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A B S T R A C T

O-GlcNAcylation has the potential to be an important target for therapeutics, but a motif or an algorithm to
reliably predict O-GlcNAcylation sites is not available. Current predictive models are insufficient as they fail to
generalize, and many are no longer available. This article constructs recurrent neural network models to predict
O-GlcNAcylation sites based on protein sequences. Different datasets are evaluated separately and assessed
in terms of strengths and issues. Within a given dataset, results are robust to changes in cross-validation
and test data as determined by nested validation. The best model achieves an F1 score of 36% (more than
3.5-fold greater than the previous best model) and a Matthews Correlation Coefficient of 35% (more than
4.5-fold greater than the previous best model), and, for the F1 score, 7.6-fold higher than when not using
any model. Shapley values are used to interpret the model’s predictions and provide biological insight into
O-GlcNAcylation.
1. Introduction

Glycosylation is a co- and post-translational modification in which
a glycan or glycans are added to proteins. When a glycan is added
to the oxygen of an amino acid (typically serine or threonine), this
process is called O-linked glycosylation. When the glycan added is an
N-Acetylglucosamine (GlcNAc), this process is called O-GlcNAcylation
(Schjoldager et al., 2020). Unlike other forms of glycosylation, O-
GlcNAcylation does not form complex glycans and may be viewed sim-
ilarly to phosphorylation (Schjoldager et al., 2020). O-GlcNAcylation
is mediated by the enzymes OGT and OGA and is important function-
ally and structurally (Schjoldager et al., 2020; Chang et al., 2020).
Recent research has shown O-GlcNAcylation can be a powerful tar-
get for therapeutics (Zhu and Hart, 2021), further highlighting its
potential. However, it is challenging to investigate specific functions
of O-GlcNAcylation, due to the wide diversity of glycosylation sites
(Schjoldager et al., 2020). Conversely, incorrect or loss of O-GlcNAcyl-
ation is associated with multiple conditions such as cancers and metas-
tases (Shi et al., 2022), infections (Chang et al., 2020), and heart
failure (Umapathi et al., 2021).

In spite of how important O-GlcNAcylation is for human health and
biotherapeutics, some challenges remain. As O-GlcNAcylation involves
only a single glycan, the main open problems involve predicting where
and when an amino acid will be O-GlcNAcylated, and computational
tools can aid researchers in better understanding and predicting these
phenomena. Models can be classifiers, such as YinOYang (YoY) (Gupta
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and Brunak, 2002) or O-GlcNAcPRED-II (Jia et al., 2018), or regressors,
such as the models in Moon et al. (2021), Seber and Braatz (2023),
and Liang et al. (2020). In the context of glycosylation, classifiers may
predict whether an amino acid can be O-GlcNAcylated. Regressors may
quantitatively predict the glycan distribution of a glycosylation site,
and are better suited for predicting distributions of other forms of
glycosylation. Predicting the location of O-GlcNAcylation is challeng-
ing for multiple reasons, including a low frequency of events (only
about 2% of S/T sites are O-GlcNAcylated) and a lack of a motif
to guide predictive efforts. The effects of neighboring amino acids
likely influence whether an S/T is O-GlcNAcylated, yet not all machine
learning architectures are equipped to take into account and leverage
this information. Models to predict the presence of O-GlcNAcylation
sites have insufficient performance to be helpful tools. A 2021 review
(Mauri et al., 2021) found that no published model can achieve a
precision ≥ 9% on a medium-sized independent dataset, indicating O-
GlcNAcylation prediction models fail to generalize successfully despite
the high metrics that they can achieve in their respective training
datasets. These models also have low F1 scores and Matthew Correla-
tion Coefficients (MCCs), further indicating their performance is lacking
(refer to Section 2.3 for details on these metrics, including why MCC
is the best metric). More recent works, which were published after
this work was first posted on a preprint server, include LM-OGlcNAc-
Site (Pokharel et al., 2023) and O-GlcNAcPRED-DL (Hu et al., 2024).
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Although the models in these works perform slightly better than the
models evaluated in Mauri et al. (2021) as per their reported MCCs,
the performance of these models is still lacking. Both these models
were also trained by undersampling from the more-frequent negative
class, an improper procedure that inflates training metrics but reduces
the generalization performance of a model. Moreover, Pokharel et al.
(2023) and Hu et al. (2024) do not include any information on the
precision of their models, potentially due to subpar performance in this
challenging metric. Backcalculations using these models’ own published
data show that the precision of Pokharel et al. (2023)’s model on an
independent test set (Table 4 of that work) is only 5.42%, and that
the precisions of Hu et al. (2024)’s models on independent test sets
(‘‘Ind_H_2022’’ and ‘‘Ind_M_2022’’, Table 4 of that work) are only 1.88%
and 3.01% respectively. As such, the central thesis of Mauri et al.
(2021) still holds: no published model can achieve a precision ≥ 9%
n an independent test set.

