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Systematic feature design for cycle life prediction of
lithium-ion batteries during formation
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Highlights

e Systematic feature-design framework enables cycle life
prediction during formation

e Interplay of data-driven feature design and mechanistic
understanding is demonstrated

e Designed features capture temperature effect and particle-

resistance heterogeneity

e Open-source software is provided that implements the
feature-design framework
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In brief

We propose a systematic feature-design
framework that allows the prediction of
the cycle life of lithium-ion batteries within
10% error during the formation step. By
reducing the evaluation time for formation
protocols while requiring minimal domain
knowledge, our work accelerates the
optimization of formation steps. Our
approach, which leverages the interplay
between the data-driven feature design
and mechanistic understanding, can be
applied to other regression or
classification problems in which limited
domain knowledge is available.
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SUMMARY

Optimization of the formation step in lithium-ion battery manufacturing is challenging due to limited physical
understanding of solid-electrolyte interphase formation and the long testing time (~100 days) for cells to
reach the end of life. We propose a systematic feature-design framework that requires minimal domain
knowledge for accurate cycle life prediction during formation. By only using two simple Q(V) features de-
signed from our framework, extracted from formation data without any additional diagnostic cycles, we
achieved an average of 9.87% error for cycle life prediction. The physics-based investigation guided by
the two designed features shows that the voltage ranges identified by our framework capture the effects
of formation temperature and microscopic-particle resistance heterogeneity. By designing highly predictive,
robust, and interpretable features, our approach can accelerate industrial battery formation research,
leveraging the interplay between data-driven feature design and mechanistic understanding.

INTRODUCTION

Accurate lifetime prediction of lithium-ion batteries acceler-
ates battery optimization and improves safety.'™ Although
this task is challenging due to complicated and convolved
degradation mechanisms, various studies have demonstrated
the potential in using data-driven approaches,®'® physics-
based approaches,'*'® and hybrid approaches.'®° For
accurate battery-health monitoring, diagnostic techniques
such as differential voltage fitting (DVF),>’>° incremental ca-
pacity analysis (ICA),®"*? electrochemical impedance spec-
troscopy (EIS), %335 and hybrid pulse power characterization
(HPPC)*%*" were developed for physics-based feature extrac-
tion during battery operation. Further optimization of these
diagnostic techniques includes novel state of health (SoH)
feature development®*~*" and diagnostic time reduction.***®

Compared with the extensive research on lifetime prediction
during operation, there have been few studies on lifetime predic-
tion during the manufacturing process (i.e., extreme early cycle
life prediction) because of the limited availability of public
manufacturing data. In fact, the cycle life can vary greatly based
on the protocol used during formation, in which a passivation
layer of solid-electrolyte interphase (SEI) is rapidly formed on
the anode to limit further degradation during use. For example,

uuuuu

Weng et al.** showed that the nickel manganese cobalt (NMC)/

graphite pouch cells with the fast-formation protocol proposed
by Wood et al.*® and An et al.“® had on average ~25% longer cy-
cle lives than the pouch cells with a baseline formation protocol
when aging the cells in both room-temperature and high-tem-
perature (45°C) cases. Recently, Cui et al.*” showed that the cy-
cle life can vary 2-fold by only manipulating the formation proto-
cols. Moreover, the formation step is closely related to battery
degradation and safety concerns,® highlighting the importance
of optimizing formation.

Extreme early cycle life prediction using machine learning (ML)
can accelerate the optimization of formation protocols and help
build mechanistic understanding to the extent that features
correlated with cycle life can be identified in the formation
data. Weng et al.** proposed the low state-of-charge (SoC)
resistance (RLg) as a feature for extreme early cycle life predic-
tion, achieving ~8% error*® (~15% error for a dummy model)
over the dataset composed of 40 cells with two different forma-
tion protocols using the single feature based on the strong linear
correlation between R| g and the cycle life. R.s is not only predic-
tive but also practical since it does not require additional equip-
ment to be installed in the manufacturing process, unlike other
characterization techniques such as EIS,*®°%°" X-ray tomogra-
phy,®?7°* or acoustic time of flight (ToF).°>°® Furthermore, R.g
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Figure 1. Schematic of formation protocols used for generating the
dataset

A total of 62 protocols were tested by manipulating the six formation-protocol
parameters: C-rate for the two-step charging (CC1 and CC), the cutoff voltage
between the two CC steps (CV), number of cycles between the first charge
and last discharge step (nver), formation temperature (T), and the rest time
(tocv)- Three common steps among various formation protocols are indicated
in blue: the first charge step (step A), the last discharge step (step B), and the
first discharge step (step C). The figure is modified from Figure 1 in Cui et al.*’

is easy to interpret since the feature is sensitive to lithium loss
during formation.**

