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A B S T R A C T

Lyophilization (aka freeze drying) has been shown to provide long-term stability for many crucial biother-
apeutics, e.g., mRNA vaccines for COVID-19, allowing for higher storage temperature. The final stage of
lyophilization, namely secondary drying, entails bound water removal via desorption, in which accurate
prediction of bound water concentration is vital to ensuring the quality of the lyophilized product. This
article proposes a novel technique for real-time estimation of the bound water concentration during secondary
drying in lyophilization. A state observer is employed, which combines temperature measurement and
mechanistic understanding of heat transfer and desorption kinetics, without requiring any online concentration
measurement. Results from both simulations and experimental data show that the observer can accurately
estimate the concentration of bound water in real time for all possible concentration levels, operating
conditions, and measurement noise. This framework can also be applied for monitoring and control of the
residual moisture in other desorption-related processes.
1. Introduction

Lyophilization, also known as freeze drying, is a process used to
increase the stability of biotherapeutics in pharmaceutical manufactur-
ing (Liapis and Bruttini, 1994). In recent studies, lyophilization has
been shown to provide long-term stability for mRNA vaccines, allowing
these vaccines to be stored at higher temperature while preserving their
functionality (Muramatsu et al., 2022; Meulewaeter et al., 2023). This
promising advancement could play an important role in future mRNA-
based therapeutic manufacturing, in particular vaccine distribution in
regions where a cold supply chain is lacking.

Three stages of lyophilization comprise (1) freezing, (2) primary
drying, and (3) secondary drying, respectively. In freezing, the product
and liquid solvent (usually water) are frozen, in which the free water
becomes ice crystals, whereas the bound water retains its liquid state
and is adsorbed to the organic material between the ice crystals (Fissore
et al., 2018). In primary drying, the free water (in the form of ice
crystals) is removed via sublimation (Pisano et al., 2010). Subsequently,
secondary drying is conducted at higher temperature to remove the
bound water via desorption (Sadikoglu and Liapis, 1997). The stability
of a lyophilized product is significantly influenced by the amount of
bound water, and so monitoring the concentration of bound water
is highly important (Fissore et al., 2018). One of the most common
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techniques is the Karl Fischer titration, which requires sampling of the
vial for offline measurements (Pikal et al., 2005; Fissore et al., 2018).
To avoid process interruption, some online or non-invasive techniques
such as near-infrared (NIR) spectroscopy (Ikeda et al., 2022) and tun-
able diode laser absorption spectroscopy (TDLAS) (Schneid et al., 2011)
have been proposed. Detailed discussion of tools for the monitoring of
secondary drying can be found in Fissore et al. (2018).

Instead of direct measurement, a state observer (aka state estimator,
observer, estimator) can be used to estimate states that are not mea-
sured (Luenberger, 1971); the process is known as state estimation. A
well-designed observer can replace expensive and complicated sensors
in the system, reducing the total cost and complexity of operation. The
principle of state estimation is to combine available measurement data
of some states with the physics of a system represented by a mechanistic
model, and use that information to estimate the unmeasured states. A
variety of mechanistic models for lyophilization are available (Litch-
field and Liapis, 1979; Liapis and Bruttini, 1994; Mascarenhas et al.,
1997; Sadikoglu and Liapis, 1997; Sheehan and Liapis, 1998; Velardi
and Barresi, 2008; Nastaj and Witkiewicz, 2009; Fissore et al., 2011,
2015), which establishes a solid foundation for constructing a reliable
observer.
https://doi.org/10.1016/j.ijpharm.2024.124693
Received 11 June 2024; Received in revised form 24 August 2024; Accepted 8 Sep
vailable online 12 September 2024 
378-5173/© 2024 Elsevier B.V. All rights are reserved, including those for text and
tember 2024

 data mining, AI training, and similar technologies. 

https://www.elsevier.com/locate/ijpharm
https://www.elsevier.com/locate/ijpharm
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
mailto:braatz@mit.edu
https://doi.org/10.1016/j.ijpharm.2024.124693
https://doi.org/10.1016/j.ijpharm.2024.124693
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijpharm.2024.124693&domain=pdf


P. Srisuma et al. International Journal of Pharmaceutics 665 (2024) 124693 
Fig. 1. Schematic diagram showing a mechanistic model for the secondary drying step in lyophilization.
-

Various state observers have been proposed and successfully imple-
mented in chemical processes (Mohd Ali et al., 2015). In the context
of lyophilization, state observers have been extensively studied and
applied to the primary drying step, which aims at estimating the tem-
perature, interface position (amount of ice), and relevant parameters
such as the heat transfer coefficient (Velardi et al., 2009, 2010; Bosca
and Fissore, 2011; Bosca et al., 2013; Drăgoi et al., 2013; Bosca et al.,
2015, 2017; Fissore et al., 2017). Besides monitoring, some other
applications such as process optimization (Bosca et al., 2016) and con-
trol (Fissore et al., 2008; Barresi et al., 2009) have been demonstrated.
However, applications of state estimation to secondary drying are
very limited. The only literature that proposed a state estimation-like
strategy for secondary drying is Fissore et al. (2011); the technique is
referred to as a soft sensor that requires measurement of the desorption
flux for estimating the residual moisture. The procedure described in
the aforementioned work does not exploit the mathematical structure
of a state observer; the key idea is to iteratively solve the optimization
to find the moisture content that matches the measured desorption rate.
This technique requires a set of equipment for measuring the desorption
flux, which is generally available in pilot-scale lyophilizers.

In this article, a new technique is proposed for real-time estimation
of bound water concentration during desorption, and is applied to the
secondary drying step in lyophilization. The technique relies on a state
observer that estimates the concentration of bound water by using
the temperature measurement and mechanistic understanding of heat
transfer and desorption kinetics. The proposed observer is extensively
tested with various simulations and experiments. Since accurate bound
water measurement is not trivial and usually involves complex equip-
ment and procedures (Joardder et al., 2019), our observer is formulated
such that the only input required is temperature measurement, which is
straightforward and very common in every step of lyophilization (Fis-
sore et al., 2018; Harguindeguy et al., 2022), allowing for the simplest
setup and operation compared to any other methods. The proposed
framework can also be easily and systematically extended to other
desorption-related processes.

This article is organized as follows. Section 2 describes the lyophiliza
tion system and derives the corresponding mechanistic model. Section 3
discusses the design and implementation of our state observers. Sec-
tion 4 presents several simulation and experimental results to demon-
strate the performance of the observers. Finally, Section 5 summarizes
the study.
2 
2. Mechanistic modeling

A mechanistic model is an important element in a state observer
as it contains the knowledge about the physics of a system. This
work considers lyophilization of unit does, in which the product is
introduced into a number of vials prior to being lyophilized. Our model
is formulated in the rectangular coordinate system by considering one
spatial dimension (𝑧) and time (𝑡) as pictorially shown in Fig. 1. For
the drying steps in lyophilization, 1D modeling is nearly always used
because its accuracy is comparable to that of multidimensional model-
ing while being much computationally cheaper and less complicated,
whereas 0D modeling (lumped capacity) is sometimes not sufficiently
accurate (Yoon and Narsimhan, 2022).

In secondary drying, there are three important transport phenom-
ena, namely (1) heat transfer within the dried product, (2) desorption
of the water vapor from the surface of the dried product, and (3) mass
transfer of the water vapor in the pores of the dried product (Litchfield
and Liapis, 1979; Liapis and Bruttini, 1994; Mascarenhas et al., 1997;
Sadikoglu and Liapis, 1997; Sheehan and Liapis, 1998; Velardi and
Barresi, 2008). The first part of the model describes the heat transfer.
The energy balance of the dried product is given by Litchfield and
Liapis (1979), Liapis and Bruttini (1994), Mascarenhas et al. (1997),
Sadikoglu and Liapis (1997), Sheehan and Liapis (1998), Nastaj and
Witkiewicz (2009)

𝜌𝐶𝑝
𝜕𝑇
𝜕𝑡

= 𝑘𝜕
2𝑇
𝜕𝑧2

− 𝐶𝑝,𝑔
𝜕
(

𝑁𝑔𝑇
)

𝜕𝑧
+ 𝜌𝑑𝛥𝐻𝑠

𝜕𝑐𝑠
𝜕𝑡

+𝑄𝑣, 𝑡 > 0, (1)

where 𝑇 (𝑧, 𝑡) is the product temperature, 𝑐𝑠(𝑧, 𝑡) is the bound water con-
centration (aka moisture content, residual water), 𝛥𝐻𝑠 is the enthalpy
of desorption, 𝜌 is the effective density, 𝜌𝑑 is the density of the dried
product, 𝑘 is the effective thermal conductivity, 𝐶𝑝 is the effective heat
capacity, 𝐻 is the height of the dried product, 𝑁𝑔 is the total mass flux
of the gas (water vapor and inert gas), and 𝐶𝑝,𝑔 is the heat capacity of
the gas. Here effective parameters consider the properties of both solid
and gas in the pores, the subscript 𝑑 denotes parameters for the dried
product only (solid and vacuum), the subscript 𝑔 denotes parameters
for the gas phase only, and the subscript 𝑠 denotes parameters related
to desorption.