In this work, we construct recurrent neural network (RNN) classifi-
ation models (specifically, we construct bidirectional long short-term
emory (LSTM) models) to predict the presence of O-GlcNAcylation

ites from mammalian protein sequence data. This method is sim-
ler and less computationally expensive than the ensemble of large-
anguage models used in Pokharel et al. (2023) and the convolutional
eural network + LSTM used in Hu et al. (2024). One of the large-
anguage models in Pokharel et al. (2023) also has a non-commercial li-
ense, preventing its use in the biopharmaceutical industry. The model
onstruction procedures employ cross-validation and rigorous unbiased
rediction error estimation. Our final RNN model achieves significantly
igher metrics than previously reported models, and its predictions
re interpreted through Shapley values. Open-source software is pro-
ided so that other researchers can reproduce the work, retrain models
s additional or higher quality O-GlcNAcylation data become avail-
ble, and use the model to further improve the understanding of
-GlcNAcylation.

. Materials and methods

.1. Datasets

Three experimental datasets, one at a time, are used to construct the
odels. Table 1 summarizes the size and features of each dataset. The

irst dataset, named ‘‘Mauri et al. (2021) – Original’’ in this publication,
s taken directly from Mauri et al. (2021). This dataset contains human-
elected descriptors based on sequence and structure, but does not
ontain the protein sequence directly, and has certain issues, such as
epeated entries, which likely lead to test-set leakage. Thus, a second
ataset, named ‘‘Mauri et al. (2021) – Modified’’ in this publication,
s built from the raw data in Mauri et al. (2021). This second dataset
ontains only protein sequences for site prediction. Both of the above
atasets are included solely to compare the performance of this publica-
ion’s methodology with that from older publications included in Mauri
t al. (2021). These first two datasets are not used in the training
r testing of the final model because these datasets are smaller and
ess complete than the third dataset. A third, larger dataset, named
‘Wulff-Fuentes et al. (2021) – Modified’’ in this publication, is built
rom the processed data from Wulff-Fuentes et al. (2021). S/T residues
ot marked as O-GlcNAcylated in the original dataset were treated as
egative during preprocessing. The dataset was modified to remove
on-mammalian proteins, remove proteins without site information,
nd split entries with multiple isoforms. Due to the presence of isoforms
nd homologous proteins, care was taken to not include the same
equence multiple times in the processed dataset. This selection was
one based on a window size of 5 AA on each side of the central
/T (11 AA total) even for the larger windows, reducing any effects
ue to site similarity. All sequences are then one-hot encoded. 20% of
ach dataset is separated for testing, with the remaining 80% used for
ross-validation with five folds. Thus, test-set leakage is avoided. To
2

ensure robustness against variations in the data and avoid biases due
to our selection of training and testing sets, a 5-fold nested validation
is performed with the best model in this work. In each round of nested
validation, 20% of the data are separated as the round’s test set. The
other 80% are used in five-fold cross-validation for hyperparameter
selection (as above). The best model is evaluated against that round’s
test set. This preprocessing procedure was done using our own code and
facilitated by standard Python packages (Harris et al., 2020; Pedregosa
et al., 2011; McKinney, 2010).

A fourth set of datasets, named ‘‘Ind_H_2022’’ and ‘‘Ind_M_2022’’, is
used solely to compare our model trained with the third dataset and the
models from Hu et al. (2024). These two datasets were created by Hu
et al. (2024) and used to test their models in that work. To ensure the
fairest comparison possible, we also test our best model (trained with
the third dataset) on these same datasets.1

2.2. Artificial Neural Networks (ANNs)

Multilayer perceptrons (MLPs) are constructed for the Mauri et al.
(2021) – Original dataset, as it did not contain sequence information,
and recurrent neural network (RNN) models are constructed for the
other datasets. A visual diagram of these models is available in Fig. S1.
Model construction was done using PyTorch (Paszke et al., 2019). For
the MLP models, 32 different layer configurations, 4 different learning
rates (10−2, 5 × 10−3, 10−3, 5 × 10−4), 3 different activation functions
(ReLU, tanh, and tanhshrink), and varying loss weights for the positive
class were used. For the RNN models, 2 LSTM size configurations
(selected based on the number of MLP features in the original dataset),
7 different MLP layer configurations, 2 different learning rates (10−2,
× 10−3), 2 different activation functions (ReLU and tanhshrink), and