While R\ s is an interpretable, predictive, and an easy-to-
implement feature, there are areas for further improvement.
For example, the R\ s feature is highly sensitive to the SoC value
where the resistance was measured, and thus its use requires
accurate SoC estimation. According to Weng et al.,** the Rig
difference between the two formation protocols is roughly 10
mQ (see Figure 3C in Weng et al.**). Given that the resistance
varies roughly 75 mQ with respect to 4% change in SoC at a
low-SoC region (see Figure S9A in Weng et al.**), even a 0.5%
error in SoC estimation can smear out the strong negative cor-
relation between Rs and the cycle life. Therefore, an additional
low-rate cycle, which roughly takes a day to complete, is
needed after the formation step to accurately calculate the
full-cell SoC. Furthermore, R s only works for cells that undergo
the same formation temperature (see Note S1). This fact indi-
cates that a single R, s feature is insufficient for optimizing for-
mation, especially given that the formation temperature greatly
impacts the cycle life.*” These limitations motivate the develop-
ment of new features that are (1) obtainable without additional
diagnostic cycles and (2) capable of comparing formation proto-
cols with different temperatures while still retaining the strengths
of HLS-

In this work, we propose a systematic framework to automat-
ically design predictive yet interpretable features (i.e., transfor-
mation of input data) for regression problems. This framework

2 Joule 9, 101884, May 21, 2025

Joule

is especially useful for investigating systems with complicated
physics, such as SEl formation,”” where automatic feature
extraction can be more effective than handcrafted features that
are limited by the many unknown aspects of the underlying phys-
ics. The performance of the designed features (i.e., the features
designed from the proposed framework) for predicting the cycle
life is then compared with agnostic and autoML approaches.
Finally, we conduct a physics-based investigation, which is
guided by the designed features, using a distributed-resistance
model to explain the outstanding performance of the designed
features.

METHODS

Description of the dataset

A dataset of 186 single crystal Li[Nig5sMng3C002]Os (SC-
NMC532)/artificial graphite (AG) pouch cells with 62 different for-
mation protocols (i.e., 3 cells per formation protocol) and an
identical aging protocol, generated by Cui et al.,*” was used in
this study. The dataset includes 10 fast-formation protocols
where both C-rates during the two-step charging step are
greater than 1 C, which recently gained interest for improving
the cell performance while reducing production costs.**™’
Among the 186 pouch cells, we used 178 cells that reached
the end of life (i.e., having a discharge capacity measured at
0.75 C constant current (CC) discharge step below 80% of its
initial value measured at 0.75 C CC discharge step) without
experimental failures such as shorting or broken tabs. Six pa-
rameters were varied in the dataset: the current for two-step
CC at the first charge step (CC4 and CCy), the cutoff voltage be-
tween the two CC steps (CV), the number of cycles between the
first charge and last discharge step (nyer), the temperature dur-
ing the formation step (T), and the rest time after the formation
step (tocv). The six parameters were chosen using Latin hyper-
cube sampling (LHS) for its ability to explore the parameter
space efficiently.’® Detailed data interrogation results using the
six formation-protocol parameters and cycle life can be found
in Note S2. We define three common steps that appear in all
62 formation protocols (see Figure 1): the first charge step
(step A), the last discharge step (step B), and the first discharge
step (step C). Most variations among the formation protocols are
encoded in step A whereas steps B and C undergo the identical
operating protocol at each T.

As a preliminary analysis, we constructed physics-agnostic
ML models that map the six formation-protocol parameters to
the cycle life. While the agnostic models cannot capture cell-
to-cell variability (i.e., the variability between the cells that un-
dergo the same protocol), they serve as a good baseline for eval-
uating model performance since the features directly encode the
formation protocol. In this work, we used nested cross-validation
to avoid information leakage,®®? with the detailed description
provided in Note S3.

A total of 62 formation protocols were grouped into five sets,
where one set was used as the test set and the remaining four
as the training set in each outer fold to evaluate the model perfor-
mance (see Figure S3). Within each outer fold, the inner loop was
performed by dividing the training set into ten subsets, with one
being used as the validation set and the others as the training set
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Table 1. Hyperparameters of ML algorithms

ML algorithm Hyperparameters #
RR L2 penalty term 1
EN L1 penalty term, L2 penalty term 2
PLS number of principal components (PCs) 1
SPLS number of PCs, sparsity 2
RF maximum depth of trees 1
SVR regularization parameter, kernel coefficient, 3
margin of tolerance
XGB maximum depth of trees, L2 penalty term 2
ALVEN degree, L1 penalty term, L2 penalty term 3
LCEN degree, L1 penalty term, L2 penalty term 3

in each inner fold for optimizing the hyperparameters listed in Ta-
ble 1. A total of 52 agnostic models were constructed based on
the combination of categories listed in Table 2. Smart process
analytics (SPA) software®® was used for model construction,
which includes a suite of static ML algorithms: ridge regression
(RR),** elastic net (EN),°® partial least squares (PLS),® sparse
partial least squares (SPLS),°” random forest (RF),°® support
vector regression (SVR),*® XGBoost (XGB),”® algebraic learning
via elastic net (ALVEN),”" and lasso-clip-EN (LCEN)."?

In this work, the best model is defined as the one with the
smallest summation of the median and maximum mean absolute
percentage error (MAPE) among the five outer folds to consider
both average and extrapolation performances. Among the 52
agnostic models, the best model was the case with a subset of
parameters, log-transformed output, and XGB algorithm (see
Table 2), which had median and maximum MAPE of 11.06 and
11.35, and root mean square error (RMSE) of 107.10 and
124.81, respectively. Although the best agnostic model performs
well, none of the agnostic models constructed in this study can
be used for evaluating formation protocols that do not follow
the (two CC charge step — nyer CC charge/discharge cycles —
CC discharge — tocy rest) template used by Cui et al.*’ This lim-
itation arises because not all six formation-protocol parameters
used in the agnostic models can be extracted from such proto-
cols. Furthermore, the model cannot be used for diagnosing in-
dividual cell quality as it cannot capture the cell-to-cell variation.