The additional term 𝑄𝑣 in (1) describes the effect of microwave
irradiation, which provides volumetric heating to the product (Fayaz
et al., 2015; Abdelraheem et al., 2022). This study focuses on con-
ventional lyophilization, i.e., no microwave, and so this term is set
to 0 by default. Nevertheless, it is worth noting that our model and
observer are designed to accommodate microwave lyophilization as
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well (see Section 4.6). The physics of microwave heating is related to
dielectric heating, which is influenced by the electric field strength, the
microwave frequency, and the dielectric loss factor of each material;
detailed discussion can be found in Nastaj and Witkiewicz (2009),
Wang et al. (2020), Abdelraheem et al. (2022). Nevertheless, this
information is not always readily available for all systems, so we model
the microwave heating as a single composite term 𝑄𝑣 in this case.

The bottom surface of the dried product is heated by the heating
shelf, following Newton’s law of cooling,

− 𝑘𝜕𝑇
𝜕𝑧

(𝐻, 𝑡) = ℎ
(

𝑇 (𝐻, 𝑡) − 𝑇𝑏(𝑡)
)

, 𝑡 > 0, (2)

where ℎ is the heat transfer coefficient at the bottom and 𝑇𝑏(𝑡) is the
bottom shelf temperature. Typically, the shelf temperature increases
linearly as a function of time,

𝑇𝑏(𝑡) = 𝑟𝑡 + 𝑇𝑏,0, (3)

where 𝑇𝑏,0 is the initial shelf temperature and 𝑟 is the temperature
ramp-up rate. After reaching the maximum temperature 𝑇𝑏,max, the shelf
temperature is kept constant at that value.1 At the top surface, heat
ransfer is negligible compared to the bottom surface, and thus the
oundary condition is
𝜕𝑇
𝜕𝑧

(0, 𝑡) = 0, 𝑡 > 0. (4)

The initial temperature of the dried region is assumed to be spatially
uniform at 𝑇0,

𝑇 (𝑧, 0) = 𝑇0, 0 ≤ 𝑧 ≤ 𝐻. (5)

As secondary drying takes place after primary drying, 𝑇0 can be set to
the sublimation temperature.

The second part of the model concerns the desorption of bound wa-
ter. It has been widely accepted in the literature that the linear driving
force model can accurately predict the dynamics of bound water des-
orption despite being one of the simplest adsorption/desorption mod-
els (Litchfield and Liapis, 1979; Liapis and Bruttini, 1994; Sadikoglu
and Liapis, 1997; Sheehan and Liapis, 1998; Sircar and Hufton, 2000;
Velardi and Barresi, 2008; Fissore et al., 2011, 2015). Hence, the
desorption kinetics of bound water is described by
𝜕𝑐s
𝜕𝑡

= 𝑘𝑠
(

𝑐∗s − 𝑐s
)

, (6)

where 𝑐∗s is the equilibrium concentration of bound water and 𝑘𝑠 is
the rate constant for desorption that exhibits Arrhenius temperature
dependence (Liapis and Bruttini, 1994; Sadikoglu and Liapis, 1997;
Fissore et al., 2015)

𝑘𝑠 = 𝐴𝑒−𝐸𝑎∕𝑅𝑇 , (7)

where 𝐴 is the frequency factor (aka collision frequency), 𝐸𝑎 is the
activation energy, and 𝑅 is the gas constant. It is very common in
the literature to set 𝑐∗s = 0. This simplification produces practically
small errors as shown in Sadikoglu and Liapis (1997) and avoids the
need for equilibrium data and detailed knowledge about the solid
structure (Fissore et al., 2015). Thus, the final equation is
𝜕𝑐𝑠
𝜕𝑡

= −𝑘𝑠𝑐𝑠. (8)

The initial concentration of bound water in secondary drying is as-
sumed to be uniform at 𝑐𝑠,0,

𝑐𝑠(𝑧, 0) = 𝑐𝑠,0, 0 ≤ 𝑧 ≤ 𝐻. (9)

athematically, the main difference between the original Eq. (6) and
implified version (8) is that the final concentration approaches the
quilibrium value for the former and approaches 0 for the latter. This
ork relies on the simplified Eq. (8) due to its practicality and adequate

1 The methods apply for general 𝑇 (𝑡).
𝑏

3 
accuracy, but the proposed state observer and relevant framework can
be applied to both cases because the overall mathematical structure
does not change. The original Eq. (6) and equilibrium data might be
needed when there is evidence showing that the equilibrium concentra-
tion is significantly high or strict control at the very low concentration
region is required.

The last part of the model focuses on the mass transfer of gas/vapor
in the pores of the dried product, which usually consists of water vapor
(𝑤) and inert gas (in). The continuity equations, assuming ideal gas
behaviors for both components, are (Litchfield and Liapis, 1979; Liapis
and Bruttini, 1994; Mascarenhas et al., 1997; Sadikoglu and Liapis,
1997; Sheehan and Liapis, 1998; Velardi and Barresi, 2008; Nastaj and
Witkiewicz, 2009)

1
𝑅

𝜕
𝜕𝑡

( 𝑝𝑤
𝑇

)

= − 1
𝑀𝑤𝜀

𝜕𝑁𝑤
𝜕𝑧

−
𝜌𝑑

𝑀𝑤𝜀
𝜕𝑐𝑠
𝜕𝑡

, (10)

1
𝑅

𝜕
𝜕𝑡

( 𝑝in
𝑇

)

= − 1
𝑀in𝜀

𝜕𝑁in
𝜕𝑧

, (11)

here 𝑝(𝑧, 𝑡) is the partial pressure, 𝑁(𝑧, 𝑡) is the mass flux (mass flow
ate per cross sectional area), 𝑀 is the molar mass, 𝜀 is the porosity,
nd the subscripts 𝑤 and ‘in’ denote the water vapor and inert gas,
espectively. The expression for 𝑁 is usually modeled by the dusty-gas
odel (Litchfield and Liapis, 1979; Mascarenhas et al., 1997; Sadikoglu

nd Liapis, 1997; Sheehan and Liapis, 1998; Velardi and Barresi, 2008).
ote that the total mass flux 𝑁𝑔 in (1) is 𝑁𝑤+𝑁in. The initial conditions

or both components are

𝑤(𝑧, 0) = 𝑝𝑤,0, 0 ≤ 𝑧 ≤ 𝐻, (12)

in(𝑧, 0) = 𝑝in,0, 0 ≤ 𝑧 ≤ 𝐻, (13)

here 𝑝𝑤,0 and 𝑝in,0 are usually defined by the condenser located
ownstream of the lyophilizer. The boundary conditions are

𝑤(0, 𝑡) = 𝑝𝑤,0, 𝑡 > 0, (14)

in(0, 𝑡) = 𝑝in,0, 𝑡 > 0, (15)
𝜕𝑝𝑤
𝜕𝑧

(𝐻, 𝑡) = 0, 𝑡 > 0, (16)
𝜕𝑝in
𝜕𝑧

(𝐻, 𝑡) = 0, 𝑡 > 0. (17)

The main objective of secondary drying is to remove bound water;
ence, the concentration of bound water 𝑐𝑠 is usually the variable of
nterest (Sadikoglu and Liapis, 1997; Fissore et al., 2011, 2015, 2018).
he concentration of bound water can be predicted accurately with
he energy balance and desorption kinetics equations as described and
hown in Fissore et al. (2015), Sahni and Pikal (2017), Yoon and
arsimhan (2022), and so recent models usually omit the mass transfer
f gas/vapor in the pores of the dried product, i.e., the last part of
he model (10)–(17). This approach simplifies the model equations,
arameter estimation, and observer/control design, without significant
oss in accuracy.

In this work, the above mechanistic model is simulated numerically.
he model equations are spatially discretized using the finite volume
ethod as explained in Appendix A. The final discretized equations can

e written as
𝑑𝐱
𝑑𝑡

= 𝐅(𝐱) + 𝐁𝐮, (18)

ith the state 𝐱 and manipulated variable 𝐮 defined as

=
[

𝐓
𝐜𝐬

]

, (19)

=
[

𝑇𝑏
𝑄𝑣

]

, (20)

here 𝐓 ∈ R𝑚 collects the product temperatures
(

𝑇1,… , 𝑇𝑚
)

, 𝐜𝐬 ∈ R𝑚

collects the bound water concentrations
(

𝑐𝑠,1,… , 𝑐𝑠,𝑚
)

, 𝑚 is the number
of grid points in the spatial domain, 𝐅 ∈ R2𝑚 is the nonlinear vector
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function, and 𝐁 ∈ R2𝑚×2 is the corresponding matrix. To facilitate the
observer design, (18) can be rewritten as
𝑑𝐓
𝑑𝑡

= 𝐅𝐓
(

𝐓, 𝐜𝐬
)

+ 𝐁𝐓𝐮, (21)
𝑑𝐜𝐬
𝑑𝑡

= 𝐅𝐜
(

𝐓, 𝐜𝐬
)

+ 𝐁𝐜𝐮, (22)

where 𝐅𝐓 ∈ R𝑚,𝐁𝐓 ∈ R𝑚×2 represent the dynamics of the temperature
part and 𝐅𝐜 ∈ R𝑚,𝐁𝐜 ∈ R𝑚×2 represent the dynamics of the concen-
tration part. The finite volume method transforms the original partial
differential equations (PDEs) into a system of ordinary differential
equations (ODEs). The final ODEs (21) and (22) can be integrated by
typical ODE solvers; MATLAB’s ode15s is used in this work. This
technique is known as the method of lines (Schiesser, 1991). Lastly,
define the average temperature and average concentration,

𝑇avg = 1
𝑚

𝑚
∑

𝑖=1
𝑇𝑖, (23)

𝑐𝑠,avg = 1
𝑚

𝑚
∑

𝑖=1
𝑐𝑠,𝑖. (24)

3. State observer

A state observer (aka state estimator, observer, estimator) is a tool
in control theory that is used for reconstructing the unmeasured states
given the available measurements and mechanistic understanding of a
system; the process is referred to as state estimation. Those unmeasured
states could be internal states that cannot be measured or states that are
difficult to measure. Measuring the temperature during lyophilization
is relatively simple and accurate, so we design a state observer that uses
the temperature measurement to estimate the concentration of bound
water, the most important process variable in secondary drying.