arying loss function weights for the positive class were used.2 More-
ver, the RNNs trained with the Wulff-Fuentes et al. (2021) dataset
sed an AdamW optimizer with a weight decay parameter of 𝜆 = 10−2

nd cosine scheduling (Loshchilov and Hutter, 2017). Cosine schedul-
ng has been used primarily in the computer vision field and achieves
reat results in the context of imbalanced datasets (Kukleva et al., 2023;
ishra et al., 2019). The best hyperparameters for the MLP or each
NN size are determined by a grid search, testing each combination of

ayers, learning rate, and activation function. The combination with the
ighest cross-validation average F1 score is selected and, for each RNN
ize, its performance is reported for an independent test dataset. To
nterpret the model’s predictions, Shapley values are calculated using
he shap Python package (Shapley, 1951; Lundberg and Lee, 2017).
hese interpretable values are also evaluated against the same test set.

.3. Model evaluation metrics

Binary classification models emit two types of predictions. Because
he real data have two potential categories, there are a total of four
ategories in which a prediction may fall: true positive (TP), false
ositive (FP), true negative (TN), and false negative (FN). There are
ultiple metrics that combine some or all of these categories to assess

he quality of a model. The simplest of these metrics is accuracy (Eqn.
1), defined as the number of correct guesses divided by the total
uesses. However, accuracy is not a suitable metric for imbalanced
atasets, as it is possible to achieve high accuracy by simply always
redicting the majority class. To correct this issue, two other simple
etrics can be used. Recall (aka sensitivity, hit rate, or true positive

ate) is the number of true positives divided by all positives in the
eal data (Eqn. S2). Precision (aka positive predictive value) is the
umber of true positives divided by all elements classified as positive

1 This fourth set of datasets is not included in Table 1 because it is not used
o train any of our models.

2 As detailed in the ANN_train.py file in the GitHub repository.
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Table 1
Summary of the properties of the datasets used in this work for the training of different models. Datasets came from Mauri et al. (2021) and
Wulff-Fuentes et al. (2021) and are modified by us when noted.

Dataset Unique entries Unique positive entries Features present

Mauri et al. (2021) – Original 41,056 565 (1.38%) Descriptors based on sequence and structure
Mauri et al. (2021) – Modified 41,600 535 (1.29%) Site sequence (21 AA per entry)
Wulff-Fuentes et al. (2021) – Modified 558,168 13,637 (2.44%) Site sequence (11 AA to 51 AA per entry)
s

h
t
p
i

d

by the model (Eqn. S3). Because recall and precision are opposed to
each other, the F1 score metric was created to balance both and allow
ssessment of models with a single metric (Eqn. S4). The negative-class
quivalents of recall and precision are the specificity (aka selectivity or
rue negative rate) and the negative predictive value; however, these
etrics are not used in this work because it focuses on the discovery

f positive O-GlcNAcylation sites. Moreover, the negative imbalance of
he datasets makes these last two metrics less suitable for evaluation.

The most used metric to assess binary classification models in
ultiple fields is the area under the receiver operating characteristic

urve (ROC-AUC) (Chicco and Jurman, 2023). However, the ROC-
UC metric suffers from many issues and can lead to overoptimistic
nd incorrect assessments, especially when working with negatively-
mbalanced data (Chicco and Jurman, 2023; Halligan et al., 2015; Lobo
t al., 2008). To analyze the quality of binary classification models over
ultiple thresholds, it is recommended to use the precision–recall (P-
) curve instead (Chicco and Jurman, 2023; Saito and Rehmsmeier,
015; Chicco, 2017; Ozenne et al., 2015). Finally, to capture in a single
etric all four categories in which a prediction may fall, the Matthews

orrelation coefficient (MCC), also called the (Yule) phi coefficient, may
e used (Eqn. S5). It is widely considered the best single metric (Chicco
nd Jurman, 2023). As a correlation coefficient, the MCC falls between
1 and 1 instead of the typical 0 and 1.

. Results

.1. MLP models considerably surpass previously published models in terms
f precision, F1 score, and MCC on the original dataset of Mauri et al.
(2021)

All of the data-driven models constructed in this study for the
rediction of O-GlcNAcylation sites are trained with hyperparameters
elected by cross-validation. Using the ‘‘Mauri et al. (2021) – Original’’
ataset, this section compares our MLP model with previously pub-
ished models: YinOYang (Gupta and Brunak, 2002), O-GlcNAcPRED-
I (Jia et al., 2018), OGTSite (Kao et al., 2015), and the models in Mauri
t al. (2021).

