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Abstract

N-glycosylation has many essential biologi-
cal roles, and is important for biotherapeu-
tics as it can affect drug efficacy, duration
of effect, and toxicity. The prediction of N-
glycosylation and other important biophar-
maceutical production values have mostly
been limited to mechanistic modeling. We
present a residual hybrid modeling approach
that integrates mechanistic modeling with
machine learning to produce significantly
more accurate predictions for N-glycosylation
and bioproduction. For the largest dataset,
the residual hybrid models have an average
736-fold reduction in testing prediction er-
ror. Furthermore, the residual hybrid models
have lower prediction errors than the mecha-
nistic models for all of the predicted variables
in the datasets. We provide the automatic
machine learning software used in this work,
allowing reproduction and use of our software
for other tasks.

1 INTRODUCTION

Glycosylation is a protein co-translational and post-
translational modification that involves adding a gly-
can or glycans to proteins. N-linked glycosylation,
a subtype of glycosylation, occurs when a glycan is
added to the nitrogen of an asparagine or arginine. N-
glycosylation contributes to many essential functional
and structural roles (Imperiali and O’Connor, 1999;
Patterson, 2005; Schjoldager et al., 2020). Highlight-
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ing the importance of N-glycosylation, improper glyco-
sylation or deglycosylation is associated with multiple
diseases, including cancers (Stowell et al., 2015), in-
fections (Bhat et al., 2019), and congenital disorders
(Jaeken, 2013).

There is great interest in N-glycosylation from the
biomedical and pharmaceutical industry, physicians,
and patients because of its high therapeutical and di-
agnostic relevance. In many types of carcinoma, in-
creases in fucosylation, branching, and sialylation oc-
cur (Almeida and Kolarich, 2016). Disialoganglioside
is expressed by almost all neuroblastomas, and Phase
I–III studies have shown that anti-disialoganglioside
monoclonal antibodies can be successful against those
(Ho et al., 2016; Ahmed and Cheung, 2014). Poly-
α2,8-sialylation, for example, increases the half-lives
of antibodies but does not lead to tolerance problems
(Van Landuyt et al., 2019). Conversely, the presence of
glycans foreign to humans can be detrimental to a ther-
apeutic. N-glycolylneuraminic acid is immunogenic to
humans (Padler-Karavani et al., 2008) but is present
in some CHO-cell-derived glycoproteins (Hokke et al.,
1995).

Despite these critical functions of N-glycosylation in
biotherapeutical contexts and multiple developments
in this field, such as the genetic engineering of CHO
cells to increase glycoprotein sialylation (Bork et al.,
2007), some challenges persist. Proteins can be gly-
cosylated in multiple locations, so any investigations
need to elucidate not only the glycan compositions but
also where each glycan is located (Almeida and Ko-
larich, 2016). This structural and regional diversity
makes it challenging to determine specific functions of
N-glycans (Schjoldager et al., 2020). An important
goal for modeling is obtaining the complete N-glycan
distribution for a given protein or biopharmaceutical.
As defined by Seber and Braatz (2025), “the numeri-
cal N-glycan distribution is, for a known glycosylation
site X, what percentage of proteins have glycan A at-
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tached to that site, what percentage of proteins have
glycan B attached to that site, and so forth for every
glycan to obtain the complete glycan distribution for a
site, then so forth for every site to obtain the complete
glycan distribution for all sites of a protein”.

To assist in better understanding and predicting N-
glycosylation, many computational models have been
created, which may be subdivided into mechanistic
and data-driven models. Mechanistic models use phys-
ical knowledge, typically in the form of differential
equations, to make predictions. They require little-to-
no process data and always output physics-constrained
answers; however, they also demand significant under-
standing of the system and can be slow (Willard et al.,
2022), a problem alleviated by model simplifications
(Shen et al., 2020; Derbalah et al., 2022). Data-driven
models directly leverage experimental data to make
predictions. They require zero domain-based knowl-
edge (but can benefit from it), are typically fast once
trained, and the more complex data-driven models
are universal function approximators (Cybenko, 1989;
Hornik, 1991; Willard et al., 2022); however, they re-
quire high amounts of high-quality data due to their
high variance, can produce non-physical outputs, and
are typically not interpretable (Willard et al., 2022;
Rudin, 2019). Most works on N-glycosylation, partic-
ularly those on predicting N-glycan distributions, use
mechanistic models due to a lack of high-quality data
and data-driven modeling knowledge. The literature
on mechanistic models for the prediction of N-glycan
distributions is extensive; some examples can be found
in the reviews of Štor et al. (2021) and Kontoravdi and
Jimenez del Val (2018). Significant works using data-
driven models for the same task include Liang et al.
(2020) and Seber and Braatz (2025).

An alternative to mechanistic and data-driven models
are hybrid models. Hybrid models combine these two
types of models to create something with the advan-
tages of both and the disadvantages of neither (Willard
et al., 2022). Although of high interest, the construc-
tion of hybrid models is not straightforward. First,
they require knowledge of both mechanistic and data-
driven modeling to be successfully implemented. Sec-
ond, hybrid learning encompasses many architectures
and model integration methods, and there have not
been systematic studies on how to determine the best
hybrid learning method for a given problem or system.
Multiple examples of these architectures can be found
in Willard et al. (2022), Aykol et al. (2021), and Liao
and Köttig (2014). One of those architectures is the
Residual Hybrid Model,1 in which a data-driven model
learns the residuals (prediction errors) of a mechanistic

1Not to be confused with the residual connections (also
called skip connections) in some deep learning models.

model (Su et al., 1992). Despite the simplicity of this
hybrid architecture, it has found success in many scien-
tific problems (Su et al., 1992; Thompson and Kramer,
1994; Forssell and Lindskog, 1997; Aykol et al., 2021;
Willard et al., 2022). An illustration of this architec-
ture is available in Fig. 1; other illustrations are also
available in Fig. 1-A1 of Aykol et al. (2021) and Fig. 3
of Willard et al. (2022).

