation protocols while also capturing cell-to-cell variability,

indicating a good trustworthiness for evaluating across a wide

range of formation protocols.

We attribute the outstanding performance of the designed

features to the fact that our partitioning algorithm well iden-

tifies specific voltage ranges with critical information (see Fig-

ure 3). The features generated from the autoML approach

typically use either the entire dataset or subset of the dataset

that is chosen based on simple statistics (e.g., percentile or

arbitrarily chosen thresholds). On the other hand, the features

designed from our framework use the subset that is deter-

mined by considering the relationship between the input

data and the output (e.g., jumps occurred within b or Algo-

rithm S1). Since the designed features use a subset of input

data with similar information one at a time, they are sensitive

to voltage-specific information, ultimately leading to a high

predictive power.

Physical meaning of the designed features
From the domain knowledge (indicated as red arrows in Figure 5),

we know that the formation temperature and the heterogeneity of

microscopic-particle resistances are the main factors for the SEI

quality, which ultimately impacts the cycle life. From the feature-

design work above (indicated as blue arrows in Figure 5), we

learned that the three voltage values that appear in the designed

features in Table 4 match the peak and valley of the d2Q/dV2

curve at step B. In order to learn the physical meaning of the de-

signed features, we investigate the missing link indicated as the

dotted green line in Figure 5.

In this section, we investigate the impact of formation temper-

ature and heterogeneity of microscopic-particle resistances on

the dQB/dV and d2QB/dV2 curves at the formation step. From

this, we aim to develop a foundational understanding of how

the two features designed solely from the data-driven approach

canbe effective at predicting the cycle life of the cells from theun-

seen formation protocols. As shown in Figures 3B–3D, the de-

signed featuresdonot directly correspond to features in thedata-

set’s average discharge capacity or differential capacitance

curves, which have been widely used in previous studies as indi-

cators of lifetime.6,92–94 However, the voltage windows identified
Joule 9, 101884, May 21, 2025 7



Figure 4. Predictive performance of the agnostic, autoML, and the designed models

(A) Scatter plots of mean, HL estimator, median, and maximum for MAPE and RMSE.

(B) Average (dot) and maximum and minimum (error bar) of true and predicted cycle lives per each formation protocol. The protocols are sorted by the average

cycle life from the experimental data. The inset shows the histogram of prediction errors (i.e., the difference between the average of actual and predicted cycle

lives) of all 62 formation protocols with the dotted vertical line marking 250.
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fromour framework show a strong overlapwith localmaxima and

minima in the dataset’s average second derivative of capacity

(d2Q/dV2) data, particularly in the range of 3.4–3.7 V where the

downselected features in Table 4 are concentrated. This align-

ment between key curve-defining features of the dataset, like

the maxima and minima curvature regions, and the selected

voltage points highlights the high interpretability of the designed

features.

Given the wide variations in the formation protocols within the

dataset, precisely interpreting the physical meaning of these fea-

tures is challenging. Therefore, we explore the features specific

to the slow formation, where CC1 is below 0.05 C. These forma-

tion protocols are expected to be more predictable as long cycle

life performance is physically tied to the formation of a stable SEI

layer under these slow operating conditions. Furthermore, these

stable SEI layers can be viewed as a fixed amount of lithium loss,

which makes it easier to investigate by removing the degrees of

freedom derived from the electrode-utilization shift. For slowly

formed Li-ion battery systems, it has long been hypothesized

that SEI growth is the dominant mechanism for capacity fade,

which becomes self-limiting at long times due to the diffusion

limitation of solvent molecules across the SEI layer.45,57,95–100

A dynamical transition from reaction-limited to diffusion-limited

SEI growth has also been proposed,92 roughly corresponding

to classical two-layer models of SEI growth, in which the rapid

electrodeposition of a dense, inorganic primary SEI layer is fol-

lowed by slow, diffusion-limited growth of a thick, porous sec-

ondary SEI layer.99,101–103 Recently, there has been growing ev-
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idence of two growth regimes during the formation process with

a significant portion of SEI-related capacity generated during the

early stage.57,93,94,104–106 For slow formation, the primary SEI is

suspected to be well-formed where, by the end of formation,

the system is saturated with degradation products, and the total

lithium consumed by SEI production is similar across formation

protocols.