The central thesis of Mauri et al. (2021) is that O-GlcNAcylation pre-
iction models fail because no model reviewed in that article achieved
precision greater than 9%. While that conclusion was based on the

ow precision of the specific models evaluated in that reference, models
ublished years later still suffer from the same problem. At low, less
trict acceptance thresholds, our MLP behaves similarly to YinOYang
Fig. 1). Beginning from a threshold equal to 10−6 or higher, our

MLP displays greater precision at the same recall level. The precision
continues to increase monotonically with threshold, while the F1 score
peaks at a model threshold equal to 0.8. At its maximum F1 score,
ur MLP model has a 151% improvement in the F1 score, a 307% in

precision relative to the best former models (with a total precision of
35.3%), and a 90.9% improvement in MCC ( Table 2). As such, our MLP
model shows that the central thesis of Mauri et al. (2021) is not valid
and that predictive models of the location of O-GlcNAcylation sites can
be constructed with reasonable precision while also surpassing previous
models in other metrics.

After the MLP was fully trained, we noticed that the ‘‘Mauri et al.
(2021) – Original’’ dataset has some issues, such as entries that did
not match the raw data and repeated entries, which may lead to
test-set leakage and overoptimistic predictions. Moreover, the models
3

v

made predictions based on human-selected descriptors, which may be
incomplete or biased and are not trivial to obtain, making model usage
inconvenient for the end-user. To remedy these issues, we constructed
a new dataset from the raw data of Mauri et al. (2021), which is called
‘‘Mauri et al. (2021) – Modified’’ in this work. This modified dataset
uses sequence data instead of human-selected descriptors.

On that corrected dataset, our RNNs behave similarly to YinOYang
at low thresholds (Fig. S2). Beginning from a threshold of 10−10 for
the RNN-76 model and 10−7 for the RNN-152 model3, our RNNs
display greater precision at the same recall level. The precision for
both RNN models continues to increase nearly monotonically with
increasing threshold, while the F1 score peaks at a threshold of 0.99
for RNN-76 and 0.999 for RNN-152. Moreover, the RNN-76 is strictly
superior to the RNN-152 for all thresholds ≥ 10−10. At its F1 score
maximum, the RNN-76 model has a 134% improvement in the F1 score,
a 391% improvement in precision, and a 136% improvement in MCC
relative to YinOYang4 (Table S1). Our RNN-76 model also surpasses
the MCC reported in Pokharel et al. (2023) and Hu et al. (2024) on
an independent test set, although the use of different training/test sets
makes this only an indirect surpassing.

The performance of these models is lower than for the models tested
with the original dataset of Mauri et al. (2021). This performance loss
occurs due to the elimination of test-set data leakage, which biased
the metrics upwards.5 This reduction highlights the importance of
constructing test datasets in a manner that avoids the potential for
information leakage to be able to produce accurate assessments of
model performance (Geslin et al., 2023; Jones, 2019).

3.2. A larger, less imbalanced dataset leads to improved models that surpass
previously published models even further

After model training with the Mauri et al. (2021) datasets was
complete, the dataset from Wulff-Fuentes et al. (2021) was located,
which is more than an order of magnitude larger than the previously
used dataset. Moreover, it contained a larger proportion of positive sites
(2.44%), although the dataset was still significantly imbalanced.

Using a slightly modified training procedure (as described in Sec-
tion 2.2), RNN models are trained on a modified version of the Wulff-
Fuentes et al. (2021) dataset. Wulff-Fuentes et al. (2021) also included a
potential motif for O-GlcNAcylation, which was tested on this modified
dataset. Models with different window sizes were also tested to deter-
mine the effect of window sizes on predictive power. In the previous
sections and in Mauri et al. (2021), window sizes were restricted to 10
AAs on each side of the S/T (21 AAs total), likely due to YinOYang’s
fixed window size. However, it is reasonable to believe that AAs further
away from the glycosylation site can have an effect on glycosylation;

3 RNNs with 38 and 228 neurons had inferior cross-validation results, and
o are not included.

4 O-GlcNAcPRED-II and OGTSite are no longer available (their web servers
ave been down for years and no downloadable version can be obtained);
hus, their metrics on the Modified dataset cannot be obtained. Note that these
ublications have not been retracted. Hu et al. (2024) faced a similar problem
n their work.

5 The performance loss was not due to feature changes. MLPs using this
ataset and the same features lost more than 10% of their absolute recall

alues at the same precision and performed worse than the RNNs (Fig. S2).
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Table 2
Recall, precision, F1 score, and MCC metrics (in %) for the points with highest F1 score for different O-GlcNAcylation site prediction models.
Model ‘‘YinOYang’’ is from Gupta and Brunak (2002), Model ‘‘O-GlcNAcPRED-II’’ is from Jia et al. (2018), Model ‘‘OGTSite’’ is from Kao et al.
(2015), and Model ‘‘Mauri’’ is the best model from a collection of models from Mauri et al. (2021). The metrics for these previously published
models are from Tables 2 and 4 of Mauri et al. (2021). Model ‘‘Our MLP’’ comes from this work. ‘‘No Model’’ sets all sites to potentially
positive – that is, sets the threshold to 0.