State estimation is critical for process monitoring and control, in
which the information of the unmeasured states is needed. Various
state observers have been proposed and employed (Mohd Ali et al.,
2015). The Luenberger observer (Luenberger, 1971) has a simple math-
ematical structure and is computationally efficient for both linear and
nonlinear processes, which has resulted in its widespread use in various
applications (Srisuma et al., 2023).

3.1. Mathematical structure of a state observer

Applying the Luenberger observer to the final model Eq. (18) results
in
𝑑𝐱̂
𝑑𝑡

= 𝐅 (𝐱̂) + 𝐁𝐮 + 𝐋 (𝐲̂ − 𝐲) , (25)

where 𝐱̂ ∈ R2𝑚 is the estimated state predicted by the observer, 𝐲 is
the measured outputs, 𝐲̂ is the estimated outputs, and 𝐋 is the observer
ain. Similar to the actual state defined by (A.9), the estimated state 𝐱
s

̂ =
[

𝐓̂
𝐜̂𝐬

]

, (26)

here 𝐓̂ ∈ R𝑚 is the estimated temperature and 𝐜̂𝐬 ∈ R𝑚 is the estimated
oncentration. The measured output is the temperature profile of the
roduct, so

= 𝐓 + 𝐧, (27)

̂ = 𝐓̂, (28)

here 𝐧 ∈ R𝑚 is the sensor noise. The most important part of the
bserver is the observer gain 𝐋 ∈ R2𝑚×𝑚, which directly affects the
erformance of the observer. Depending on the knowledge of the
ystem, different strategies can be used to design the observer gain.
4 
To simplify the observer design, we separate the observer gain
atrix 𝐋 into two parts corresponding to the temperature and concen-

ration, that is,

=
[

𝐋𝐓
𝐋𝐜

]

, (29)

here 𝐋𝐓 ∈ R𝑚×𝑚 is the observer gain for the temperature part and 𝐋𝐜 ∈
𝑚×𝑚 is the observer gain for the concentration part. Consequently, (25)
an be rewritten as
𝑑𝐓̂
𝑑𝑡

= 𝐅𝐓

(

𝐓̂, 𝐜̂𝐬
)

+ 𝐁𝐓𝐮 + 𝐋𝐓

(

𝐓̂ − 𝐓
)

, (30)

𝑑𝐜̂𝐬
𝑑𝑡

= 𝐅𝐜

(

𝐓̂, 𝐜̂𝐬
)

+ 𝐁𝐜𝐮 + 𝐋𝐜

(

𝐓̂ − 𝐓
)

. (31)

Here the first part of the observer (30) estimates the product tem-
perature, while the second part (31) estimates the residual moisture.
Separating the observer gains allows each part of the observer to be
designed separately while still respecting the coupling of the states in
the original model.

The final step is to design the observer gains 𝐋𝐓 and 𝐋𝐜. The current
observer gains 𝐋𝐓 and 𝐋𝐜 are 𝑚×𝑚 matrices, which leaves many degrees
of freedom in the observer design. Therefore, we parameterize the
observer gain matrices by

𝐋𝐓 = 𝐿𝑇 𝐉𝑚, (32)

𝐋𝐜 = 𝐿𝑐𝐉𝑚, (33)

where 𝐿𝑇 , 𝐿𝑐 are the real scalars and 𝐉𝑚 is an 𝑚×𝑚 matrix of ones. This
parameterization suggests that the temperature measurement at each
location contributes equally to the observer, leaving only two degrees
of freedom for the design: 𝐿𝑇 and 𝐿𝑐 . A well-designed observer should
converge the estimated states to the true states fast compared to the
time scale of the process. The convergence can be evaluated via the
estimation errors defined as

𝐞𝐓 = |

|

|

𝐓̂ − 𝐓||
|

, (34)

𝐞𝐜 = |

|

𝐜̂𝐬 − 𝐜𝐬|| , (35)

where 𝐞𝐓 is the estimation error for temperature and 𝐞𝐜 is the esti-
mation error for concentration. A zero estimation error indicates the
convergence of the estimated state.

3.2. Modified state observer

The state observer proposed in Section 3.1 receives spatially dis-
tributed temperature measurement 𝐓 and provides estimates of both
temperature 𝐓̂ and concentration 𝐜̂𝐬 in real time. Although spatially
distributed temperature measurement can be obtained using thermal
imaging sensors, traditional lyophilization systems do not have such
sensors. For example, a thermocouple used for temperature measure-
ment is usually in contact with the bottom of the product, and so only
the bottom temperature is available (Velardi and Barresi, 2008; Fissore
et al., 2018). Therefore, we propose an alternative state observer for
this scenario.

For convenience, we denote this alternative as a modified state ob-
server. Modifying the original observer to take the bottom temperature
measurement instead of the spatial temperature measurement results
in the output vectors 𝐲 and 𝐲̂

𝑦 = 𝑇𝑝 + 𝑛, (36)

𝑦̂ = 𝑇̂𝑝, (37)

where the measurement noise 𝑛 is a real scalar and 𝑇𝑝 is the bottom
temperature. In the state vector, 𝑇𝑝 corresponds to the last element of
𝐓. As a result, the equations for this observer are

𝑑𝐓̂ = 𝐅
(

𝐓̂, 𝐜̂
)

+ 𝐁 𝐮 + 𝐋
(

𝑇̂ − 𝑇
)

, (38)

𝑑𝑡 𝐓 𝐬 𝐓 𝐓 𝑝 𝑝
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Fig. 2. (A) Schematic diagram of the typical lyophilization process. In secondary drying, a glass vial that contains the dried product is heated such that the bound water is
desorbed and removed from the product at the top. The mechanistic model is used to describe the heat transfer and desorption dynamics during secondary drying. (B) Structure of
the proposed state observer. The observer receives the measured temperature and the control input (i.e., the shelf temperature and microwave power) at time step 𝑡, and estimates
the temperature and concentration at the next time step. To initialize the observer at 𝑡 = 0, the estimated temperature can be set to the measured value. The initial concentration
is completely unknown due to no measurement, so it can be set to some realistic values obtained from the literature or previous experiment.
𝑑𝐜̂𝐬
𝑑𝑡

= 𝐅𝐜

(

𝐓̂, 𝐜̂𝐬
)

+ 𝐁𝐜𝐮 + 𝐋𝐜
(

𝑇̂𝑝 − 𝑇𝑝
)

, (39)

where 𝐋𝐓 ∈ R𝑚 and 𝐋𝐜 ∈ R𝑚 are the observer gains. Similarly, 𝐋𝐓 and
𝐋𝐜 can be parameterized using the vector of ones (instead of the matrix
of ones as used for the original state observer) such that the only design
parameters are the real scalars 𝐿𝑇 and 𝐿𝑐 .2

Instead of bottom temperature measurement, some systems may
have sensors installed at the top, and hence the temperature at the top
surface is measured (Colucci et al., 2020; Srisuma et al., 2023). In such
cases, a similar procedure introduced in this section can be applied.

Most of the results in this article are based on the original state
observer as it uses the most complete measurement information, with
some results and discussion on the modified observer in Section 4.5.

3.3. Observer design strategies

The structure of the state observer for estimating the concentration
of bound water is illustrated in Fig. 2. The proposed observer has
the physics of heat transfer and bound water desorption embedded
in 𝐅𝐓 and 𝐅𝐜, which is given by the mechanistic model. The temper-
ature measurement is fed to the observer terms represented by the
observer gains 𝐋𝐓 and 𝐋𝐜. The observer combines the information
from the mechanistic model and temperature measurement to converge
the estimated concentration to the true values without the need for
concentration measurement.