To study this physical description of slow formation, we use

cells from slow-formation conditions, consisting of 32 out of

the 178 cells, for the physics-based investigation step. In a

post-formation C/20 low-rate test (reference performance test

[RPT]) across these cells, shown in Figure S12, the differential

capacitance and d2Q/dV2 electrochemical signatures are

nearly indistinguishable. This is an indication that the electrode

utilization and remaining lithium inventory are likely similar

across these cells. However, the performance, as quantified

through cycle life, is not identical across all these cells. Specif-

ically, the cells formed at the higher formation temperature

tested at 55�C perform significantly better than the rest,

perhaps indicating that the quality of formed degradation layers

like SEI may be temperature dependent. The impact of the for-

mation temperature on the electrochemical signature can be

seen directly in the formation operating datasets, such as the

dQ/dV and d2Q/dV2 curves in step B as shown in Figures 6A

and 6B. These curves show little variation within cells formed

at the same temperature but large variations across different

formation temperatures. As the formation temperature de-

creases, a smoothing of both curves is observed, which makes



Table 6. MAPE and RMSE of each model at each outer fold and mean and HL estimator among five outer folds

Agnostic (best) AutoML (best) Designed (best)

MAPE outer fold 1 10.55 10.21 9.20*

outer fold 2 11.06 8.14* 8.91

outer fold 3 11.14 10.85 9.13*

outer fold 4 11.35 9.72* 11.93

outer fold 5 10.70 9.63* 10.05

mean 10.96 9.71* 9.84

HL 10.95 9.72 9.59*

RMSE outer fold 1 108.79 120.44 98.98*

outer fold 2 90.98 74.79* 88.51

outer fold 3 124.81 136.92 97.33*

outer fold 4 107.10 86.17* 108.54

outer fold 5 100.82 83.14* 95.90

mean 106.50 100.29 97.85*

HL 107.10 101.79 97.44*

Asterisks indicate the smallest in each row, indicating the best performance.
aThis small value was obtained by Weng et al.44 having the cells from the same formation protocol in both their ‘‘validation’’ and ‘‘train/test’’ sets.
bFrom the same dataset being used for optimizing hyperparameters and evaluating the model performance.
cEach input data candidate was processed using interpolation at p = 1,000 uniformly distributed points along the input variable ðxÞ.
dHL estimator is the median of pairwise averages which is widely used to represent a distribution for its robustness.91
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certain agnostic-model features visible through the electro-

chemical signatures.

To explain these trends, we use a surrogate model for the full-

cell system, where the focus is on the temperature dependence

of the electrochemical signatures during a simulation of step B.

To achieve this goal, the underlying coupled transport and reac-

tion dynamics for each electrode is simplified to a large ensemble
Figure 5. Schematics on how the systematic feature-design framework

of the designed features

The red and blue arrows indicate the relationship learned from the domain knowled

the missing link where the physics-based investigation is performed.
of reactive particles in the model, where each particle has a rate-

constant sampled from a defined distribution. The model can

also be understood in the context of a distributed-resistance

model, where many transport and reaction resistances are being

lumped into the charge-transfer resistance, RCT = kBT=ek0. The

calculated current density in the underlying microscopic model

for the i th particle in electrode j is modeled as
guides the physics-based investigation to find the physical meaning

ge and the feature-designwork, respectively. The green dotted arrow indicates

Joule 9, 101884, May 21, 2025 9



Figure 6. Physics-based investigation

(A and B) (A) Measured differential capacitance

and (B) d2Q/dV2 for slow-formed cells across

formation temperatures.

(C and D) (C) Reactive particle ensemble simu-

lated differential capacitance and (D) d2Q/dV2

across formation temperatures.