Systematic feature-design framework

This section describes the workflow of the proposed systematic
feature-design framework as displayed in Figure 2. We begin with
extracting the input data (i.e., the source for designing features)
candidates from the raw measurements. Then, the promising-
ness of each candidate is evaluated based on the autoML
approach. After determining the promising input data types, we
determine which value of penalty term Ato use for the fused-lasso
model. Then, the features are designed based on the fused-lasso
coefficient 8 that maps the selected input (Q(V) in step B) to the
output (cycle life). Last, the features are downselected to finalize
the designed features.

Extraction of input data
The dataset contains seven measurements as a function of time
(t) during the formation process: current (/), voltage (V), capac-

Table 2. Description of three categories for constructing
agnostic models

Category description Options #

full set (CC4, CCs, CV, nyer, T, tocy) 2

Formation protocol

parameters subset (CC;, CC», CV, T)
Log-transformed output  yes, no 2
ML algorithms (linear) RR, EN, PLS, SPLS 13

(nonlinear) RF, SVR, XGB

(nonlinear quantifiable) ALVEN,
LCEN with degree of 1, 2, 3

The subset of formation protocol parameters was selected based on
shapley additive explanations (SHAP) analysis’® conducted by Cui et al.*’

ity (Q), energy (E), temperature (T), cycle index, and step index,
where each measurement was taken at every 3 mV or 5 s for the
CC step and at every 3 mA or 5 s for the constant voltage (CV)
step, whichever comes first. Among various possible input
data combinations, where the input variable (i.e., x in f(x)) and
the function (i.e., f in f(x)) are selected from the measurements
mentioned above, domain knowledge can be used to narrow
down the most promising input data candidates. For example,
the current | can be discarded because / is constant for most
of the process. While t, V, and Q are monotonic functions within
each step A, B, and C, and thus can be considered as input vari-
ables, the range for V is identical for all formation protocols
whereas the range for t and Q within each step may vary from
cell to cell. Therefore, the t and Q should be normalized when
used as the input variable (i.e., , Qe [0, 1]). However, we may
not use f and Q as input variables in step A since a single f cannot
specify the SoC of the cell whereas a single Q masks the impact
of C-rate, which greatly affects the electrode-utilization range,*’
given that the C-rates vary by orders of magnitude across
different formation protocols in step A. In addition, any input

data of f(t) and f(Q) are redundant for the CC steps due to
Q = It, implying that only one may be considered for steps B
and C. Thus, six input data types’* are considered for the candi-
dates: Q*(V), tA(V), QB(V), VE(t), Q°(V), and VC(t).

Evaluation of input data

To design regression models with high prediction accuracy and
robust generalization performance, we propose a method to
select the input data that is promising for designing highly predic-
tive features in this section. First, we construct autoML models
using each input data candidate to evaluate their overall perfor-
mance. Here, the autoML model refers to an ML model using fea-
tures that are automatically extracted and selected without hu-
man assistance.”® The tsfresh package,’® which is a highly
parallelized package recently used in lithium-ion battery applica-
tions®>"":"® for extracting roughly 800 features from time-series
data and guiding feature selection based on the feature impor-
tance,”®®" was used in this step. From the features generated us-
ing tsfresh, we can construct a total of 2,448 autoML models
based on the five categories listed in Table 3. For example, the
autoML model with the first element in each category is con-
structed by first feeding Q*(V) to the tsfresh.extract_features
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function, followed by pre-screening the features with p values
larger than 10°, followed by further feature selection using the
tsfresh.select_features function with log-transformed cycle life.
Then, these selected features are mapped onto the log-trans-
formed cycle life using elastic net regression.

Similar to the evaluation of agnostic models, the median and
the maximum of MAPE and RMSE among the outer folds were
used as the performance metrics to evaluate each input data
candidate (see Note S4). Given that we are constructing 408 au-
toML models for each input data type based on the combina-
tions of categories listed in Table 3, where the number of features
spans from one to more than hundreds, the input data type is not
considered promising if none of the autoML models from the
input data type outperform the best agnostic model in any of
the four performance metrics.

The best autoML model with four input data types from steps B
and C outperforms the best agnostic model in either MAPE or
RMSE metrics, whereas the best model with two input data
types from step A is strictly worse (see Figure S4). While this
may seem counterintuitive as the features from step A directly
encode the protocol-to-protocol variability and thus have more
information than those from steps B and C, it can be explained
by the discussion in Geslin et al.®' According to Geslin et al.,®’
the features that encode operational variations (e.g., features
from step A) are less capable of capturing cell-to-cell variability.
This limitation arises because the predictive power of such fea-
tures heavily depends on the characteristics of the protocols
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Figure 2. Systematic feature-design frame-
work for extreme early cycle life prediction
The input to the framework is the measurements
collected during the formation and the output is
the two QB (V) features where which (1) portion of
the data to be used (e.g., steps A, B, or C), (2) data
type to be used (e.g., Q(V), t(V), or V(t)), and (3)
voltage or time values to be used for partitioning
the input data are all systematically determined
within the framework. The two Q2 (V) features are
used to evaluate the formation protocol during the
formation step.