The most important consideration for observer design is to ensure
that the estimated states converge to the true states fast compared to
the time scale of the process, but have slow enough dynamics that the
state estimates are insensitive to measurement noise. The time scales
of the estimated states are specified by the observer gains 𝐋𝐓 and 𝐋𝐜.
Instead of attempting to search over all elements of the full observer
gain matrices 𝐋𝐓 and 𝐋𝐜, we show in Sections 3.1 and 3.2 that 𝐋𝐓 and
𝐋𝐜 be parameterized and rewritten as a product of the real scalar 𝐿𝑇 or

2 Since the observer structure and equations are different, the values of 𝐿𝑇
and 𝐿 used for the state observer and modified observers are also different.
𝑐
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𝐿𝑐 and the matrix of ones, so the only design parameters are the real
scalars 𝐿𝑇 and 𝐿𝑐 .

The design procedure for the observer gains 𝐿𝑇 and 𝐿𝑐 consists of
two main steps. The first step relies entirely on the mechanistic model
and simulation, where the model prediction represents the true state of
the system. In this step, a series of simulations are run for different val-
ues of the observer gains and parameters to investigate the dynamics of
the system and observer under various conditions, and that information
is used to select the observer gains based on the overall performance
of the observer. The second step takes the real data/measurement
from experiment into account, and so the observer gains are fine-
tuned to be specific to the real system. These two steps are denoted
as simulation-based observer design and experiment-based observer design,
respectively. The former allows for different operating conditions and
noise profiles to be tested so that the resulting design can cover many
possible scenarios, whereas the latter is primarily specific to the system
where the real data are available. This practical two-step procedure
allows the observer to be designed efficiently without any complicated
mathematical analysis, and is widely used in industrial applications.
For the system considered in this work, 𝐿𝑇 and 𝐿𝑐 have the units of
s−1 and kg water/(kg solid ⋅K ⋅ s), but only the magnitudes of 𝐿𝑇 and
𝐿𝑐 are reported to keep the plots simple and easy to visualize.

An alternative to the first step in observer design is to set the ob-
server gains based on an analytical expression for the convergence time
for the observer dynamics derived from the mathematical structure of
the observer. To begin this analysis, first define the Jacobian of the
nonlinear function 𝐅 in (18) as

𝐅′ = 𝜕𝐅
𝜕𝐱

, (40)

where 𝐅′ can be calculated analytically or numerically. One of the
simplest but efficient ways of analyzing a nonlinear state observer
is to approximate the nonlinearities by linear equations, i.e., apply
linearization. Linearization of the model Eq. (18) results in
𝑑𝐱 = 𝐅 + 𝐅′ (

𝐱 − 𝐱
)

+ 𝐁𝐮, (41)

𝑑𝑡 𝐫𝐞𝐟 𝐫𝐞𝐟 𝐫𝐞𝐟
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where 𝐅𝐫𝐞𝐟 = 𝐅
(

𝐱𝐫𝐞𝐟
)

is the function 𝐅 evaluated at 𝐱𝐫𝐞𝐟 , 𝐅′
𝐫𝐞𝐟 = 𝐅′ (𝐱𝐫𝐞𝐟

)

is the Jacobian 𝐅′ evaluated at 𝐱𝐫𝐞𝐟 , and 𝐱𝐫𝐞𝐟 is the reference state. The
average values of temperature and concentration between the initial
and final times are used as the reference state, which is constant and
uniform.3 With (41), the linearized state observer is
𝑑𝐱̂
𝑑𝑡

= 𝐅𝐫𝐞𝐟 + 𝐅′
𝐫𝐞𝐟

(

𝐱̂ − 𝐱𝐫𝐞𝐟
)

+ 𝐋 (𝐲̂ − 𝐲) + 𝐁𝐮. (42)

Subtracting (41) from (42) yields
𝑑
𝑑𝑡

(𝐱̂ − 𝐱) = 𝐅′
𝐫𝐞𝐟 (𝐱̂ − 𝐱) + 𝐋 (𝐲̂ − 𝐲) . (43)

n this case, it is useful to write 𝐲 and 𝐲̂ as a function of 𝐱, that is,

= 𝐂𝐱 + 𝐧, (44)

̂ = 𝐂𝐱̂, (45)

here

=
[

𝐈𝑚 𝟎𝑚,𝑚
]

, (46)

𝑚 is an 𝑚×𝑚 identity matrix, and 𝟎𝑚,𝑚 is an 𝑚×𝑚 zero matrix. With this
efinition, it is easy to see that (44) and (45) are identical to (27) and
28). Substituting (44) and (45) into (42) followed by rearranging gives
hat
𝑑
𝑑𝑡

(𝐱̂ − 𝐱) =
(

𝐅′
𝐫𝐞𝐟 + 𝐋𝐂

)

(𝐱̂ − 𝐱) − 𝐋𝐧, (47)

which is a linear ODE that gives the criterion for observer design.
The eigenvalues of the matrix 𝐅′

𝐫𝐞𝐟 + 𝐋𝐂 characterize the dynamics of
the observer. For the estimation error 𝐱̂ − 𝐱 to converge to zero, the
observer gains 𝐿𝑇 and 𝐿𝑐 must be chosen such that the real parts of all
eigenvalues of the matrix 𝐅′

𝐫𝐞𝐟+𝐋𝐂 are negative. Besides, the estimation
error should decay significantly faster than the slowest time scale of the
process. Oscillation should also be minimized, which is governed by the
imaginary parts of all eigenvalues.

The values of the 𝐿𝑇 and 𝐿𝑐 in (47) can be systematically selected
to give a desired convergence time for the observer dynamics, which
can be computed from its slowest time scale 𝜏. Denote the eigenvalues
of the matrix 𝐅′

𝐫𝐞𝐟 +𝐋𝐂 from the fastest to the slowest as 𝜆1, 𝜆2,… , 𝜆2𝑚,
in which 𝜆1 is the fastest and 𝜆2𝑚 is the slowest. As 𝐅′

𝐫𝐞𝐟 + 𝐋𝐂 is a
2𝑚×2𝑚 matrix, the matrix has 2𝑚 eigenvalues in total. The slowest time
constant can be estimated from the slowest eigenvalue:

𝜏 = 1
|

|

|

Re
(

𝜆2𝑚
)

|

|

|

. (48)

In this particular application, a much more accurate approximation is

𝜏 = 1
|

|

|

Re
(

𝜆𝑚+1
)

|

|

|

, (49)

which is justified in Appendix B by a detailed mathematical analysis on
the effects of all eigenvalues. The convergence time is defined as the
time required for the estimation error to be less than 2% of the initial
state error, which is 4𝜏.4 This approximation is sufficiently accurate for
all parameter values for the mechanistic model, numerical methods,
and state observer used in this work, that is, for which the observer
dynamics are stable and not oscillating. This analysis is based on a
linearized version of the observer, and so is an approximation. Nev-
ertheless, this approximation is sufficiently good for this application,
including for gain scheduling, as shown in Section 4.4.

3 Although there is no real-time concentration measurement available, the
verage concentration used in this analysis can be obtained via offline mea-
urement during the design and development phase. Alternatively, a literature
alue could be used.

4 This approach to selecting time scales in observer design is simi-
ar to that commonly used in pole placement and internal model control

pplications (Brasch and Pearson, 1970; Morari and Zafiriou, 1989). w
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Table 1
Default parameters for simulations.

Parameter Value Unit Reference

𝜌 215 kg/m3 Sadikoglu and Liapis (1997)
𝜌𝑑 212.21 kg/m3 Sadikoglu and Liapis (1997)
𝑘 0.217 W/(m⋅K) Sadikoglu and Liapis (1997)
𝐶𝑝 2,590 J/(kg⋅K) Sadikoglu and Liapis (1997)
𝐶𝑝,𝑔 1,617 J/(kg⋅K) Sadikoglu and Liapis (1997)
𝛥𝐻𝑠 2.68 × 106 J/kg Sadikoglu and Liapis (1997)
𝐸𝑎 8,316 J/mol Pikal et al. (2005)
𝐴 3.34 × 10−3 s−1 Pikal et al. (2005)
ℎ 30 W/(m2⋅K) Sheehan and Liapis (1998)
𝑇0 241.15 K Gitter et al. (2018)
𝑇𝑏,0 253.15 K Gitter et al. (2018)
𝑇𝑏,max 313.15 K Sadikoglu and Liapis (1997)
𝑐𝑠,0 0.2059 kg water/kg solid Pikal et al. (2005)
𝑟 0.2 K/min Gitter et al. (2019)
𝑄𝑣 0 W/m3 –
𝐻 2 cm Sadikoglu and Liapis (1997)
𝑅 8.314 J/(mol⋅K) –
𝑚 20 – –

4. Results and discussion

In this work, the mechanistic model is used in various applications
with different operating conditions, which requires a number of input
parameters. The default parameter values are given in Table 1. Param-
eter values different from those reported in Table 1 are stated explicitly
in each specific section or case study.