Mechanistic models receive the X and y data as in-
puts during training and generate predictions ŷMech
that approximate y. These predictions can be com-
pared with the real values y to determine the error
εMech of each prediction, such that εMech = y− ŷMech.
The data-driven models of residual hybrid models re-
ceive the X data and εMech values as inputs dur-
ing training and generate predictions ŷData that ap-
proximate εMech. These predictions ŷData are com-
bined with the mechanistic predictions ŷMech to form
ŷHybrid = ŷMech + ŷData. Again, these predictions can
be compared with the real values y to determine the
error εHybrid of each prediction, such that εHybrid =
y − ŷHybrid = y − ŷMech − ŷData = εMech − ŷData. Be-
cause ŷData approximates εMech, it is thus argued that
εHybrid < εMech.

In this work, we construct residual hybrid models by
combining mechanistic models from the literature with
Lasso-Clip-EN (LCEN) (Seber and Braatz, 2024) and
artificial neural network (ANN) models trained by us.
The data-driven models are trained using an efficient
automatic machine learning (AutoML) software devel-
oped by us that completely eliminates the need for the
end-user to have any knowledge in data-driven mod-
eling. This software is free and open-source. These
hybrid models are first used to predict the distribu-
tion of N-glycans attached to antibodies produced by
Chinese hamster ovary (CHO) cells under different cul-
ture conditions. Then, the models are used to predict
metrics that are relevant to biopharmaceutical produc-
tion in CHO cells, including the titer, the galactosy-
lation index of the products, and the levels of differ-
ent chemicals in the culture medium over time. These
CHO cultures were done in perfusion, fed-batch, and
batch bioreactors depending on the dataset. Our hy-
brid models reduce the average prediction error by
152-fold on independent test sets when compared to
the mechanistic models, and always lead to a reduc-
tion in the average test-set prediction error on the
datasets investigated in this work. For the largest
dataset, residual hybrid models have a test-set error
that is 736-fold smaller than that of the mechanistic
model. This work differentiates itself from previous
works that used residual hybrid models by being the
first to apply this method to real biopharmaceutical
datasets, by confirming the superior performance of
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Figure 1: The residual hybrid model architecture. ŷ refers to the predictions made by a certain model.
εMech = y − ŷMech refers to the residuals (errors) of the predictions made by the mechanistic model. Although
not shown in the figure, a similar εHybrid = y − ŷHybrid can be obtained, and it is argued that εHybrid < εMech.

residual hybrid models over mechanistic model on a va-
riety of datasets, by using multiple data-driven meth-
ods as baselines, and by being the first to use residual
hybrid modeling in an AutoML context.

2 METHODS

This section describes the datasets and the residual
hybrid models training methods. Details on the mech-
anistic models from previous works are in Section A4.
Instructions on running our AutoML software or recre-
ating this article’s results are provided in Supplemen-
tary Information and in our GitHub repo, available at
github.com/PedroSeber/SmartProcessAnalytics.

2.1 Datasets

Four previously published works provide the data used
to train the hybrid models in this work. The data
are all in numerical/tabular form, and all contain a
single output per relevant target (e.g.: the % pres-
ence of an N-glycan for every N-glycan or the con-
centration of a metabolite for every metabolite). The
first dataset, an 11×4 dataset for each N-glycan from
Karst et al. (2017), comprises the levels of N-glycans
on monoclonal antibodies produced in a CHO perfu-
sion culture as a function of viable cell density and the
concentration of galactose and manganese ions. The
second, a 79×10 dataset for each N-glycan from Vil-
liger et al. (2016), comprises the levels of N-glycans on
monoclonal antibodies produced in a CHO fed-batch
culture, but as a function of pH, galactose concentra-
tion, and manganese ion concentration under different
conditions and feeding strategies. This dataset also in-
cludes a time-based component, and galactose or man-
ganese supplementation at specific time points was

performed in some samples. The third, a 7×9 dataset
for each measurement from Kotidis et al. (2019), com-
prises the titer and galactosylation index of mono-
clonal antibodies produced in CHO fed-batch culture
as a function of feed galactose and uridine. Finally,
the fourth, a 216×1 autoregression dataset for each
metabolite from Kastelic et al. (2019), comprises the
levels of different chemicals (such as amino acids and
metabolites) in the culture media over time.