used for training. Therefore, the autoML
models from step A would perform worse
than the autoML models from steps B
and C for predicting the cycle life of cells
with untrained formation protocols (i.e.,
the extrapolation case; see the first row
of Table 2 and the first panel of Figure S6
in Geslin et al.®"). Note that the 62 forma-
tion protocols used in the dataset from
Cui et al.*” were designed using the
LHS method over six formation-protocol
parameters, indicating that the five outer
folds in the nested cross-validation have
a high level of extrapolation. Thus, the re-
sults in Figure S4 emphasize the impor-
tance of features that do not explicitly
encode the operational variations for pre-

dicting the cycle life of the cells during formation for untrained
formation protocols. While there are four input data types from
steps B and C, we focus on Q&(V) in the subsequent parts since
it showed the best performance in the MAPE metrics (see Note
S9 for feature-design results with VE(f), Q°(V), and VC(t)).

Determination of the linear-regression coefficient from
input data

As an alternative to using nonlinear features, linear regression on
high-dimensional data can also learn a nonlinear response.®”
One advantage of using linear-regression models is that we
obtain a regression coefficient 8 that can give insights on how
each portion of the input data contributes to the output estima-
tion.">®3 Among various linear models, we use the generalized
lasso with penalty on the differences of adjacent coefficients
(often referred to as fused-lasso®):

1 ) .
minzlly — Xll, + 2IDBll;  with

1 1 0 - 0 Equation 1)
. . quation
D - 0 -1 1 R P = R Y
P o) ’
0 0 -1 1

to obtain regression coefficients 8. Standardized input data
X and output y are used when solving Equation 1 since the
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Table 3. Description of five categories for constructing autoML
models

Category description Options
Input data types QA(V), tA(V), QB(V), 6
VB(H), Q°(V), VE()
p values from univariate 109,10-95, ..., 10~ 75 108 17
statistical test
Further feature selection yes, no 2
using tsfresh
Log-transformed output yes, no 2
ML algorithms EN, RF, SVR, XGB,
ALVEN, LCEN

The features extracted from the tsfresh package are first pre-screened
based on the univariate statistical test (F-statistics) with the p value
threshold chosen as in the second category. The features are further
selected using select_features function in tsfresh package if the third
category is “yes.” The degree for ALVEN and LCEN was fixed to 1 as
tsfresh package already contains various nonlinear transformations.

fused-lasso method uses a norm-based penalty term, where
every column in X is divided by its maximum column-wise stan-
dard deviation (i.e., max; - 1,... pstd(X,;)). Unlike standardizing
each column of the input data, this method preserves the unique
characteristic (e.g., trend of column-wise variance) of the raw
data. This model yields sparsity in regression-coefficient differ-
ence (i.e., piecewise constant regression coefficients) roughly
in line with physical expectations that neighboring regression co-
efficients should be similar and only change at specific locations.
In turn, the fused-lasso regression coefficients can guide the
partitioning of the input data into smaller sections and improve
interpretability. Even from the same X e R"™P andye R"™ ', we
can obtain various 8 by changing the penalty term A. For
example, having a larger A would place a stronger penalty for 8
changing its values, making 8 simpler (see Figure S5D).

Considering the A-dependency of 3, we should determine
which value of A leads to 8 for guiding the design of predictive
yet interpretable features. For this process, we propose to deter-
mine A based on three criteria: predictiveness, robustness, and
interpretability. For predictiveness, the average of MAPE among
five inner folds is used as the representative metric to evaluate
how well the model predicts the cycle life of the cells with un-
trained formation protocols. The dynamic time warping (DTW)
distance ratio metric®%® is used to quantify the robustness
(i.e., how consistent the shape of 8 is for different training-test
splits). Last, the average of path length along 8 among five inner
folds is used for assessing the interpretability of 3. Details for
determining A can be found in Note S5. Then, the final 8 is ob-
tained by solving Equation 1 with the determined 2.

Feature design based on

In this step, we use the determined 8 as a template for designing
predictive and interpretable features. The key advantage of
using a linear model is that the regression problem can be
split into smaller problems with a much simpler shape of X or
Blie,y=XB=SM_.XnB, where X = [Xy, - Xy and 8 =

[31T7 ey ﬂ,‘T,,]T). Taking advantage of linearity, we can partition the

¢ CellP’ress

input data into smaller sections based on the shape of 3, which
makes ( to be a flat line within each section. Figure 3A displays
the standardized Q® (V) (Equation 2) of cells in the training set in
colored solid lines and the determined 3 in black solid line for outer
fold 1. The standardized QB (V) of the i th cell is calculated as

V) — Q)

QW) = max std (QB(V)) 7

(Equation 2)

where QP is the column-wise average and maxstd(Q8(V)) is the
maximum column-wise standard deviation of Q& (V) in the training
set. The vertical dotted lines in Figure 3A indicate the boundaries
for partitioning input data based on the indices where a jump (i.e.,
|81 — B;| >0.001 x (max 8 — min 8)) occurred.