Despite a large number of parameters in the model, there are two
sets of parameters that are critical and thus should be estimated from
data, namely the (1) heat transfer coefficient ℎ and (2) parameters re-
lated to the desorption rate constant 𝐴,𝐸𝑎. The heat transfer coefficient
should be estimated from temperature data; the typical value of a heat
transfer coefficient for lyophilization applications ranges from 1 to 100
W/(m2⋅K) (Hottot et al., 2005, 2006). The activation energy for water
desorption 𝐸𝑎 varies significantly among different systems; the values
were reported between 5 × 103 J/mol up to 5 × 104 J/mol (Pikal et al.,
2005; Li et al., 2010; Fissore et al., 2015; Kosasih et al., 2022). The
frequency factor 𝐴 varies by many orders of magnitude (Sadikoglu and
iapis, 1997; Pikal et al., 2005; Fissore et al., 2015), and so there is no
ypical value suggested. Both the activation energy and frequency fac-
or should be estimated from concentration data. The aforementioned
ounds and typical values are used for parameter estimation in this
ork to ensure physically reasonable parameter values.

.1. Model validation

Since the mechanistic model is a basis for state observer and control
esign, this section extensively validates the proposed model with three
ifferent datasets from the literature to ensure that our model provides
n accurate prediction of the bound water concentration and product
emperature. Table 2 lists the parameter values specific to the three
ase studies used for model validation; other parameters are based on
he default values given in Table 1.

The first dataset, denoted Case 1, is obtained from the experimental
ata presented in Sadikoglu and Liapis (1997), where the time profile of
he total mass of residual water (bound water) during secondary drying
as reported. Our mechanistic model can accurately predict the con-

entration of bound water, with the maximum error of about 0.01 kg
ater/kg solid (Fig. 3A). The concentration decreases exponentially

ollowing the linear driving force model.
The second dataset (Case 2) is the simulation result obtained from

he high-fidelity model proposed by Sheehan and Liapis (1998); the
odel simulates simultaneous heat and mass transfer in two dimen-

ions. Our model prediction agrees well with the result obtained from
he high-fidelity model (Fig. 3B), indicating that our simplified model,

hich simulates the system in 1D and omits mass transfer equations, is
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Fig. 3. (A) Comparison between the concentration of bound water predicted by our model and the experimental data obtained from Sadikoglu and Liapis (1997). The original
data reported as the total mass of water are normalized by the total mass of solid. (B) Comparison between the concentration of bound water predicted by our model and the
high-fidelity model by Sheehan and Liapis (1998). The original data reported as the total mass of water are normalized by the total mass of solid. (C) Comparison between our
model prediction and the experimental data from Fissore et al. (2015) for both temperature and concentration.
Table 2
Specific parameters for the model validation.

Case Parameter Value Unit Reference/Note

1
𝐸𝑎 5,000 J/mol Estimated from data
𝐴 7.1 × 10−4 s−1 Estimated from data
𝑐𝑠,0 0.6415 kg water/kg solid Sadikoglu and Liapis (1997)

2
𝐸𝑎 5,700 J/mol Estimated from data
𝐴 1 × 10−3 s−1 Estimated from data
𝑐𝑠,0 0.6415 kg water/kg solid Sheehan and Liapis (1998)

3

𝐸𝑎 5,920 J/mol Fissore et al. (2015)
𝐴 1.2 × 10−3 s−1 Estimated from data
ℎ 7 W/(m2⋅K) Estimated from data
𝑇0 264.09 K Fissore et al. (2015)
𝑇𝑏,0 264.09 K Assumed to be 𝑇0
𝑇𝑏,max 312 K Estimated from data
𝑐𝑠,0 0.0603 kg water/kg solid Fissore et al. (2015)
𝑟 0.5 K/min Estimated from data
𝐻 0.0102 m Calculated from parameters in

Fissore et al. (2015)

sufficiently accurate to be used for predicting the evolution of residual
water during secondary drying, agreeing with the observation by Yoon
and Narsimhan (2022).

The final dataset (Case 3) is obtained from Fissore et al. (2015),
where the time profiles of both residual water and product temperature
were reported. Our model can precisely simulate the product tempera-
ture (Fig. 3c). The model can also reasonably predict the concentration
of bound water despite high uncertainty in the reported measurement.

The above three case studies show that our proposed model provides
accurate prediction of the bound water concentration and product
temperature during secondary drying, in comparison to experimental
data and a model with higher fidelity.
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4.2. Simulation-based observer design

This section demonstrates the simulation-based observer design,
with the default model parameters in Table 1. As introduced in Sec-
tion 3.3, a practical design technique is to run a series of simulations
for different values of the observer gains. Alternatively, the observer
gains can be systematically selected from mathematical analysis of
the observer (40)–(49) to produce a desired convergence time for the
estimation error.

Fig. 4 shows the convergence times for orders of magnitude ranges
in observer gains; the convergence time can be estimated using (49)
or directly calculated from simulation. Within this design space, the
convergence time ranges from 0.7 to 9.3 h. For the process time scale of
about 10 h, we select the observer gains 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7

to give a convergence time of about 2 h (dark blue region of Fig. 4),
i.e., 5 times faster than the process dynamics.

With the selected observer gains, the estimated temperature quickly
converges to the true value without any oscillation (Fig. 5A), with the
estimation error decreasing to 0 at around 2 h (Fig. 5B). A similar
behavior can be observed for the concentration (Fig. 6), indicating
that the observer design is appropriate. Physically, when the estimated
temperature is higher than the actual value, the observer term 𝐋𝐓(𝐓̂−𝐓)
should provide negative feedback to the observer to reduce the tem-
perature, so 𝐿𝑇 is negative. When the estimated temperature is higher
than the actual value, it implies that the estimated desorption rate is
too low. Therefore, the observer term 𝐋𝐜(𝐓̂−𝐓) should provide positive
feedback to the observer to increase the estimated concentration, and
so 𝐿𝑐 is positive.

Another important aspect of the observer is initialization. For the
estimated temperature, it is logical to set the initial condition to be
equal to the measured temperature. In Fig. 5, the initial estimated
temperature is set to be higher than the measured value by 10% to

demonstrate the convergence. The initial estimated concentration is,
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Fig. 4. Design space showing the times required for the estimated concentration to
converge to the true value at different pairs of the observer gains 𝐿𝑇 and 𝐿𝑐 . Values
of 𝐿𝑇 and 𝐿𝑐 outside this design space could lead to severe oscillation or divergence.

however, unknown due to no real-time concentration measurement.
In Fig. 6, the observer is initialized with the minimum concentration
(0.0314 kg water/kg solid) reported in the literature (Sadikoglu and
Liapis, 1997; Pisano et al., 2012) to demonstrate the convergence under
the worst-case scenario. In practice, the initial estimated concentration
could be set to some more realistic value specific to that system or
experiment. This information should be obtained during the design and
development phase, which could result in faster convergence. In the
later sections of this work, the initial estimated concentration is set to
0.0314 kg water/kg solid and the initial estimated temperature is set
to the measured value unless otherwise specified so that the observer
performance is analyzed on the same basis.

In the later sections of this work, 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7

are used as the default observer gains. This exact same analysis and
design procedure can be used for the modified observer, with the final
observer gains selected to be 𝐿𝑇 = −5×10−3 and 𝐿𝑐 = 1×10−4.

4.3. Observer performance under various conditions

In the previous section, the observer is designed using the de-
fault parameter values. This section explores the performance of the
designed observer under various conditions.

From the mechanistic understanding of desorption described in
Section 2, three key parameters that directly influence the desorption
dynamics are the frequency factor 𝐴, activation energy 𝐸𝑎, and concen-
tration 𝑐𝑠. Hence, we study the performance of the observer for several
values of 𝐴, 𝐸𝑎, and 𝑐𝑠,0 reported in the lyophilization literature.

The first part of the study focuses on the frequency factor 𝐴. The
estimated state smoothly converges to the true state within 2 h from
the time scale of 10 h for the low case (Fig. 7A1). An increase in
the frequency factor reduces the time required for secondary drying
to less than 8 h, in which the estimated state can converge to the true
state within about 90 min (Fig. 7A2). Convergence is achieved for both
spatial and average concentration.

The second part of this analysis centers on the activation energy
𝐸𝑎. For the low case, the estimated concentration converges to the
true value within 1 h from the time scale of about 4 h (Fig. 7B1).
The dynamics of the process are relatively fast here compared to other
cases, but the observer can still perform very well. For the high case,
the convergence is observed at about 6 h from the time scale of about
45 h (Fig. 7B2). The drying time of 45 h is considered extremely slow
for secondary drying, but that does not impact the performance of the
observer.

The final part of this analysis considers the concentration level 𝑐𝑠,0.
Regarding the low case, the initial estimated concentration is somehow
correct, i.e., equal to the true value, so the convergence is immediate
8 
(Fig. 7C1). For the high case, the convergence is observed at about
2 h from the time scale of 10 h (Fig. 7C2). The observer can converge
quickly even when the initial estimated state is off by more than an
order of magnitude; i.e., the initial estimated concentration is 0.0314 kg
water/kg solid, whereas the true value is 0.6415 kg water/kg solid.

Results from this study show that the observer is able efficiently
and accurately estimate the concentration of bound water for various
desorption dynamics considered in the literature. The convergence is
achieved for every case study via a single observer design where 𝐿𝑇 =
−1×10−6 and 𝐿𝑐 = 5×10−7, indicating that the proposed observer and
design strategy are robust.