Data are split between cross-validation (CV) and test
sets. For the Karst et al. (2017) and Villiger et al.
(2016) datasets, the same splits used in these works
are used here, and 3-fold CV and 4-fold CV (respec-
tively) are used. For the Kotidis et al. (2019) dataset,
points FS2, FS3, and FS7 are used as the test set; the
first two because they are outside of the design spec
set by Kotidis et al. (2019), and the last because the
model of Kotidis et al. (2019) had the highest pre-
diction error on that sample. 4-fold CV is also used.
For the Kastelic et al. (2019) dataset, all points in the
death phase (t > 135 hr) are used as the test set, and
5-fold timeseries CV is used. These choices of test
sets avoid test set leakage by ensuring the test set is
sufficiently different from the training/cross-validation
set. For robustness, the CV procedure is repeated 10
times for each combination of hyperparameters.2 The
(repeated) CV procedure and scaling are performed
automatically by our AutoML software (Section A1).
Before each training step, all data are automatically
scaled based on the training data’s mean and stan-
dard deviation, such that the scaled training data has
mean = 0 and standard deviation = 1.

2Except for the procedure for Kastelic et al. (2019),
which uses time series CV due to the nature of its dataset.

https://github.com/PedroSeber/SmartProcessAnalytics


Improving N-Glyco & Bioproduction Predictions Using AutoML-Built Residual Hybrid Models

2.2 Data-driven and residual hybrid models

Ordinary least-squares (OLS), elastic net (EN),
LCEN, support vector machine with radial basis func-
tions (SVM), random forest (RF), AdaBoost, and
ANN models are directly trained on the data using
our AutoML software to serve as additional base-
lines. OLS, EN, SVM, RF, and AdaBoost models
are constructed with scikit-learn (Pedregosa et al.,
2011), LCEN models are constructed as per Seber and
Braatz (2024), and ANN models (specifically, multi-
layer perceptrons [MLPs] and recurrent neural net-
works [RNNs]) are constructed with PyTorch (Paszke
et al., 2019) within our AutoML software. Further-
more, LCEN and ANN models are trained on the resid-
uals of the mechanistic models to create residual hy-
brid models. A list of the hyperparameters used for
each model architecture is available in Section A2. The
best combination of hyperparameters for each model
and task is determined by grid search, and the com-
bination with the lowest cross-validation average loss
(averaged over 10 repeats) is selected. Errors on an
independent test dataset are then reported. This over-
all procedure is repeated 3 times with different cross-
validation seeds3 such that each test error reported is
the mean ± standard deviation.

3 RESULTS

3.1 Residual hybrid models improve
N-glycan distribution predictions

This section includes the results of the models trained
with the datasets of Karst et al. (2017) and Villiger
et al. (2016). Karst et al. (2017) featured two forms
of models: a mechanistic model that used differential
equations (named “Mechanistic” in this work) and a
response surface methodology (RSM) model with in-
tercept, linear, and 2nd-degree interaction terms. The
mechanistic model provides a better fit to indepen-
dent test data. Nevertheless, these models still had
high errors for some non-minor glycan forms; for ex-
ample, the mechanistic model had a 47.9% and a 9.31%
relative error when predicting the amount of antibod-
ies with high-mannose (Man) and FA2G2 glycosyla-
tion respectively (Table 1). As per Section 2.2, we
trained data-driven models to expand the models serv-
ing as a baseline and an MLP-based residual hybrid
model. The OLS and EN models are very similar to
the RSM model, but they lack the interactions present
in the RSM model. Despite that, they provided similar
(slightly worse) performance, indicating that the con-
tribution of the interaction terms is limited yet not in-

3Except for the procedure for Kastelic et al. (2019),
which uses time series CV due to the nature of its dataset.

significant. LCEN and MLPs had higher prediction ac-
curacy than RSM for all four glycans (Table 1). These
results indicate that nonlinear terms can be important
if they are not binary interaction terms, which is cor-
roborated by how LCEN frequently selected features of
the form

√
x, log x, and 1/(xjxk). SVM, RF, and Ad-

aBoost models sometimes performed better than the
RSM model and sometimes worse. Furthermore, with
the exception of the RF and MLP models to predict
levels of Man, all of these data-driven models were infe-
rior to the mechanistic model. It is likely that the chief
reason for these higher percent relative errors (PREs)
is the scarcity of data, as only 8 points are available for
model training. Despite this shortage of data and the
high accuracy of the mechanistic model for most gly-
cans, a residual hybrid model composed of the mech-
anistic model followed by an MLP always achieved a
lower PRE than the mechanistic model (Table 1). The
residual hybrid model led to 2.37-fold [2.25–2.45] aver-
age reductions in the relative errors of the mechanistic
model. These great results highlight how residual hy-
brid models are useful in predicting N-glycan distribu-
tions even when few data points have been collected
and a strong mechanistic model is already in use. They
also highlight the effectiveness of our AutoML method
for training an MLP to succeed the mechanistic model
in this hybrid architecture.

To further validate the ability of residual hybrid mod-
els to achieve higher accuracy than mechanistic mod-
els, a second work with this type of data was used. Vil-
liger et al. (2016) included only a mechanistic model,
again using differential equations and named “Mecha-
nistic” in this work. Villiger et al. (2016)’s mechanistic
model had worse fits than that of Karst et al. (2017),
as the former had low errors only for FA2G0, aver-
age errors for FA2G1, and high errors for the other
two glycans (Table S1). Once again, we trained data-
driven models to expand the models serving as a base-
line and an MLP-based residual hybrid model. De-
spite the slightly increase in the amount of training
data, the OLS and EN models performed poorly —
their predictions were worse than predicting with the
average of the training set. The only exception was the
EN model trained to predict FA2G2 levels, which dis-
played a good performance, which even surpassed the
mechanistic model. LCEN, SVM, RF, and AdaBoost
had mixed results, surpassing the training mean and
the mechanistic model in a few cases. Once again,
these results highlight the importance of nonlineari-
ties to predict the distribution of N-glycans. The fi-
nal data-driven model, an MLP model, had the best
performance out of all models in this task. All of
the MLP predictions surpassed the train mean and
the mechanistic model, reaching test-set prediction er-
rors 1.5-fold [1.49–1.56] smaller on average than the
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Table 1: Mean ± standard deviation test-set percent relative errors (PREs) for different models predicting the
levels of major N-glycans on the dataset of Karst et al. (2017). Models “Mechanistic” and “RSM” are from Karst
et al. (2017); their PREs are obtained from the published data within. Models “OLS”, “EN”, “LCEN”, “SVM”,
“RF”, “AdaBoost”, and “MLP” are data-driven models from this work used as baselines. Model “Mechanistic +
MLP” is a residual hybrid model from this work. “Train Mean” is the mean of the training data. The lowest
PREs are highlighted in bold.