Within each section partitioned by jumps in @, it can be
observed from Figure 3A that (':);5 (V) can be approximated into
a line (e.g., QF(V) = a;V +b;). This linear approximation leads
to the fact that only two features, the difference and the mean
feature, are sufficient to represent each section. For example,
such approximation leads to the relationship:

ind(Va) ind(V2)
}’/\Isectlon(\/1 , V2) D= Z QB Z (a,'V/- +b,‘)6j
j=ind(Vy) Jj=ind(Vy)
ind(V,) ind(V2)
j=ind(Vy) j=ind(V4)
= a,'C}{ + b;C‘;,

(Equation 3)

where the ind function is for finding the index (i.e., Vina) = V)),
and C{, Cg are constants. Here, the slope a; can be expressed as

L QW) - vy
= Vo — V,

QP (Vo) — QF(V1)+@°(V4) — Q5(Va)
(Vo — Vy)max std(QB(V))

= (Q®(v2) - @*(Vy))Ci+C, (Equation 4)

where C] and Cj are constants. While various metrics
can be used for representing the y-intercept b;,, we use
mean(Q? (V4 — Vs)) given that 8 is generally flat in each section.
The value of b; can be expressed as

b = mean(QP(V1 — V2)>C?+C‘2’, (Equation 5)

where C% and C5 are constants. By combining Equations 3,4, and
5, we conclude that only two features are needed to describe
each section: Q%(V2) — Q8(V4) and mean(Q® (V4 — Vo).
While there are 19 boundaries in Figure 3A, not all of
the boundaries might be necessary for partitioning the input

Joule 9, 101884, May 21, 2025 5
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Figure 3. Input data partitioning for feature design

Voltage (V)

(A) Visualization of C?,-E’(V) (colored solid lines) for all cells in the training set, 3 (solid black line), and partition boundaries where a jump occurred (vertical dotted

lines) for outer fold 1 with Q& (V).

(B)-(D) (B) @5(V), (C) dQ@B/dV(V), and (D) d?QB/dV2(V) with the vertical dotted lines indicating boundaries selected after Algorithm S1 (thin) and the three
boundaries near 3.6 V selected after Algorithm S2 (thick). The colors indicate the normalized cycle life, and the thick black solid line in (D) is for the column-wise
average. The color of curves at each panel indicates the normalized cycle life of the i th cell where 1 (red) is for the longest and 0 (blue) is for the shortest in the

training set.

data. For example, boundaries L and M seem to be very
close so that using only one might be sufficient. To determine
whether we can remove the boundary ind(V;), we can check
whether y$e°t°(V; 4 V1) can be well predicted with QF (V;,1) —
QB(V;_1)andmean(QB(V;_1 — V1)) (see Note S6 for the details).
While boundary L is removed from Algorithm S1, we observe that
neither boundaries J nor K can be removed although they seem to
be very close to each other in Figure 3A. This highlights the fact that
Algorithm S1 is actually sensitive to the information encoded in
specific voltage ranges. In Figures 3B-3D, we plot the final parti-
tioning obtained from Algorithm S1 on top of QB(V),
dQB/dV(V), and d?QB/dV2(V) graphs. From the figure, it is
observed that the boundaries well capture the characteristics of
d2QB/dV2(V) curve, especially near the voltage range around
3.6 Vwhere the largest peak and valley are identified (see thick ver-
tical dotted lines in Figures 3B-3D).

When Algorithm S1 yields N°¢°¢ sections, we have 2N5¢¢ features
(difference and mean features in each section) in total. Among
these, we can further down-select the features based on the cor-
relation plot as shown in Algorithm S2 (see Note S7). First, we
select the feature with the highest Pearson correlation with the cy-
cle life. Then, the features that have a high Pearson correlation
(e.g.,>0.2) with the selected features are filtered out to avoid multi-
collinearity.®”® This process can be iterated until there is no
feature left with a high Pearson correlation (e.g., >0.4) with the
output. As a result, the two features, Q%(3.57 V) — QF(3.60 V)
and QB(3.60V) — Q5(3.66V), were selected using Algorithm
S2 for outer fold 1. The selected voltage values match with the in-
dex for the peak and valley of d?Q? /dV?(V) curve in Figure 3D,
implying that the designed features capture some physical
meaning.
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The feature design results from other outer folds are dis-
played in Table 4 (see Note S8 for partitioning results in other
outer folds). Consistency on the designed features among the
outer loop (i.e., QB(V) differences between ~ 3.57, ~ 3.60,
and ~ 3.66 V) indicates the robustness of the feature design
framework, which is remarkable given the high level of extrap-
olation at each outer fold since the 62 formation protocols used
in Cui et al.*” were designed using the LHS method.

RESULTS AND DISCUSSION

Evaluation of designed features

In this section, we evaluate the designed features by comparing
the performance of the agnostic model, the autoML model, and
the model trained by the designed features (i.e., designed
model). A total of 13 designed models were constructed using
the two features in Table 4 with 13 ML algorithms listed in Table 2.
Table 5 displays the number of features, descriptions, and limita-
tions of the best models (i.e., having the smallest sum of median
and maximum MAPE among five outer folds) when using each
approach. The mean, Hodges-Lehmann (HL) estimator,® me-
dian, and maximum for MAPE and RMSE metrics of the three
models are visualized in Figure 4A. The model with small
MAPE and RMSE metrics is placed at the lower-left corner of
each panel in Figure 4A. The detailed values of each metric are
given in Table 6.