(E and F) Simulated distribution of particle charge-

transfer resistance across formation temperatures

for (E) cathode and (F) anode, respectively. Both

electrode reaction rates are governed by a sin-

gular log-Gaussian basis where at 298 K, the

model is parameterized by EA = 45 kJ/mol,

k0;c = 5310� 7 A/m2s, k0;a = 10� 7 A/m2s, sc = 1,

and sa = 0:5. Full model details can be found in

Note S11.
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based on the quantum theory of ion-coupled electron transfer

(ICET).107 The ICET rate expression has a symmetric Butler-

Volmer dependence on overpotential (for equal reduction and

oxidation ion-transfer energies) and an asymmetric dependence

on electrode filling fraction, as recently confirmed by learning

from X-ray images of battery nanoparticles.108 The model also

includes an Arrhenius temperature dependence in the pre-factor

with an activation barrier, EA (the activation enthalpy of ICET),

which captures the effects of the formation-protocol tempera-

ture on the simulated dynamics. The full model formulation is

described in Note S11.

By simulating the system with a log-Gaussian distribution for

particle charge-transfer resistance at each electrode, character-

ized by amean and standard deviation, we are able to simulate a

set of step B curves across different temperatures with five free

parameters. Comparing the simulated results in Figures 6C and

6D with the experimental dataset in Figures 6A and 6B, we see

striking similarities in the location of the local maxima and

minima in the d2Q/dV2 and their trends with temperature. These
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similarities allow us to theorize that the

features contain information both on the

average resistance of the two electrodes

and the underlying resistance heteroge-

neity from the complex microscopic sys-

tem state. While the former may be

gleaned from simpler features, such as

the differential resistance at a given

SoC, the latter is unique to the designed

features and could lead to the high per-

formance observed. This underlying het-

erogeneity is likely a consequence of the

quality of the SEI being formed, which is

not obviously extractable from the for-

mation-protocol parameters. In all, we
hypothesize that the designed model performs better than the

agnostic model because designed features not only encode

some of the agnostic-model parameters, such as formation

temperature, but also encode an underlying heterogeneity in

the microscopic-particle resistances which varies from cell to

cell and translates into the electrochemical signatures during

formation.

Conclusions
The battery lifetime prediction community has long been trying to

find an answer to the question: ‘‘how much data are needed to

predict cycle life?’’ While the majority of the community focused

on performing earlier cycle life prediction within the aging

regime, our work presents how such prediction can be achieved

by only using the formation data. Enabling extreme early cycle

life prediction for untrained formation protocols, our work is ex-

pected to accelerate the optimization of the formation process.

In this work, we develop a systematic feature-design framework

to achieve extreme early cycle life prediction with minimal

domain knowledge and user input. Using our framework, two

simple QðVÞ features are designed from the last discharge step

of the formation protocol. These features do not require addi-

tional diagnostic cycles, and they show good performance in

comparing formation protocols across different temperatures,

which is known to be the key parameter affecting the quality of
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SEI layers. From the physics-based investigation guided by our

feature-design framework, we attribute the predictiveness of

the designedQðVÞ features to its ability to learn the impact of for-

mation temperature and heterogeneity of microscopic-particle

resistances on dQ=dV and d2Q=dV2 curves. As per the predictiv-

ity, robustness, and interpretability, the two designed features

are suitable for evaluating the untrained formation protocol dur-

ing the formation step.

While the main focus of this study was to perform extreme

early cycle life prediction of untrained formation protocols for

SC-NMC532/AG cells, industries may be interested in different

cell chemistries, battery-performance metrics, and cycling con-

ditions, depending on their applications. Not being tailored to

any specific settings listed above, our framework is expected

to design predictive features customized to each application.

Interpretability of the designed features allows us to leverage

the interplay between data-driven feature design and a mecha-

nistic understanding of interested applications, providing the

opportunity to further expand the domain knowledge of indus-

trial formation processes. Besides optimizing the formation pro-

cess, the same framework can be used to design features

tailored for outlier detection during the manufacturing process

when using the dataset consisting of cells under an identical for-

mation protocol.
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