Model Man FA2G0 FA2G1 FA2G2
Mechanistic

(From Karst et al. (2017)) 47.9 2.18 2.42 9.31

RSM
(From Karst et al. (2017)) 147 27.7 15.3 28.2

OLS
(Baseline) 67.5 38.9 23.3 29.3

EN
(Baseline) 71.2±0.0 37.0±0.9 21.7±1.1 28.9±0.3

LCEN
(Baseline) 57.6±3.0 23.0±3.0 11.6±0.9 23.6±4.0

SVM
(Baseline) 66.0±3.3 29.8±1.5 15.6±0.4 26.7±0.4

RF
(Baseline) 21.7±3.9 28.7±0.5 18.7±0.9 49.5±1.3

AdaBoost
(Baseline) 34.9±0.0 26.3±0.0 16.5±0.0 39.3±0.0

MLP
(Baseline) 40.1±1.7 22.8±3.5 15.0±0.9 20.9±0.6

Mechanistic + MLP
(This Work) 32.2±0.5 1.33±0.2 1.04±0.2 2.44±0.3

Train Mean
(From Karst et al. (2017)) 75.7 39.9 26.1 82.3

mechanistic model (Table S1). The Mechanistic +
MLP residual hybrid model also consistently made
predictions with lower errors than the pure mechanis-
tic model, reducing its errors by 1.2-fold [1.18–1.22]
on average. Surprisingly, the residual hybrid model
was not as good as a pure MLP model in this dataset,
but the difference in prediction errors was statistically
insignificant for the FA2G0 and FA2G2 glycans. We
hypothesize this difference exists because the mecha-
nistic model for this dataset is not as accurate as the
one in Karst et al. (2017), because there are additional
data available for training, and potentially because the
different features and culture settings are more chal-
lenging for models that include mechanistic parts (in-
cluding the pure mechanistic model). These results
again confirm the ability of our AutoML method to
train strong-performing MLPs, as both models that
included MLPs surpassed the other methods.

3.2 Residual hybrid models also improve
other important predictions for
biopharmaceutical production

Although predicting the distribution of N-glycans is an
important task, there are also other values and met-
rics of interest for biopharmaceutical production. The
dataset of Kotidis et al. (2019) comprises titer and
galactosylation index measurements for CHO-cell pro-
duced antibodies under different feed conditions (FS1–
7). Kotidis et al. (2019) also trained a mechanistic
model based on differential equations, named “Mech-
anistic” in this work. Their model had medium-low
errors for half of the titer and most of the galacto-
sylation index predictions (Table 2, top half). How-
ever, these errors are train-set errors, as Kotidis et al.
(2019) used all of their data points to train their model,
so comparisons with independent test points are not
available. We separated points FS2, 3, and 7 to form
a test set; the first two because they are the out-of-
specification points (Kotidis et al., 2019), and FS7 be-
cause it was the point for which the Mechanistic model
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had the highest prediction errors. As per Section 2.2,
we trained data-driven models to expand the models
serving as a baseline and an MLP-based residual hy-
brid model. For all model types, one set of models for
the titer prediction task and another for the galactosy-
lation index task were trained. Due to the low number
of training samples (4) and higher number of features
(8) than samples, the OLS, EN, and LCEN models
had overfit results (despite the use of regularization)
when predicting antibody titers, with zero error in
all training-set predictions, but higher errors than the
Mechanistic model for the test-set predictions.4 The
SVM, RF, and AdaBoost models also had low test-set
performance despite strong training-set performances.
The MLP model performed considerably better and
even surpassed the Mechanistic model on all test-set
predictions (Table 2, top half). Finally, the residual
hybrid model (again, the mechanistic model followed
by an MLP) achieved the best overall performance,
surpassing both the “Mechanistic” model of Kotidis
et al. (2019) and the purely data-driven MLPs. The
residual hybrid model reduces the average test-set er-
ror of the mechanistic model by 8.2-fold [5.5–11.2] on
the antibody titer prediction task (Table 2, top half).

Models for the galactosylation index prediction task
had fewer overfitting issues. Nevertheless, this task
was more challenging, as all data-driven models had a
lower performance than the Mechanistic model (Table
2, bottom half). As before, the MLP model achieved
the best purely data-driven results, but its test-set er-
rors were still slightly higher than those of the Mech-
anistic model. Only the residual hybrid model returns
more accurate predictions than the Mechanistic model,
and it does so for all data points (Table 2, bottom
half). On average, the residual hybrid model reduces
the test-set error of the mechanistic model by 12.5-
fold [11.4–14.8] on the galactosylation index prediction
task. These two results further corroborate the poten-
tial of residual hybrid models for tasks beyond predict-
ing N-glycan distributions, and highlight the ability of
our AutoML software to train powerful MLPs even in
a data-scarce setting.