From Figure 4A, we observe that the best designed model
that uses only two features (blue star) has a performance com-
parable to the best autoML model (black cross), while outper-
forming the best agnostic model (red star) for mean, HL, and
median metrics. This result is especially remarkable given that
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Table 4. Feature design results for each outer fold when using

Table 5. Description of the best agnostic, autoML, and designed

QB(V) models

Outer fold Designed feature 1 Designed feature 2 Models # Features Description Limitation

1 QB(357V) — QB(3.60V) QB(3.60V) — QB(3.66V) Agnostic 4 subset (CC1, CC,,  limited to specific

2 B(3.58V) — Q3(3.61V) QB(3.61V) — Q3(3.64V) (best) CV, T)/yes/XGB template

3 QB(357V) — QB(3.61V) QB(3.61V) — QB(3.64V) nejcelgciesl

: QUB58Y) - QUBEOY) QB0V) - Q*(B67Y) AutoML 155 QB(V)/10-45/ :223;’"2'2:0

2 GBS Y) = CAEEDY)  BAEEUY) = CAEEAY) (best) yes/yes/SVR interpretability
Designed 2 features in -
(oest) Table 4 with RF

the designed features overcome the main limitations of other
approaches; the agnostic model is limited to the specific format
of formation protocols and cannot capture cell-to-cell vari-
ability, whereas the autoML model is the extreme case where
the interpretability of the model is sacrificed to obtain a better
predictive model. On the other hand, the designed model
uses two simple Q(V) features that can be applied to formation
protocols that do not necessarily follow the template used by
Cui et al.*” These facts provide the designed model with both
high flexibility and interpretability, which makes it appropriate
for evaluating various innovative formation protocols during
the formation step. Regarding the prediction errors of ~9%-
10% MAPE, it should be noted that (1) the models here only
use the measurements collected during the formation step,
and (2) each outer fold has a high level of extrapolation since
the formation protocols were designed by the LHS method.*’
In fact, the best achievable prediction error based on cell-to-
cell variation is ~6% MAPE where the details are given in
Note S10.

Figure 4B visualizes the actual and predicted cycle lives of
the cells at each formation protocol, which indicates the accu-
racy and trustworthiness of the three models for evaluating un-
trained formation protocols. Predictions from the best agnostic
model tend to have large deviations from the experimental data
for the majority of formation protocols with long cycle life, which
are mostly unconventional formation protocols including the
fast-formation protocols and the high-temperature (i.e., T =
55°C) protocols. While the best autoML and designed models
also have some protocols with large deviations, many of them
have large variations within the predicted cycle lives (i.e., long
error bar). These variations indicate that the evaluation of
such formation protocols may not be trustworthy, and thus
additional cell testing could lead to a better evaluation. The
agnostic model cannot give such guidance to the user since it
does not capture any cell-to-cell variability, implying the limita-
tion of the agnostic model. The best autoML model shows a big
prediction error (i.e., >250 cycles) in two fast-formation proto-
cols, especially for the formation protocol with the longest cycle
life where the prediction error is ~350 cycles. Thus, it can be
risky to rely on autoML models to evaluate fast-formation pro-
tocols. The best designed model shows a prediction error of
~250 cycles for protocol 34, which has an average cycle life
of ~1,000 while not being a fast-formation nor high-tempera-
ture protocol. However, it should be noted that the best autoML
model also shows a prediction error of ~200 cycles for that pro-
tocol, and thus this poor prediction is likely due to the limitation
of using only QB(V) data for constructing the models. Overall,

See Tables 2 and 3 for details on the best agnostic and autoML models,
respectively.

the best designed model shows a prediction error of fewer
than 200 cycles for all fast-formation and high-temperature for-
mation protocols while also capturing cell-to-cell variability,
indicating a good trustworthiness for evaluating across a wide
range of formation protocols.

We attribute the outstanding performance of the designed
features to the fact that our partitioning algorithm well iden-
tifies specific voltage ranges with critical information (see Fig-
ure 3). The features generated from the autoML approach
typically use either the entire dataset or subset of the dataset
that is chosen based on simple statistics (e.g., percentile or
arbitrarily chosen thresholds). On the other hand, the features
designed from our framework use the subset that is deter-
mined by considering the relationship between the input
data and the output (e.g., jumps occurred within 8 or Algo-
rithm S1). Since the designed features use a subset of input
data with similar information one at a time, they are sensitive
to voltage-specific information, ultimately leading to a high
predictive power.

Physical meaning of the designed features

From the domain knowledge (indicated as red arrows in Figure 5),
we know that the formation temperature and the heterogeneity of
microscopic-particle resistances are the main factors for the SEI
quality, which ultimately impacts the cycle life. From the feature-
design work above (indicated as blue arrows in Figure 5), we
learned that the three voltage values that appear in the designed
features in Table 4 match the peak and valley of the d>Q/dV2
curve at step B. In order to learn the physical meaning of the de-
signed features, we investigate the missing link indicated as the
dotted green line in Figure 5.