4.4. Measurement noise and observer gain scheduling

A state observer always receives some form of measurement, and
thus it is important to ensure that the estimated states are insensitive
to measurement noise. A high observer gain could give fast conver-
gence but also magnify the noise, resulting in inaccurate estimation
of the states. This section discusses effects of measurement noise and
demonstrates the corresponding observer design.

To simulate the noise, independent normally distributed noise of
standard deviation given by 3𝜎 = 5 ◦C (Srisuma et al., 2023) is
added to the temperature profile given the default model parameters.
The estimated concentration is severely polluted by the measurement
noise for the default observer gain 𝐿𝑐 = 5×10−7 (Fig. 8A). Significant
oscillation is observed, in which the observer does not give valuable
information when the concentration is small (i.e., after about 6 h). To
reduce the noise effect, the observer gain 𝐿𝑐 is reduced to 2×10−7.
In comparison to 𝐿𝑐 = 5×10−7, the convergence is achieved slightly
slower, but the oscillation is much weaker. Reducing the gain 𝐿𝑐 further
to 1×10−7 almost removes the oscillation, but the convergence is also
significantly slower.

The above information motivates the use of observer gain schedul-
ing, which is a technique that varies the observer gains with time to
ensure satisfactory performance at different operating points, especially
for nonlinear systems. In this case, we can initialize the observer with
a high gain to achieve fast convergence, and then gradually switch to a
low gain after some time to reduce oscillation. Here the switching time
is set to 𝑡 = 4𝜏 following the definition of the convergence time defined
in Section 3.3, where 𝜏 is the time constant derived in Section 3.3.
This technique enables fast convergence while having low effects of
measurement noise on the state estimate (Fig. 8B).

This analysis highlights another benefit of the proposed observer
in terms of noise filtering. Selecting the observer gain needs to trade
off sensitivity to measurement noise with speed of convergence of the
state estimates as demonstrated above. For this process, it is acceptable
to allow for some small oscillation when the concentration is high
(e.g., larger than 0.1) as the value is not affected much. However,
oscillation should be minimized when the concentration is low, so that
the final concentration of bound water can be accurately estimated to
ensure product quality.

Note that the above noise level (Fig. 8C) is significantly higher than
that observed in actual experiments (Srisuma et al., 2023), and so the
resulting design has a large safety margin to span the range of noise
levels encountered in real temperature sensors. A lower safety margin,
with faster convergence to the states, could be achieved by performing
the analysis for a noise level set by experimental data for the specific
temperature sensor used in the specific equipment.

4.5. Experimental-based observer design

In the simulation-based observer design, the true and estimated
states are simulated simultaneously and continuously. In real systems,
measurement data are usually sampled and fed to a state observer in a
discrete fashion, i.e., with a fixed sampling time. This section applies
the proposed observer to estimate the concentration of bound water in
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Fig. 5. Convergence of the estimated product temperature for the selected observer gains 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7. Panel A shows the evolution of the estimated average
temperature compared to the true value. Panel B shows the spatiotemporal evolution of the estimation error. The initial estimated temperature is set to be higher than the actual
value by about 10% to demonstrate convergence.
Fig. 6. Convergence of the estimated concentration of bound water for the selected observer gains 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7. Panel A shows the evolution of the estimated
average concentration compared to the true value. Panel B shows the spatiotemporal evolution of the estimation error. The initial estimated concentration is set to 0.0314 kg
water/kg solid, the minimum value reported in the literature.
four different experiments from the literature, denoted as Cases A (skim
milk) (Sadikoglu and Liapis, 1997), B (skim milk) (Liapis and Bruttini,
1994), C (sucrose) (Pisano et al., 2012), and D (mannitol) (Fissore et al.,
2015), with the sampling time of 10 s. Although our model is developed
based on lyophilization of unit doses (vials), the experimental data
used here include both bulk lyophilization (Cases A and B) and vial
lyophilization (Cases C and D) to demonstrate the generalizability of
the approach given that radial heat transfer is negligible compared to
vertical heat transfer.

Table 3 lists the parameter values specific to the four case stud-
ies considered here. For Cases A and B, temperature data were not
directly reported in the original studies (Liapis and Bruttini, 1994;
Sadikoglu and Liapis, 1997); however, a mechanistic model and model
parameters were given such that spatial temperature data could be
simulated. The simulated temperature profile was used as the temper-
ature measurement for our state observer, with the sampling time of
10 s. Additionally, the original residual moisture was reported as the
total mass of water, so we normalized the values by the total mass
of solid to give the unit of kg water/kg solid. For Cases C and D, the
bottom temperatures were reported in the original studies (Pisano et al.,
2012; Fissore et al., 2015), but the sampling time is too large (about
30 min), resulting in poor convergence. Hence, based on the reported
temperature, we used the model to reconstruct the temperature profile
with the sampling time of 10 s, which was then fed to our observer.

By using the default observer gains obtained from our simulation-
based design, the observer can converge the estimated concentration
to the correct value in less than 2 h for all four experiments, showing
the robustness of our design (Fig. 9). In Figs. 9AB, two experiments
9 
Table 3
Specific parameters for the four experimental systems.

Case Parameter Value Unit Reference/Note

1
𝐸𝑎 5,000 J/mol Estimated from data
𝐴 7.1 × 10−4 s−1 Estimated from data
𝑐𝑠,0 0.6415 kg water/kg solid Sadikoglu and Liapis (1997)

B

𝑘 0.028 W/(m⋅K) Liapis and Bruttini (1994)
𝐸𝑎 5,300 J/mol Estimated from data
𝐴 4.5 × 10−4 s−1 Estimated from data
𝑐𝑠,0 0.1940 kg water/kg solid Liapis and Bruttini (1994)

C

𝐸𝑎 37,714 J/mol Pisano et al. (2012)
𝐴 277 s−1 Pisano et al. (2012)
ℎ 7 W/(m2⋅K) Estimated from data
𝑇0 270.38 K Pisano et al. (2012)
𝑇𝑏,0 270.38 K Assumed to be 𝑇0
𝑐𝑠,0 0.0314 kg water/kg solid Pisano et al. (2012)
𝑟 0.6 K/min Estimated from data

D

𝐸𝑎 5,920 J/mol Fissore et al. (2015)
𝐴 1.2 × 10−3 s−1 Estimated from data
ℎ 7 W/(m2⋅K) Estimated from data
𝑇0 264.09 K Fissore et al. (2015)
𝑇𝑏,0 264.09 K Assumed to be 𝑇0
𝑇𝑏,max 312 K Estimated from data
𝑐𝑠,0 0.0603 kg water/kg solid Fissore et al. (2015)
𝑟 0.5 K/min Estimated from data
𝐻 0.0102 m Calculated from parameters in

Fissore et al. (2015)
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Fig. 7. (A) Convergence of the estimated concentration for different frequency factors 𝐴. The frequency factor is varied between 7.8 × 10−5 s−1 (Sheehan and Liapis, 1998) and
1.1 × 10−4 s−1 (Mascarenhas et al., 1997) given that the rate constant is independent on temperature. (B) Convergence of the estimated concentration for different activation
energies 𝐸𝑎. The activation energy is varied between 5920 J/mol (Fissore et al., 2015) and 13,146 J/mol (Oddone et al., 2017). (C) Convergence of the estimated concentration
for different initial concentrations, 𝑐𝑠,0. The initial condition is varied between 0.0314 kg water/kg solid (Fissore et al., 2018) and 0.6415 kg water/kg solid (Sadikoglu and Liapis,
1997). In all cases, the simulations are terminated when the estimated concentration drops below 0.01 kg water/kg solid. The default observer gains 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7

are used. Other parameters are kept at the default values.
with spatially distributed temperature measurement are considered,
and so the state observer is used as usual. In Figs. 9CD, the only
measurement available is the bottom temperature, and so the modified
state observer is used instead (see Section 3.2). Both the original and
modified observers work perfectly.

The observer with spatially distributed measurement, e.g., IR cam-
eras, provides more complete information of the product. IR cam-
eras are always located outside a vial, enabling non-contact measure-
ment (Van Bockstal et al., 2018; Colucci et al., 2020; Harguindeguy
et al., 2022). However, only edge vials could be monitored, as center
vials cannot be seen by the camera (Vallan et al., 2023). In this case, a
model that properly incorporates the effect of thermal radiation can be
used to reconstruct the temperature profiles of all vials. Noisy thermal
imaging data can be filtered directly with the observer (Srisuma et al.,
2023) or some filters such as a low-pass filter (Srisuma et al., 2023) and
Savitzky–Golay filter (Harguindeguy et al., 2022). The observer with
point measurement, e.g., a thermocouple, would lead to a simpler and
less expensive setup, with lower noise and bias (Lietta et al., 2019).
This contact measurement may not be feasible for many pharmaceutical
applications where contamination must be minimized. The presence of
a thermocouple could also alter local heat transfer near the contact
point inside the product, which is not captured by the mechanistic
model; see Vallan et al. (2023) for detailed discussion on various
temperature measurements in lyophilization.
10 
The choice of sampling time, e.g., 10 s used in Fig. 9, needs to be
considered when implementing a state observer to the real system. If
the sampling time is too large, the observer could converge slowly or di-
verge due to insufficient measurement information. Also, the sampling
time must be higher than the computation time required for simulating
the observer in each time step. Our observer can be simulated in less
than a second on a normal laptop, and thus the sampling time of 10
s is more than adequate. The sampling time should also be chosen
to be sufficiently small compared to the time scale of a process to
ensure that any important dynamics are well captured. For example,
the time scale of 10 s is reasonable given the time scale of many hours
in lyophilization.