The final task investigated involves predicting the con-
centration of nutrients and metabolites in the medium
used to cultivate CHO cells. The dataset of Kastelic
et al. (2019) comprises the levels of 19 chemicals and
the amount of biomass in the medium over a culture
period of 215 hours. The chemicals include multi-
ple amino acids, sugars, and ammonium. In addi-
tion to the large amounts of data gathered by Kastelic
et al. (2019), this dataset is also distinct because each
measurement of interest was collected over multiple

4Keep in mind that the errors for the Mechanistic model
are all training-set errors, so they are biased downwards.

time points, allowing time series modeling to be done.
Kastelic et al. (2019) trained a flux-based kinetic mech-
anistic model (named “Mechanistic” in this work) con-
sisting of 103 chemical reaction and transport equa-
tions (Table 1 of that work). This mechanistic model
had varying performance depending on the prediction
task. For example, it performed very well when pre-
dicting levels of glucose, lactate, valine, or isoleucine;
however, it performed poorly when predicting levels of
ammonium, alanine, and biomass. We trained data-
driven and residual hybrid models based on the LCEN
and RNN architectures to predict levels of lactate,
ammonium, biomass, glutamate, aspartate, and aspa-
rigine. These dynamic models were trained to out-
put next-hour levels5 based on the levels 1–5 hours
prior, with the cutoff depending on the architecture
and task. All data-driven and residual hybrid models
had more accurate test-set predictions than the mecha-
nistic model (Table 3). In addition, the residual hybrid
models trained with a given architecture surpassed the
pure data-driven model with the same architecture in
all but one case. Overall, the best residual hybrid
architectures reduced the test-set prediction error by
736-fold on average (Table 3) and were able to follow
the experimental measurements with significant accu-
racy for both the training and testing periods (Fig. 2).
These tests further validate the capabilities of residual
hybrid models in yet another context and even despite
the fact that the mechanistic model they were based
on had limited performance for some metabolites.

4 DISCUSSION

This study constructs residual hybrid models from lit-
erature data on the distribution of N-glycans, prop-
erties relevant for antibody production, and concen-
trations of metabolites in CHO cell culture. These
datasets not only were built for different tasks (but all
relevant for biopharmaceutical production) but also
consist of different features, including culture condi-
tions and even a purely autoregressive dataset. As a
comparative baseline, purely data-driven models are
also trained and tested on the same datasets. The
residual hybrid models significantly and consistently
had higher prediction accuracy over the mechanistic
models, and outperformed the data-driven models in
most tasks. Among the four datasets used in this work,
residual hybrid models reduce the test-set prediction
error of the corresponding mechanistic models by 152-
fold on average and always lead to reductions in test-
set error for all predicted variables.

The first two datasets (Karst et al., 2017; Villiger et al.,

5Predicting further in the future without major in-
creases in error is simple; see Table 6 of Seber and Braatz
(2024) for example.
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Table 2: Test-set percent relative errors (PRE) for different models predicting titers (top table) or galactosy-
lation indices (bottom table) for each feed strategy on the dataset of Kotidis et al. (2019). Model “Mechanistic”
is from Kotidis et al. (2019); its PREs are obtained from the published data within. All data points were used
to train the “Mechanistic” model in Kotidis et al. (2019), so all PREs are train-set values for this model only.
Model labels are as in Table 1. The lowest mean test PREs are highlighted in bold.

Model Train set Test set
FS1 FS4 FS5 FS6 FS2 FS3 FS7 Mean PRE

Mechanistic
(Kotidis et al. (2019)) 10.1 5.0 11.1 3.1 14.6 1.9 18.7 11.7

OLS
(Baseline) 0 0 0 0 12.3 11.0 25.1 16.1

EN
(Baseline) 0±0 0±0 0±0 0±0 11.3±0 7.3±0 24.9±0 14.5±0

LCEN
(Baseline) 0±0 0±0 0±0 0±0 18.8±0 5.9±0 29.5±0 18.1±0

SVM
(Baseline) 0.7±0 0.8±0 18.3±0 2.3±0 26.8±0 15.2±0 23.2±0 21.7±0

RF
(Baseline) 2.1±0 0.4±0 7.6±0 2.0±0 20.6±0 9.7±0 23.8±0 18.0±0

AdaBoost
(Baseline) 0±0 0±0 17.4±0 0±0 25.7±0 14.2±0 22.6±0 20.8±0

MLP
(Baseline) 0.7±0.4 0.3±0.2 0.4±0.2 0.1±0.0 4.1±2.1 1.2±0.9 11.3±6.7 5.5±1.4

Mechanistic + MLP
(This Work) 0.4±0.4 0.3±0.1 0.6±0.4 0.5±0.4 1.9±1.4 1.1±0.5 1.6±0.4 1.5±0.4