In this section, we investigate the impact of formation temper-
ature and heterogeneity of microscopic-particle resistances on
the dQB/dV and d2QB/dV?2 curves at the formation step. From
this, we aim to develop a foundational understanding of how
the two features designed solely from the data-driven approach
can be effective at predicting the cycle life of the cells from the un-
seen formation protocols. As shown in Figures 3B-3D, the de-
signed features do not directly correspond to features in the data-
set’s average discharge capacity or differential capacitance
curves, which have been widely used in previous studies as indi-
cators of lifetime.®**°* However, the voltage windows identified
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Figure 4. Predictive performance of the agnostic, autoML, and the designed models

(A) Scatter plots of mean, HL estimator, median, and maximum for MAPE and RMSE.

(B) Average (dot) and maximum and minimum (error bar) of true and predicted cycle lives per each formation protocol. The protocols are sorted by the average
cycle life from the experimental data. The inset shows the histogram of prediction errors (i.e., the difference between the average of actual and predicted cycle

lives) of all 62 formation protocols with the dotted vertical line marking 250.

from our framework show a strong overlap with local maxima and
minima in the dataset’s average second derivative of capacity
(d2Q/dV?) data, particularly in the range of 3.4-3.7 VV where the
downselected features in Table 4 are concentrated. This align-
ment between key curve-defining features of the dataset, like
the maxima and minima curvature regions, and the selected
voltage points highlights the high interpretability of the designed
features.

Given the wide variations in the formation protocols within the
dataset, precisely interpreting the physical meaning of these fea-
tures is challenging. Therefore, we explore the features specific
to the slow formation, where CC4 is below 0.05 C. These forma-
tion protocols are expected to be more predictable as long cycle
life performance is physically tied to the formation of a stable SEI
layer under these slow operating conditions. Furthermore, these
stable SEl layers can be viewed as a fixed amount of lithium loss,
which makes it easier to investigate by removing the degrees of
freedom derived from the electrode-utilization shift. For slowly
formed Li-ion battery systems, it has long been hypothesized
that SEI growth is the dominant mechanism for capacity fade,
which becomes self-limiting at long times due to the diffusion
limitation of solvent molecules across the SEI layer.*>:°7:9519°
A dynamical transition from reaction-limited to diffusion-limited
SEI growth has also been proposed,® roughly corresponding
to classical two-layer models of SEI growth, in which the rapid
electrodeposition of a dense, inorganic primary SEl layer is fol-
lowed by slow, diffusion-limited growth of a thick, porous sec-
ondary SEl layer.?®'°"~1%% Recently, there has been growing ev-

8 Joule 9, 101884, May 21, 2025

idence of two growth regimes during the formation process with
a significant portion of SEl-related capacity generated during the
early stage.®”:9%:941947106 For glow formation, the primary SEl is
suspected to be well-formed where, by the end of formation,
the system is saturated with degradation products, and the total
lithium consumed by SEI production is similar across formation
protocols.

To study this physical description of slow formation, we use
cells from slow-formation conditions, consisting of 32 out of
the 178 cells, for the physics-based investigation step. In a
post-formation C/20 low-rate test (reference performance test
[RPT]) across these cells, shown in Figure S12, the differential
capacitance and d?Q/dV? electrochemical signatures are
nearly indistinguishable. This is an indication that the electrode
utilization and remaining lithium inventory are likely similar
across these cells. However, the performance, as quantified
through cycle life, is not identical across all these cells. Specif-
ically, the cells formed at the higher formation temperature
tested at 55°C perform significantly better than the rest,
perhaps indicating that the quality of formed degradation layers
like SEI may be temperature dependent. The impact of the for-
mation temperature on the electrochemical signature can be
seen directly in the formation operating datasets, such as the
dQ/dV and d?Q/dV2 curves in step B as shown in Figures 6A
and 6B. These curves show little variation within cells formed
at the same temperature but large variations across different
formation temperatures. As the formation temperature de-
creases, a smoothing of both curves is observed, which makes



Joule

¢? CellPress

Table 6. MAPE and RMSE of each model at each outer fold and mean and HL estimator among five outer folds

Agnostic (best)

AutoML (best)

Designed (best)

MAPE outer fold 1 10.55 10.21 9.20*
outer fold 2 11.06 8.14* 8.91
outer fold 3 11.14 10.85 9.13*
outer fold 4 11.35 9.72* 11.93
outer fold 5 10.70 9.63" 10.05
mean 10.96 9.71* 9.84
HL 10.95 9.72 9.59*

RMSE outer fold 1 108.79 120.44 98.98*
outer fold 2 90.98 74.79* 88.51
outer fold 3 124.81 136.92 97.33*
outer fold 4 107.10 86.17* 108.54
outer fold 5 100.82 83.14* 95.90
mean 106.50 100.29 97.85*
HL 107.10 101.79 97.44*

Asterisks indicate the smallest in each row, indicating the best performance.

aThis small value was obtained by Weng et al.** having the cells from the same formation protocol in both their “validation” and “train/test” sets.
PFrom the same dataset being used for optimizing hyperparameters and evaluating the model performance.

°Each input data candidate was processed using interpolation at p = 1,000 uniformly distributed points along the input variable (x).