Metric YinOYang
(From Gupta
and Brunak,
2002)

O-GlcNAcPRED-II
(From Jia et al.,
2018)

OGTSite
(From Kao
et al., 2015)

Mauri
(From Mauri
et al., 2021)

Our MLP
(This Work)

No Model

Recall (%) 14.36 65.09 49.09 39.82 22.64 100
Precision (%) 6.89 3.90 6.20 3.10 35.29 1.38
F1 Score (%) 9.31 7.36 11.01 5.75 27.59 2.72
MCC (%) 8.10 11.73 14.44 7.03 27.56 0.00
Fig. 1. P-R curves for O-GlcNAcylation site prediction models tested on the original dataset of Mauri et al. (2021). The black dotted lines are isolines of the F1 score, as labeled
on the top and right sides of the plot. Model ‘‘YinOYang’’ is from Gupta and Brunak (2002), Model ‘‘O-GlcNAcPRED-II’’ is from Jia et al. (2018), and Model ‘‘OGTSite’’ is from
Kao et al. (2015) (complete P-R curves are not shown because the models are no longer publicly available). Models ‘‘Mauri’’ are a set of models from Mauri et al. (2021). Metrics
for these previously published models are from Tables 2 and 4 of Mauri et al. (2021). Model ‘‘Our MLP’’ comes from this work; the numbers on its curve represent the minimum
threshold for a site to be considered positive. ‘‘No Model’’ sets all sites to potentially positive – that is, sets the threshold to 0.
thus, models with up to 25 AAs on each side (51 AAs total) were
investigated.

Our RNNs exhibit a much higher recall at the same precision level
(Fig. 2) than any models in the previous sections (Figs. 1 and S2).
Moreover, these RNNs have much higher precision for all recall values
lower than 50%. As before, the precision for our RNN models increases
monotonically with increasing threshold, while the F1 score peaks at
different thresholds for each model. The models’ performance increases
with increasing window size for sizes up to 20, and it also increases
with increasing RNN hidden sizes for models with up to 225 neurons6

(Fig. 2 and Table 3).
Similarly to what occurred with the other datasets (Section 3.1

and Fig. S2), YinOYang performed very similarly to our models at
low thresholds, and our models surpassed YoY at thresholds ≥ 10−6.
Furthermore, YoY performed very similarly in this expanded dataset
and in the smaller dataset from Section 3.1, indicating it is robust with
respect to input data. However, its performance was also considerably
low, surpassing an F1 score of 10% only at one threshold level. Even

6 Models with window sizes = 25 or RNN sizes = 300 neurons performed
nearly identically to models with window sizes = 20 or RNN sizes = 150 or
225 neurons, so the former are not included in Fig. 2 or Table 3.
4

our RNN with a window size of only 5 AAs – that is, with half the
information per sample – is Pareto dominant over YoY. With increasing
window sizes, this disparity grows further, highlighting the quality of
our RNNs and the positive impact from increasing window sizes. At
its F1 score maximum, the RNN-225 model with a window size = 20
has a 357% improvement in precision, a 257% improvement in the F1
score, and a 357% improvement in MCC relative to YinOYang (Table 3).
Once again, the performance of our model on an independent test set
surpasses that attained by the models in Pokharel et al. (2023) and Hu
et al. (2024) in an indirect comparison.

To ensure our choice of cross-validation (later, training) and testing
data is not biased, and to ensure the chosen hyperparameters are not
excessively dependent on the particulars of a cross-validation dataset,
five-fold nested validation was performed on the RNN-225; 20 win
model (as described in Section 2.1). The difference in performance
among the five nested validation folds was negligible (Fig. S3 and Table
S2), indicating that the chosen architecture and hyperparameters are
robust to variations in the training and testing data. This highlights
how this methodology is sound and can be applicable to any O-
GlcNAcylation dataset. The best thresholds were also very similar for
most folds; for the one fold where that was not the case, it should be
noted that thresholds of 0.6 and 0.7 had the third- and second-best
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Fig. 2. P-R curves for O-GlcNAcylation site prediction models tested using a modified version of Wulff-Fuentes et al. (2021)’s dataset. The black dotted lines are 𝐹1 score isolines,
as labeled on the top and right sides of the figure. Model ‘‘YinOYang’’ is from Gupta and Brunak (2002); its metrics are obtained by us. Models ‘‘Our RNN-#’’ come from this
work. The number that follows each RNN model is the LSTM module size used; the number after the semicolon represents the window size on each side of the central S/T. The
numbers on the ‘‘Our RNN-#’’ curves represent the minimum threshold for a site to be considered positive. The ‘‘W-F motif’’ comes from Wulff-Fuentes et al. (2021); the numbers
in the circles represent the minimum number of motif matches for a site to be considered positive. ‘‘No Model’’ sets all sites to potentially positive – that is, sets the threshold to
0.
performance respectively, with absolute F1 score and MCC differences
of less than 0.1%.