Train Mean
(Kotidis et al. (2019)) 4.1 2.5 14.5 5.6 22.6 11.4 25.7 19.9

Model Train set Test set
FS1 FS4 FS5 FS6 FS2 FS3 FS7 Mean PRE

Mechanistic
(Kotidis et al. (2019)) 10.3 14.2 5.2 17.0 10.5 10.8 29.0 16.8

OLS
(Baseline) 0 0 0 0 49.1 60.2 30.3 46.5

EN
(Baseline) 23.0±0 5.3±0 3.4±0 7.5±0 52.7±0 53.0±0 25.6±0 43.8±0

LCEN
(Baseline) 2.1±0 0.7±0 0.1±0 2.0±0 61.4±0 56.5±0 22.7±0 46.9±0

SVM
(Baseline) 0.2±0 0.1±0 0.1±0 0.1±0 48.9±0 57.6±0 30.5±0 45.6±0

RF
(Baseline) 19.1±0 0.0±0 0.7±0 1.2±0 61.5±0 39.6±0 26.7±0 42.6±0

AdaBoost
(Baseline) 0±0 0±0 0±0 0±0 59.9±0 41.0±0 24.5±0 41.8±0

MLP
(Baseline) 3.4±0.9 1.2±0.2 0.8±0.8 1.5±0.7 16.6±9.5 8.9±6.0 29.9±2.1 18.5±5.0

Mechanistic + MLP
(This Work) 1.5±1.1 0.6±0.5 0.3±0.1 0.3±0.2 0.8±0.3 1.7±0.5 1.6±0.7 1.4±0.2

Train Mean
(Kotidis et al. (2019)) 29.9 7.9 0.3 12.4 47.2 29.9 33.9 37.0
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Figure 2: Experimental values and predictions for the mechanistic model (Kastelic et al., 2019) and the best
residual hybrid model (“Mechanistic + LCEN” or “Mechanistic + RNN”, this work) for selected metabolites from
the Kastelic et al. (2019) batch culture dataset. The vertical black dotted line separates the training period (t
≤ 135 h) from the test period.

2016) involve predicting N-glycan distributions based
on the viable cell density, levels of metabolites (such
as Mn and Gal) in the culture, and pH (Section 3.1).
Two models were trained by Karst et al. (2017) on
their dataset: a mechanistic and an RSM model. The
mechanistic model obtained much better results on
that dataset. As a baseline, other data-driven models
were trained by us. Only an MLP model was able to
surpass the mechanistic model, and only for one of the
four N-glycans (Table 1). On the other hand, a resid-
ual hybrid model consisting of the mechanistic model
of Karst et al. (2017) followed by an MLP trained by
us was able to reduce the relative errors by 2.37-fold
when compared to the mechanistic model, and reduc-
tions in prediction errors occurred for all N-glycans
(Table 1). Villiger et al. (2016) trained a mechanis-

tic model on another dataset for the same task, which
we also use to further validate the ability of residual
hybrid models to lower prediction errors. The mecha-
nistic model of Villiger et al. (2016) had higher relative
errors (which may be explained by their dataset’s be-
ing more challenging for prediction than that of Karst
et al. (2017)), but it was still relatively accurate. In
this task, some data-driven models were able to sur-
pass the mechanistic model: an LCEN model was bet-
ter than the mechanistic model on 2/4 N-glycans, and
an MLP model surpassed the mechanistic model on
all N-glycans (Table S1). A residual hybrid model,
which was built in the same manner as that used for
the Karst et al. (2017) dataset, also surpassed the
mechanistic model on all N-glycans, reducing the rel-
ative prediction errors by 1.2-fold on average (Table
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Table 3: Average test-set percent relative errors (PRE) for different models for predicting metabolite and
biomass levels on the dataset of Kastelic et al. (2019). Model “Mechanistic” is from Kastelic et al. (2019); its
PREs are obtained from Fig. 6 of that work. Models “LCEN” and “RNN” are data-driven models from this work
used as baselines. Models “Mechanistic + LCEN” and “Mechanistic + RNN” are residual hybrid models from
this work. “Train Mean” is the mean of the training data. The lowest PREs are highlighted in bold.

Model Lac Ammonium Biomass Glu Asn
Mechanistic

(From Kastelic et al. (2019)) 3.87 66.1 35.6 5.71 99.0

LCEN
(Baseline) 0.07 0.17 1.15 3.14 13.6

RNN
(Baseline) 1.06 1.68 2.44 0.77 1.77

Mechanistic + LCEN
(This Work) 0.36 0.02 0.23 3.01 10.4

Mechanistic + RNN
(This Work) 0.34 0.20 1.98 0.25 0.53

Train Mean
(From Kastelic et al. (2019)) 9.88 44.2 60.9 20.5 591

S1). For the dataset of Villiger et al. (2016) only, a
pure data-driven MLP led to greater reduction in pre-
diction errors than the Mechanistic + MLP residual
hybrid model, but the differences in prediction errors
were statistically insignificant for 2/4 N-glycans. This
difference in performance may be due to the lower ac-
curacy of the mechanistic model in this task, because
there are additional data for training (relative to the
dataset of Karst et al. (2017), for example), and be-
cause the different features and culture settings in the
dataset of Villiger et al. (2016) may be more challeng-
ing for models that include mechanistic components.