The heat transfer dynamics predicted by the model is a function
of the heat transfer coefficient ℎ, which is estimated from data and so
can have some uncertainty. By using the data from Cases A (Sadikoglu
and Liapis, 1997) and B (Liapis and Bruttini, 1994), we show that our
observer converges the estimated states to the correct values even for
10% error in the value of the heat transfer coefficient (Fig. 10). The
convergence is slightly slower, but the difference is nearly unnotice-
able (cf., Figs. 9AB and 10AB). The estimated concentration is almost
insensitive to uncertainty in the heat transfer coefficient in these cases.

As shown in Figs. 9 and 10, our observer can be applied for a
wide range of concentration values. In secondary drying, the observer
might be used for different purposes, in which the design and validation
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Fig. 8. (A) Convergence and oscillation behavior of the estimated concentration at different observer gains 𝐿𝑐 = 5×10−7, 2×10−7, and 1×10−7 while 𝐿𝑇 is fixed at −1×10−6 in all
cases. (B) Gain scheduling technique where 𝐿𝑐 is set to 5×10−7 for fast convergence at the beginning and then reduced to 1×10−7 at 𝑡 = 4𝜏 to reduce the effect of measurement noise.
(C) Simulated noisy temperature data obtained from adding independent normally distributed noise of standard deviation given by 3𝜎 = 5 ◦C to the true state. Other parameters
are kept at their default values.

Fig. 9. Convergence of the estimated concentration when applying the state observer to the real systems in Case A (Sadikoglu and Liapis, 1997) (Panel A) and Case B (Liapis
and Bruttini, 1994) (Panel B). Convergence of the estimated concentration when applying the modified state observer to the real systems in Case C (Pisano et al., 2012) (Panel
C) and Case D (Fissore et al., 2015) (Panel D). In all case studies, the sampling time of 10 s is used, with the default parameter values and observer gains. The initial estimated
concentration is chosen to be lower/higher than the true value by about 20%–100% to demonstrate convergence. The initial estimated temperature is set to the measured value.
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Fig. 10. Convergence of the estimated concentration when applying the state observer to Case A (Sadikoglu and Liapis, 1997) (Panel A) and Case B (Liapis and Bruttini, 1994)
Panel B), with the value of the heat transfer coefficient ℎ for the observer set to be 10% lower than the correct value for Case A and 10% higher than the correct value for Case
. The sampling time of 10 s is used, with the default parameter values and observer gains. The initial estimated concentration is chosen to be different from the correct value
o demonstrate convergence. The initial estimated temperature is set to the measured value.
Fig. 11. (A) Convergence of the estimated concentration for the observer-based feedback control system where the microwave power is controlled to prevent product overheating,
compared to conventional lyophilization. (B) Average product temperature under controlled microwave heating. The default observer gains 𝐿𝑇 = −1×10−6 and 𝐿𝑐 = 5×10−7 are
used. Other parameters are kept at the default values.
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should correspond to that application. For example, the observer could
be used to monitor the drying process until the moisture content is
below a certain threshold. Such applications are common and do not
require a highly accurate observer for the entire concentration range
because only the threshold is concerned. However, there are some
sensitive materials, e.g., biologics, that require precise control within
a narrow range of moisture, e.g., 1%–3% (Zhang et al., 2021). In such
cases, it is crucial to ensure that the observer is very accurate for the
desired concentration range, meaning that the mechanistic model and
temperature measurement must be highly reliable. Otherwise, using a
highly accurate concentration sensor could be a better alternative.

4.6. Application to microwave lyophilization

All the results presented in the previous sections are based on
conventional lyophilization, i.e., 𝑄𝑣 = 0. In conventional lyophilization,
the product contained in a glass vial is heated from the bottom via
a heating shelf during the drying stages (Pisano et al., 2010; Fissore
et al., 2018). To accelerate the drying process, various techniques have
been studied and developed; one of the most prominent techniques
is microwave lyophilization, where microwave irradiation is used to
reduce the drying time during primary and secondary drying (Walters
et al., 2014; Gitter et al., 2018, 2019). This section demonstrates
the application of our observer for feedback control of microwave
lyophilization.

Control strategies for microwave lyophilization have not been
demonstrated well in the literature. It has been shown that continuous
microwave heating for water desorption can lead to a huge increase
in the product temperature if the microwave power is not well con-

trolled (Witkiewicz and Nastaj, 2014). Overheating is not desirable in p

12 
lyophilization as it could lead to some serious issues such as product
collapse and liquid-phase formation (Fissore et al., 2018). As such, the
main goal of our feedback control system is to control the microwave
power 𝑄𝑣 to ensure that the product temperature does not exceed its
upper limit. Here we define 𝑄𝑣 by using a simple proportional control
elation:

𝑣(𝑡) = 𝐾
(

𝑇up − 𝑇max(𝑡)
)

, (50)

here 𝐾 is the controller gain, 𝑇up is the upper temperature limit,
nd 𝑇max is the maximum product temperature given the temperature
istribution 𝑇 (𝑧, 𝑡). Here we specify 𝐾 = 1, 000 W/(m3⋅K) and 𝑇up =
𝑏,max. Other parameters are based on their default values.

By using the default observer gains, the observer can accurately
stimate the concentration of bound water despite the presence of
icrowave irradiation and feedback control (Fig. 11A). In comparison

o conventional lyophilization, the drying time is shortened by about
h. With the proposed proportional control, the product temperature

s well controlled below the maximum temperature of about 313.15 K
Fig. 11B).

. Conclusion

A novel approach for the real-time estimation of the residual mois-
ure during secondary drying in lyophilization is presented. The tech-
ique relies on a state observer, in particular a Luenberger observer,
hich uses the information from mechanistic understanding of the
rocess and temperature measurement to predict the concentration
f bound water. Our observer can accurately estimate the amount of
ound water for various desorption dynamics, noisy data, and real ex-

eriments. Nearly all the case studies presented in this work, except for
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the noise and gain-scheduling parts, are achieved by a single observer
design, indicating high robustness of the observer.

The proposed framework is designed to be simple and practical
for implementation. The observer can be simulated in real time, with
the computation time of less than a second on a normal laptop. No
concentration measurement is required; only temperature measurement
is necessary. As temperature measurement is straightforward and com-
monly required in every step of lyophilization, the technique can be
employed with a very simple setup and operation compared to any
other methods. The approach is presented systematically, with detailed
derivation and mathematical analysis, and so it can be easily extended
to desorption-based processes other than lyophilization. This extension
can be done by rewriting a mechanistic model for the new system
and redesigning a state observer using the procedure described in this
article.
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Appendix A. Numerical methods

The mechanistic model is presented in Section 2. To simulate the
model, various numerical methods can be employed. Since the model
equations contain the flux terms and boundary conditions, the finite
volume method (FVM) is selected. The spatial domain is discretized
into 𝑚 cells of volume 𝐴𝑐𝛥𝑧 as shown in Fig. A.1, where 𝐴𝑐 is the cross
ectional area and 𝛥𝑧 is given by

𝑧 = 𝐻
𝑚 − 1

. (A.1)

Considering each cell as a control volume, the energy balances are

𝑐
𝛥𝑧
2
𝜌𝐶𝑝

𝑑𝑇1
𝑑𝑡

= 𝑞1𝐴𝑐 − 𝑞3∕2𝐴𝑐 + 𝐴𝑐
𝛥𝑧
2
𝜌𝑑𝛥𝐻𝑠

𝑑𝑐𝑠,1
𝑑𝑡

+ 𝐴𝑐
𝛥𝑧
2
𝑄𝑣, (A.2)

𝐴𝑐𝛥𝑧𝜌𝐶𝑝
𝑑𝑇𝑖
𝑑𝑡

= 𝑞𝑖−1∕2𝐴𝑐 − 𝑞𝑖+1∕2𝐴𝑐 + 𝐴𝑐𝛥𝑧𝜌𝑑𝛥𝐻𝑠
𝑑𝑐𝑠,𝑖
𝑑𝑡

+ 𝐴𝑐𝛥𝑧𝑄𝑣,

for 𝑖 = 2,… , 𝑚 − 1, (A.3)

𝑐
𝛥𝑧
2
𝜌𝐶𝑝

𝑑𝑇𝑚
𝑑𝑡

= 𝑞𝑚−1∕2𝐴𝑐 − 𝑞𝑚𝐴𝑐 + 𝐴𝑐
𝛥𝑧
2
𝜌𝑑𝛥𝐻𝑠

𝑑𝑐𝑠,𝑚
𝑑𝑡

+ 𝐴𝑐
𝛥𝑧
2
𝑄𝑣. (A.4)
t
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As a result, the final discretized equations are
𝑑𝑇1
𝑑𝑡

= 2𝑘
𝜌𝐶𝑝

(

𝑇2 − 𝑇1
𝛥𝑧2

)

+
𝜌𝑑𝛥𝐻𝑠
𝜌𝐶𝑝

(𝑑𝑐𝑠,1
𝑑𝑡

)

+
𝑄𝑣
𝜌𝐶𝑝

, (A.5)

𝑑𝑇𝑖
𝑑𝑡

= 𝑘
𝜌𝐶𝑝

(

𝑇𝑖+1 − 2𝑇𝑖 + 𝑇𝑖−1
𝛥𝑧2

)

+
𝜌𝑑𝛥𝐻𝑠
𝜌𝐶𝑝

(𝑑𝑐𝑠,𝑖
𝑑𝑡

)

+
𝑄𝑣
𝜌𝐶𝑝

,

for 𝑖 = 2,… , 𝑚 − 1, (A.6)
𝑑𝑇𝑚
𝑑𝑡

=− 2𝑘
𝜌𝐶𝑝

(

𝑇𝑚 − 𝑇𝑚−1
𝛥𝑧2

)

− 2ℎ
𝜌𝐶𝑝𝛥𝑧

(𝑇𝑚 − 𝑇𝑏) +
𝜌𝑑𝛥𝐻𝑠
𝜌𝐶𝑝

(𝑑𝑐𝑠,𝑚
𝑑𝑡

)

+
𝑄𝑣
𝜌𝐶𝑝

.