The previously proposed motif (from Wulff-Fuentes et al., 2021)
is excessively restrictive and fails to adequately capture the sequence
needed for O-GlcNAcylation. Out of the 531,628 unique entries in the
dataset, only 28 follow the motif, and only 11 out of those 28 are truly
positive. Because this motif captured very few sequences overall, we
hypothesized that allowing sequences to slightly deviate from the motif
could lead to improved results. Allowing sequences to be treated as
positive if at least 4 out of 5 amino acids follow the motif does not
significantly improve the results: only 669 sites follow the motif, and
only 136 out of those 669 are truly positive. The motif becomes slightly
better when sequences are treated as positive if at least 3 out of 5 amino
acids follow the motif; 7,787 sites follow the motif and 923 of those
are true positives. If sequences are treated as positive if at least 2 out
of 5 amino acids follow the motif, there are 54,875 positive sites and
3,232 true positives. Finally, treating sequences with just 1 out of 5
amino acids as positive leads to 233,943 positive sites and 7,898 true
positives. While these deviations improved the motif’s results, the motif
fails to achieve an F1 score or MCC greater than 10%, indicating it is
not suitable to predict or describe O-GlcNAcylation (Table 3).

A second motif, very similar to the one tested above, was published
in Ma et al. (2022). The authors claim that the sequence they found
‘‘tend to be the degenerate consensus motifs for O-GlcNAcylated Ser
and Thr residues of human proteins’’ and that ‘‘such motifs seem to
be well conserved among species including mice and Arabidopsis’’ (Ma
et al., 2022). Once again, this motif is excessively restrictive and fails
to adequately capture the sequence needed for O-GlcNAcylation. Out
of the 531,628 unique entries in the dataset, only 45 follow the motif,
and only 14 out of those 45 are truly positive (Table S4). As with the
Wulff-Fuentes et al. (2021) motif, minor improvements can be achieved
if the motif is relaxed, but this motif tends to perform slightly worse
than that of Wulff-Fuentes et al. (2021).

A recent work (Hu et al., 2024) also used deep learning models to
predict O-GlcNAcylation. Hu et al. (2024) used two independent test
sets in their work, which they labeled ‘‘Ind_H_2022’’ and ‘‘Ind_M_2022’’
5

and were used to evaluate their human-only and mouse-only prediction
models respectively. We test the performance of our model using the
same datasets and notice that our model surpasses theirs, respectively,
by 151% and 214% in terms of F1 score and 98.5% and 96.7% in
terms of MCC (Table 4). This superiority occurs despite our model’s
facing two disadvantages: first, Hu et al. (2024) trained one model
for each species (human and mouse), whereas our model is trained to
work universally on all mammalian sequences. Second, the sequences
in these datasets contain only 29 amino acids (corresponding to a
window size of 14) per sequence, but our models work best with 41
amino acids (corresponding to a window size of 20) per sequence.

3.3. Interpretation of model predictions using shapley values

The predictions of our models are interpreted via Shapley values
by assigning a linear coefficient to each amino acid at each position
based on a model’s predictions, leading to a (2 × window_size + 1)
× 20 matrix of coefficients. Because each position has only one single
amino acid, the final threshold for a given sequence is the sum of the (2
× window_size + 1) Shapley values of its amino acids. These allow for
elucidation of the effect of each amino acid on the glycosylation chance
(Fig. 3). The use of Shapley values with a threshold of 0.10–0.15 leads
to minimal losses in performance, indicating the values are descriptive
of the models’ predictions (Fig. S4 and Table S3).