To highlight how residual hybrid models are widely
applicable, models were then trained on datasets con-
taining other relevant metrics for biopharmaceutical
production. These include the titer, indices that serve
as a proxy for N-glycosylation, and culture metabolite
levels. Kotidis et al. (2019) trained mechanistic models
on seven different feed conditions to predict antibody
titers and galactosylation indices. Their mechanistic
model had medium-low errors for about half of these
14 predictions; however, all of the data points were
used to train that mechanistic model, so the errors are
biased downwards. Again, data-driven models were
trained by us as a baseline, but most of these per-
formed poorly primarily due to overfitting issues. A
notable exception was the MLP model trained to pre-
dict titers, which had a test-set error 2.3-fold lower
than that of the mechanistic model (Table 2). Resid-
ual hybrid models surpassed all of the mechanistic and
data-driven models on these tasks, leading to a 8.2-fold
average reduction in test-set errors for titer predictions
and 12.5-fold average reduction in test-set errors for

galactosylation index predictions, and reducing pre-
diction errors for every sample (Table 2).

A fourth dataset comprised of the levels of impor-
tant metabolites over time was used. Kastelic et al.
(2019) trained a flux-based kinetic mechanistic model
on these data. The model achieved mixed success: it
was very accurate for some metabolites, but inaccurate
for others. As the data of Kastelic et al. (2019) were
time series, LCEN models with lag > 0 and RNN mod-
els were trained by us both as purely data-driven mod-
els and as residual hybrid models. For all five metabo-
lites tested, the data-driven and residual hybrid mod-
els surpassed the mechanistic model of Kastelic et al.
(2019) (Table 3). Furthermore, in all but one case, the
residual hybrid model containing a given architecture
surpassed the data-driven model of the same architec-
ture. On average, the residual hybrid models led to a
736-fold reduction in test-set prediction error (Table
3) and were able to follow the experimental measure-
ments with significant accuracy for both the training
and testing periods (Fig. 2).

Overall, this work attests the high potential of resid-
ual hybrid models to substantially reduce the errors of
mechanistic models in a variety of tasks, and the high
capabilities of our AutoML software to train accurate
data-driven and residual hybrid models. The AutoML
software used in this work is publicly available, allow-
ing reproduction of this work and its use for other
tasks and datasets. The software is simple to install
and use, allowing even non-specialists in data-driven or
residual hybrid models to train and use powerful mod-
els for any predictive task, including tasks not related
to N-glycosylation or biopharmaceutical production.
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Fig. 1.

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
Not Applicable.

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries.
Yes. Provided in the Supplemental Materials
and will be provided in an online repo once
the paper is accepted.
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(a) Statements of the full set of assumptions of
all theoretical results.
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Supplementary Materials

A1 USING OUR AutoML SOFTWARE TO TRAIN NEW RESIDUAL
HYBRID MODELS

A setup file defining the specific packages and version numbers used in this work is available as setup.py on our
GitHub (github.com/PedroSeber/SmartProcessAnalytics). Instructions on using the AutoML software are also
available in the README file and the Examples folder.

Our AutoML software automates the model setup and building (including hyperparameter optimization), the
cross-validation procedures (including data scaling to the mean and standard deviation of the training data), and
the reporting of results (including the final model’s parameters and hyperparameters, and relevant metrics such
as train-set and test-set (R)MSEs, relative errors, and R2 values for regression tasks). Although not explored in
this work, the software can also select the most appropriate methods based on the properties of the input data.

An important design consideration is that our AutoML software does not require any significant programming
ability from the end-user. Surveyed hyperparameters and criteria are determined by inputs to Python func-
tions, and all have appropriate default values. For example, to train an MLP model, the user simply needs
to pass model_name = [‘MLP’] to the main AutoML function, and can manipulate important hyperparame-
ters with other inputs (including but not limited to MLP_layers, RNN_layers, batch_size, learning_rate,
weight_decay, n_epochs, class_weight, scheduler). No knowledge of any machine learning frameworks,
such as sklearn or PyTorch, is necessary — in contrast to some other open-source tools — as the AutoML
software converts human-readable values for these inputs into pre-programmed code.

A2 LIST OF HYPERPARAMETERS USED IN THIS WORK

All possible combinations of the hyperparameters below were cross-validated.

1. For the elastic net (EN) models: α = 0 and 20 log-spaced values between −4.3 and 0 (as per
np.logspace(-4.3, 0, 20)) and L1 ratios = [0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.97, 0.99].

2. For the LCEN models: α and L1 ratios as above. degree values = [1, 2, 3], cutoff values between 0 and
4×10−1, and lag = 0 except for the Kastelic et al. (2019) dataset, which used lag between 1 and 5.

3. For the SVM models: with the number of features in a dataset as F , gamma values = [1/50, 1/10, 1/5, 1/2,
1, 2, 5, 10, 50]/F , C values = [0.01, 0.1, 1, 10, 50, 100], and epsilon values = [0.01, 0.025, 0.05, 0.075, 0.1,
0.15, 0.2, 0.3].

4. For the RF models: number of trees = [10, 25, 50, 100, 200, 300], maximum depth = [2, 3, 5, 10, 15, 20,
40], minimum samples per leaf (as a fraction of total samples) = [0.001, 0.01, 0.02, 0.05, 0.1], and a number
of features (as a fraction of the total number) = [0.1, 0.25, 0.333, 0.5, 0.667, 0.75, 1.0].