9HL estimator is the median of pairwise averages which is widely used to represent a distribution for its robustness.®"

certain agnostic-model features visible through the electro-
chemical signatures.

To explain these trends, we use a surrogate model for the full-
cell system, where the focus is on the temperature dependence
of the electrochemical signatures during a simulation of step B.
To achieve this goal, the underlying coupled transport and reac-
tion dynamics for each electrode is simplified to a large ensemble

of reactive particles in the model, where each particle has a rate-
constant sampled from a defined distribution. The model can
also be understood in the context of a distributed-resistance
model, where many transport and reaction resistances are being
lumped into the charge-transfer resistance, Rgt = kgT /eko. The
calculated current density in the underlying microscopic model
for the i th particle in electrode j is modeled as

Domain knowledge

Formation SEI quality Cycle life g =
1000 1 [ ] ss'ecrsrormauen *
temperature ] 8 Fast Formation
S 8001 f
Heterogeneity of £ ciod
microscopic particle dQB/dv QB(3.57 V) — 0B(3.60 V) g
resistances  ['** P d2QB/dv? > QB(3.60 V) — QB(3.66 V) S T T .

Protocols Ranked by Cycle Life

Physics-based investigation

* The impact of temperature and heterogeneity of

» Use distributed resistance model under various

formation temperatures

particle resistances on dQB/dV and d?2QB/dV? curves

Feature design

x10%

3 32 34 36 38 a4 42 44
Voltage (V)

dQ®/dV (AhV)
o
&

a%QB/av? (Ahv?)

= 3 32 34 36 38 4 42 44
e sebet Voltage (V)

Figure 5. Schematics on how the systematic feature-design framework guides the physics-based investigation to find the physical meaning

of the designed features

The red and blue arrows indicate the relationship learned from the domain knowledge and the feature-design work, respectively. The green dotted arrow indicates

the missing link where the physics-based investigation is performed.
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based on the quantum theory of ion-coupled electron transfer
(ICET)."°” The ICET rate expression has a symmetric Butler-
Volmer dependence on overpotential (for equal reduction and
oxidation ion-transfer energies) and an asymmetric dependence
on electrode filling fraction, as recently confirmed by learning
from X-ray images of battery nanoparticles.'°® The model also
includes an Arrhenius temperature dependence in the pre-factor
with an activation barrier, E4 (the activation enthalpy of ICET),
which captures the effects of the formation-protocol tempera-
ture on the simulated dynamics. The full model formulation is
described in Note S11.

By simulating the system with a log-Gaussian distribution for
particle charge-transfer resistance at each electrode, character-
ized by a mean and standard deviation, we are able to simulate a
set of step B curves across different temperatures with five free
parameters. Comparing the simulated results in Figures 6C and
6D with the experimental dataset in Figures 6A and 6B, we see
striking similarities in the location of the local maxima and
minima in the d2Q/dV2 and their trends with temperature. These
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formance observed. This underlying het-
erogeneity is likely a consequence of the
quality of the SEI being formed, which is
not obviously extractable from the for-
mation-protocol parameters. In all, we
hypothesize that the designed model performs better than the
agnostic model because designed features not only encode
some of the agnostic-model parameters, such as formation
temperature, but also encode an underlying heterogeneity in
the microscopic-particle resistances which varies from cell to
cell and translates into the electrochemical signatures during
formation.

Conclusions

The battery lifetime prediction community has long been trying to
find an answer to the question: “how much data are needed to
predict cycle life?” While the majority of the community focused
on performing earlier cycle life prediction within the aging
regime, our work presents how such prediction can be achieved
by only using the formation data. Enabling extreme early cycle
life prediction for untrained formation protocols, our work is ex-
pected to accelerate the optimization of the formation process.
In this work, we develop a systematic feature-design framework
to achieve extreme early cycle life prediction with minimal
domain knowledge and user input. Using our framework, two
simple Q(V) features are designed from the last discharge step
of the formation protocol. These features do not require addi-
tional diagnostic cycles, and they show good performance in
comparing formation protocols across different temperatures,
which is known to be the key parameter affecting the quality of
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SEl layers. From the physics-based investigation guided by our
feature-design framework, we attribute the predictiveness of
the designed Q(V) features to its ability to learn the impact of for-
mation temperature and heterogeneity of microscopic-particle
resistances on dQ/dV and d?Q/dV? curves. As per the predictiv-
ity, robustness, and interpretability, the two designed features
are suitable for evaluating the untrained formation protocol dur-
ing the formation step.

While the main focus of this study was to perform extreme
early cycle life prediction of untrained formation protocols for
SC-NMC532/AG cells, industries may be interested in different
cell chemistries, battery-performance metrics, and cycling con-
ditions, depending on their applications. Not being tailored to
any specific settings listed above, our framework is expected
to design predictive features customized to each application.
Interpretability of the designed features allows us to leverage
the interplay between data-driven feature design and a mecha-
nistic understanding of interested applications, providing the
opportunity to further expand the domain knowledge of indus-
trial formation processes. Besides optimizing the formation pro-
cess, the same framework can be used to design features
tailored for outlier detection during the manufacturing process
when using the dataset consisting of cells under an identical for-
mation protocol.
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