Some of the most relevant amino acid and position combinations
are in agreement with Wulff-Fuentes et al. (2021)’s proposed motif and
methodology (e.g.: a 𝑇 at −1 or an A at 2). However, many others are
in disagreement. For example, our RNN-225; 20 win considers an H at
9 or an S at −2 as considerably important, but these combinations are
marginally less frequent in the positive samples relative to the negative
samples. Some other amino acid and position combinations (such as
a P at −1 or 4) are slightly more frequent in the positive samples
relative to the negative samples, yet our model regards these combi-
nations as critically negative for O-GlcNAcylation. These differences,
combined with the superior performance of our models, indicate that
the approach of simply counting the most frequent amino acids at each
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Table 3
Recall, precision, F1 score, and MCC metrics (in %) for the point with highest F1 score for models tested using a modified version of Wulff-Fuentes
et al. (2021)’s dataset, and for the motif generated by Wulff-Fuentes et al. (2021). Models ‘‘RNN-#’’ come from this work. The number that
follows each RNN model is the LSTM module size used; the number after the semicolon represents the window size on each side of the central
S/T. Model ‘‘YinOYang’’ is from Gupta and Brunak (2002); its metrics are obtained by us. The ‘‘W-F Motifs’’ come from Wulff-Fuentes et al.
(2021). The number in parentheses represents the minimum number of amino acids (out of 5) that must follow the motif for a site to be
considered positive. ‘‘No Model’’ sets all sites to potentially positive – that is, sets the threshold to 0.

Metric RNN-75; 5 win
(This Work)

RNN-75; 10 win
(This Work)

RNN-75; 15 win
(This Work)

RNN-75; 20 win
(This Work)

Best Threshold 0.90 0.95 0.95 0.80
Recall (%) 21.44 29.35 33.00 34.82
Precision (%) 16.20 24.22 29.38 29.87
F1 Score (%) 18.45 26.54 31.09 32.16
MCC (%) 16.23 24.59 29.26 30.38

Metric RNN-150; 20 win
(This Work)

RNN-225; 20 win
(This Work)

YinOYang
(from Gupta and
Brunak, 2002)

No Model

Best Threshold 0.50 0.60 0.60 N/A
Recall (%) 36.36 35.47 13.59 100
Precision (%) 34.58 36.90 8.08 2.44
F1 Score (%) 35.45 36.17 10.13 4.76
MCC (%) 33.76 34.57 7.57 0.00

Metric W-F Motif (5)
(From
Wulff-Fuentes
et al., 2021)

W-F Motif (4)
(From
Wulff-Fuentes
et al., 2021)

W-F Motif (3)
(From
Wulff-Fuentes
et al., 2021)

W-F Motif (2)
(From
Wulff-Fuentes
et al., 2021)

W-F Motif (1)
(From
Wulff-Fuentes
et al., 2021)

Recall (%) 0.08 1.01 6.84 23.94 58.50
Precision (%) 39.29 20.33 11.85 5.89 3.38
F1 Score (%) 0.16 1.92 8.67 9.45 6.38
MCC (%) 1.70 4.01 7.22 7.23 4.71
Table 4
Recall, precision, F1 score, and MCC metrics (in %) for the point with highest F1 score for models tested using the ‘‘Ind_H_2022’’ and
‘‘Ind_M_2022’’ datasets from Hu et al. (2024). Models ‘‘RNN-225; 20 win’’ come from this work and are labeled as per Table 3. Models
‘‘Hu et al.’’ are from Hu et al. (2024); their recall and MCC metrics are as reported in Hu et al. (2024), whereas their precision and F1 are
backcalculated by us, as these are not available in that work.

Metric RNN-225; 20 win; Human
(This Work)

Hu et al.; Human
(From Hu et al., 2024)

RNN-225; 20 win;
Mouse
(This Work)

Hu et al.; Mouse
(From Hu et al., 2024)

Best Threshold 1 N/A 1 N/A
Recall (%) 12.95 59.20 39.00 80.69
Precision (%) 7.03 1.88 11.88 3.01
F1 Score (%) 9.12 3.64 18.21 5.80
MCC (%) 7.74 3.90 19.30 9.81
position (a unigram model) is not adequate to describe and predict O-
GlcNAcylation, and it is likely that combinatorial effects (such as the
secondary structure of, or the net charge near the potential site) play
an important role in O-GlcNAcylation.

4. Discussion

This work constructs MLP and RNN models from multiple sources
of literature data on protein O-GlcNAcylation based on human-selected
descriptors (first part of Section 3.1) or protein sequences (second
part of Section 3.1 and all of Section 3.2). According to Mauri et al.
(2021), a significant limitation of O-GlcNAcylation models was that
they achieved very low precision (< 9%) on independent test sets.
Pokharel et al. (2023) and Hu et al. (2024) trained O-GlcNAcylation
models using deep learning methods after Mauri et al. (2021) was
published, yet neither could reach a precision ≥ 9% on independent test
sets. This study contrasts with the past studies by our use of different
model architectures, proper handling of dataset imbalance, multiple
prediction thresholds, and rigorous cross-validation for hyperparameter
selection. An MLP model trained in this work was compared with
previously published models (as reported in Mauri et al. (2021)), and
this work’s MLP model surpasses the previously published models in
precision (307% improvement), F1 score (151% improvement), and
MCC (90.9% improvement) metrics (Section 3.1). An analysis of the
6

dataset of Mauri et al. (2021) found multiple issues, however, including
test-set leakage, making the results overoptimistic for all models.