5. For the AdaBoost models: number of trees as above and learning rates = [0.01, 0.05, 0.1, 0.2].

6. For the ANN models: The MLP hidden layer sizes varied for each dataset; typical sizes were 20–120 neurons
per layer. One to three hidden layers were used. For the Kastelic et al. (2019) dataset, an LSTM cell
with 30–60 neurons before the MLP and a lag between 1 and 4 were also used. Learning rates = [0.05,
0.1, 0.5], batch size = 32, the ReLU activation function, weight decays = [0.1, 0.5, 1], 40 epochs, and a
cosine scheduler with a minimum learning rate equal to 1/16 of the original learning rate with 10 epochs of
warm-up.

https://github.com/PedroSeber/SmartProcessAnalytics
https://github.com/PedroSeber/SmartProcessAnalytics
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A3 ADDITIONAL TABLES

Table S1: Test-set percent relative errors (PRE) for different models predicting the levels of each major N-
glycan on the dataset of Villiger et al. (2016). Model “Mechanistic” is from Villiger et al. (2016); its PREs are
obtained from the published data within. Models “OLS”, “EN”, “LCEN”, “SVM”, “RF”, ”AdaBoost”, and “MLP”
are data-driven models from this work used as baselines. Model “Mechanistic + MLP” is a residual hybrid model
from this work. “Train Mean” is the mean of the training data. The lowest PREs are highlighted in bold.

Model Man FA2G0 FA2G1 FA2G2
Mechanistic

(From Villiger et al. (2016)) 41.4 9.47 17.0 39.1

OLS
(Baseline) 135 83.7 126 258

EN
(Baseline) 129±5 39.4±3.0 55.7±4.6 101±47

LCEN
(Baseline) 31.6±1.5 13.0±0.3 19.7±0.9 35.2±1.7

SVM
(Baseline) 27.6±0.3 25.6±1.9 41.2±3.0 65.2±0.7

RF
(Baseline) 21.4±0.0 13.5±0.2 19.2±0.5 37.1±0.7

AdaBoost
(Baseline) 24.7±0.5 14.4±0.0 20.1±0.9 35.4±0.4

MLP
(Baseline) 19.3±0.8 7.72±0.43 11.6±0.2 30.7±0.9

Mechanistic + MLP
(This Work) 31.7±0.7 8.77±0.02 14.1±0.8 33.0±1.2

Train Mean
(From Villiger et al. (2016)) 25.1 11.1 19.1 39.0

A4 DESCRIPTION OF THE MECHANISTIC MODELS

The mechanistic models used in Karst et al. (2017), Villiger et al. (2016), and Kotidis et al. (2019) are very
similar – Karst et al. (2017) states that their mechanistic model was adapted from Villiger et al. (2016)’s work.
These mechanistic models consist of two parts: a cell culture model and a glycosylation model. The cell culture
model is a continuous stirred-tank reactor model used to estimate cell growth rate, ammonia levels, specific
productivities, and process-related values (Villiger et al., 2016; Karst et al., 2017; Kotidis et al., 2019). The
equations for the cell culture model are available in Table II of Karst et al. (2017). The glycosylation model
is a dynamic plug flow reactor model for the N-glycosylation reactions that occur in the Golgi apparatus. The
glycosylation model consists of 43 chemical reactions for 33 different glycan structures as shown in Figure 1c
of Karst et al. (2017) and Figure 2 of Villiger et al. (2016). Limitations of this approach are primarily related
to limitations in the knowledge of this biological process, including a lack of transport parameters for specific
nucleotide sugar donors, which required the assumption of a single parameter for all donors (Villiger et al., 2016;
Karst et al., 2017); differences in productivities between cell lines, which required the assumption that enzyme
concentrations are linearly correlated to that productivity (Villiger et al., 2016); the assumption of specific
kinetics (such as Michaelis-Menten kinetics) for specific enzymes (Villiger et al., 2016; Karst et al., 2017; Kotidis
et al., 2019); and the assumption that enzymes are distributed in a Gaussian manner in the Golgi apparatus and
that this distribution is unchanged by pH levels (Villiger et al., 2016; Kotidis et al., 2019). Štor et al. (2021),
which was published years after Karst et al. (2017), Villiger et al. (2016), and Kotidis et al. (2019), also mentions
that “kinetic modelling is not yet fully optimized to provide precise predictions”, indicating the modeling process
itself has limitations.

The mechanistic model used in Kastelic et al. (2019) consist of two parts: a micro kinetic model for the interior
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of CHO cells and a macro reactions model. The micro kinetic model models a CHO cell metabolic network
with stoichiometric and other biological constraints (Kastelic et al., 2019). Overall, 103 chemical reactions and
118 metabolites are included in this micro kinetic model, as described in Table 1 of Kastelic et al. (2019). The
macro reactions model enforces flux constraints for the reaction network — specifically, the pseudo-steady-state
assumption and flux balances with measured extracellular concentrations of metabolites (Table 2 of Kastelic et al.
(2019)), then perform macro-scale material balances for the entire bioreactor (Kastelic et al., 2019). Limitations
of this approach again involve limitations in the knowledge of this biological process, including the assumption
that all metabolites are distributed uniformly within the cell (as opposed to having different concentrations due
to organelles, for example) (Kastelic et al., 2019); and the use of the pseudo-steady-state approximation, which
may be inaccurate. A recent paper has found that the pseudo-steady-state approximation is typically accurate
for most cell culture conditions (Ma et al., 2024), so that approximation potentially is not the main source of
any inaccuracies in Kastelic et al. (2019).

A5 COMPUTATIONAL RESOURCES USED

All experiments were done in a personal computer equipped with a 13th Gen Intel® Core™ i5-13600K CPU, 64
GB of DDR4 RAM, and an NVIDIA GeForce RTX 4090 GPU.
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