(A.7)

For the desorption process, the discretized equations are
𝑑𝑐𝑠,𝑖
𝑑𝑡

= 𝐴𝑒−𝐸𝑎∕𝑅𝑇𝑖 𝑐𝑠,𝑖, for 𝑖 = 1, 2,… , 𝑚. (A.8)

ere we use the finite volume method to transform the original par-
ial differential equations (PDEs) into a system of ordinary differ-
ntial equations (ODEs). This technique is known as the method of
ines (Schiesser, 1991). The system of ODEs given by (A.5)–(A.8) can
e integrated by commercial ODE solvers; MATLAB’s ode15s is used
n this work.

Finally, define the state 𝐱 and manipulated variable 𝐮 as

=
[

𝐓
𝐜𝐬

]

, (A.9)

=
[

𝑇𝑏
𝑄𝑣

]

, (A.10)

where 𝐓 ∈ R𝑚 collects the product temperatures
(

𝑇1,… , 𝑇𝑚
)

and 𝐜𝐬 ∈
R𝑚 collects the bound water concentrations

(

𝑐𝑠,1,… , 𝑐𝑠,𝑚
)

. The heating
shelf temperature 𝑇𝑏 and microwave power 𝑄𝑣 can be manipulated
to control the dynamic of secondary drying. The model equations are
nonlinear in 𝐱 and linear in 𝐮. Consequently, (A.5)–(A.8) can be written
in the vector form
𝑑𝐱
𝑑𝑡

= 𝐅(𝐱) + 𝐁𝐮, (A.11)

here 𝐅 ∈ R2𝑚 is the corresponding nonlinear function and 𝐁 ∈ R2𝑚×2

is the matrix.

Appendix B. Time constant approximation

Consider a linear system of ordinary differential equations (ODEs)
𝑑𝐱
𝑑𝑡

= 𝐌𝐱, (B.1)

where 𝐱 is the state vector and 𝐌 is the matrix of coefficients. Note
that here 𝐱 is a general state vector, which is not the same definition
as (A.9). The matrix 𝐌 can be factorized as

𝐌 = 𝐔Λ𝐔−1, (B.2)

where Λ is a diagonal matrix containing the eigenvalues of 𝐌 and 𝐔 is
the matrix of the corresponding eigenvectors.5 Rearranging (B.1) with
(B.2) gives
𝑑
𝑑𝑡

(

𝐔−1𝐱
)

= Λ
(

𝐔−1𝐱
)

. (B.3)

For a new set of variables defined by

𝐲 = 𝐔−1𝐱, (B.4)

(B.4) can be rewritten as
𝑑𝐲
𝑑𝑡

= Λ𝐲. (B.5)

5 This analysis assumes that the matrix 𝐌 is diagonalizable, which is true
or the relevant matrix in this article. A more general theoretical analysis that
ives similar results is based on the Jordan form for 𝐌, and is provided in
extbooks on dynamical systems analysis or state-space control.

https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
https://github.com/PrakitrSrisuma/lyo-observer-secondary
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Fig. A.1. Finite volume discretization of the model equations. The variables 𝑇𝑖 and 𝑐𝑠,𝑖 denote the temperature and bound water concentration of cell 𝑖.
Fig. B.1. Contribution of each eigenvalue. Each coefficient 𝜈𝑝 shows the contribution
of each eigenvalue 𝜆𝑝, with 𝑚 = 20. The default parameters and observer gains are
used in this plot.

Here the system of equations is completely decoupled. For example,
consider the case where 𝐱 ∈ R2, the corresponding vectors and matrices
are

𝐱 =
[

𝑥1
𝑥2

]

, (B.6)

𝐲 =
[

𝑦1
𝑦2

]

, (B.7)

Λ =
[

𝜆1 0
0 𝜆2

]

, (B.8)

=
[

𝑢1,1 𝑢1,2
𝑢2,1 𝑢2,2

]

. (B.9)

onsequently, (B.5) becomes

𝑑
𝑑𝑡

[

𝑦1
𝑦2

]

=
[

𝜆1 0
0 𝜆2

] [

𝑦1
𝑦2

]

, (B.10)

where the analytical solution is
[

𝑦1
]

=

[

𝑦1,0 exp
(

𝜆1𝑡
)

( )

]

. (B.11)

𝑦2 𝑦2,0 exp 𝜆2𝑡

14 
Multiplying both sides of (B.11) with the matrix 𝐔 results in
[

𝑥1
𝑥2

]

= 𝐔
[

𝑦1,0 exp
(

𝜆1𝑡
)

𝑦2,0 exp
(

𝜆2𝑡
)

]

. (B.12)

Representing the inverse of 𝑈 as

𝐔−1 =
[

𝑣1,1 𝑣1,2
𝑣2,1 𝑣2,2

]

, (B.13)

the initial condition of 𝐲 can be written as
[

𝑦1,0
𝑦2,0

]

=

[

𝑣1,1𝑥1,0 + 𝑣1,2𝑥2,0
𝑣2,1𝑥1,0 + 𝑣2,2𝑥2,0

]

. (B.14)

Insertion of (B.14) into (B.12) gives the analytical solution
[

𝑥1
𝑥2

]

=

[

𝑢1,1
(

𝑣1,1𝑥1,0 + 𝑣1,2𝑥2,0
)

exp
(

𝜆1𝑡
)

+ 𝑢1,2
(

𝑣2,1𝑥1,0 + 𝑣2,2𝑥2,0
)

exp
(

𝜆2𝑡
)

𝑢2,1
(

𝑣1,1𝑥1,0 + 𝑣1,2𝑥2,0
)

exp
(

𝜆1𝑡
)

+ 𝑢2,2
(

𝑣2,1𝑥1,0 + 𝑣2,2𝑥2,0
)

exp
(

𝜆2𝑡
)

]

.

(B.15)

As derived in Appendix A, we consider 𝐱 ∈ R2𝑚. In this case, the
analytical solution is

𝑥𝑖 =
2𝑚
∑

𝑝=1
𝜈𝑖,𝑝 exp

(

𝜆𝑝𝑡
)

, (B.16)

with the coefficient

𝜈𝑖,𝑝 = 𝑢𝑖,𝑝

( 2𝑚
∑

𝑞=1
𝑣𝑝,𝑞𝑥𝑞,0

)

. (B.17)

The coefficient 𝜈𝑖,𝑝 represents the contribution of each eigenvalue 𝜆𝑝 to
the solution. By plotting the real part of 𝜈𝑖,𝑝, the contribution of each
eigenvalue can be quantified.

For the analysis of the observer, the vector 𝐱 is replaced with the
estimation error, and the matrix 𝐌 is replaced by the matrix 𝐅′

𝐫𝐞𝐟 +𝐋𝐂
derived in Section 3.3, and thus 𝜆1, 𝜆2,… , 𝜆2𝑚 are the eigenvalues of
𝐅′
𝐫𝐞𝐟 +𝐋𝐂. Our state of interest is the concentration, which corresponds

to 𝑥𝑚+1, 𝑥𝑚+2,… , 𝑥2𝑚. The average coefficient for the concentration part
𝑖 = 𝑚 + 1,… , 2𝑚 is

𝜈𝑝 =
1

2𝑚
∑

𝜈𝑖,𝑝. (B.18)

𝑚 𝑖=𝑚+1
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By using the default parameter values and observer gains given in
Table 1, it is shown that 𝜆𝑚 and 𝜆𝑚+1 (𝑚 = 20) have the largest
ontribution because the coefficients 𝜈𝑚 and 𝜈𝑚+1 are much larger than
he rest by more than three orders of magnitude (Fig. B.1). Therefore,
he error dynamics are governed by these two eigenvalues. The time
onstant can be approximated from the slower eigenvalue, that is,

= 1
|

|

|

Re
(

𝜆𝑚+1
)

|

|

|

(B.19)

as described in Section 3.3.
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