To address the dataset issues, a new dataset is constructed from
the original dataset of Mauri et al. (2021). This new dataset contains
protein sequences instead of descriptors, promoting the training of
RNN models and simplifying overall usage for the end-users. Two RNN
models trained in this work are compared with YinOYang (Gupta and
Brunak, 2002), the only model evaluated in Mauri et al. (2021) that
is still available (second part of Section 3.1). The correction of the
dataset’s issues lowered the overall performance of the models tested.
Nevertheless, the best RNN model still displayed a 391% improvement
in precision, 134% improvement in F1 score, and 136% improvement
in MCC when compared to YinOYang, and the RNN models surpassed
an MLP model trained on the same data (Fig. S2). This comparison
suggests that the RNN architecture is better suited for prediction of
O-GlcNAcylation than the MLP architecture, which is consistent with
the RNN being able to leverage the sequential data structure of protein
site sequences over the MLP’s limited way of handling structured data.

A much larger dataset from Wulff-Fuentes et al. (2021) is refined
and used to train RNN models through a slightly modified method-
ology. These RNN models displayed superior performance when com-
pared to the other models in previous works, displaying a 357% im-
provement in precision, 257% improvement in F1 score, and 357%
improvement in MCC over YinOYang (Section 3.2). These RNN models
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Fig. 3. Heatmap of Shapley values for each amino acid and position from the RNN-225; 20 win model (Section 3.2). Yellow and light green squares indicate AA/position
combinations that are more likely to be found in O-GlcNAcylated sequences; blue squares indicate AA/position combinations that are more likely to be found in non-O-GlcNAcylated
sequences. Blue and magenta stars represents AA/position combinations at the top 3% or bottom 3% of values respectively. Units for this heatmap are arbitrary and thus not
shown.
were also better than the RNN models trained in the previous section,
and we hypothesize part of this difference is due to the greater number
of entries and lower data imbalance found in Wulff-Fuentes et al.
(2021)’s modified dataset. The use of weight decay and learning rate
scheduling contributed to further improving the performance of the
RNN models in Section 3.2. We then compared the results of our model
with these from the models of Hu et al. (2024) on an independent test
set created by Hu et al. (2024). Despite the fact that Hu et al. (2024)
created one model per species (as opposed to our generalist mammalian
model) and that the evaluated datasets had a window size of only 14
(while our model was trained and achieves best results with a window
size of 20), our model surpasses the models of Hu et al. (2024) by 151%
and 214% in terms of F1 score and 98.5% and 96.7% in terms of MCC
(Table 4). These results highlight the superiority and generalizability
of our methodology and model, and also that using a more complex
deep learning architecture or features derived from protein structural
properties is not a silver bullet for the prediction of O-GlcNAcylation
sites.

Wulff-Fuentes et al. (2021) and Ma et al. (2022) also propose similar
motifs for O-GlcNAcylation, but their motifs are excessively restrictive.
The original formulation of Wulff-Fuentes et al. (2021)’s motif has an F1
score of only 0.16% and an MCC of 1.70%, and the original formulation
of Ma et al. (2022)’s motif has an F1 score of only 0.21% and an
MCC of 1.67%, indicating they are barely better than random guessing.
While making them less strict increased their performance, their motifs
never achieve an F1 score or MCC ≥ 10% (Tables 3 and S4). The
Shapley values extracted from our models, on the other hand, provide
interpretability while maintaining most of the superior performance of
our models (Section 3.3, Fig. S4, and Table S3). While a few of the
most positive or negative Shapley values match the motif proposed
in Wulff-Fuentes et al. (2021), many others do not. Given the higher
performance of the Shapley value predictions over Wulff-Fuentes et al.
(2021)’s motif, this suggests a simple unigram model is not adequate to
describe and predict O-GlcNAcylation, and more complex models that
take into account interactions are necessary.

The software used in this work is publicly available, allowing other
researchers to reproduce this work and reuse or improve the code in
future studies. The software provides a simple way to install and run
the best RNN model (trained on Wulff-Fuentes et al. (2021)’s modified
7

data and using a window size of 20 AAs on each side of the central
S/T) to predict the presence of O-GlcNAcylation sites based on the local
protein sequence. Instructions are provided in Sections S1 and S2 of the
supplemental data or in the README in our GitHub repository.
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