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Abstract

The in vitro transcription (IVT) reaction used in the production of messenger RNA

vaccines and therapies remains poorly quantitatively understood. Mechanistic modeling

of IVT could inform reaction design, scale‐up, and control. In this work, we develop a

mechanistic model of IVT to include nucleation and growth of magnesium pyro-

phosphate crystals and subsequent agglomeration of crystals and DNA. To help

generalize this model to different constructs, a novel quantitative description is included

for the rate of transcription as a function of target sequence length, DNA concentration,

and T7 RNA polymerase concentration. The model explains previously unexplained

trends in IVT data and quantitatively predicts the effect of adding the pyrophosphatase

enzyme to the reaction system. The model is validated on additional literature data

showing an ability to predict transcription rates as a function of RNA sequence length.
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1 | INTRODUCTION

In recent years, messenger RNA (mRNA)‐based vaccines and

immunotherapies have shown clinical efficacy for COVID‐19,

seasonal influenza, Epstein–Barr virus, HIV, and some forms of

cancer (Barbier et al., 2022). In addition, mRNA is a promising method

of delivering therapeutic proteins, with several mRNA therapies in

the process of early‐stage clinical trials (Rohner et al., 2022).

Producing mRNA vaccines at the scale needed for quickly immunizing

populations, however, remains a challenge (Kis et al., 2021). Also,

while mRNA therapies are targeted toward small population groups,

50–1000 times greater dosages are required than for mRNA

vaccines, which adds to manufacturing costs (Barbier et al., 2022).

Due to the broad reach of the mRNA platform, even modest

advances in efficiency and quality control of mRNA production would

have a significant impact on the availability of a wide variety of

therapies. Consumption of reagents for the in vitro transcription (IVT)

reaction used for RNA synthesis is a key source of cost of goods

(Rosa et al., 2021). Mechanistic modeling of this biomanufacturing

process can be useful to organize existing data, understand the

dynamics of key processes, and design novel reaction schemes and

reactors (Destro & Barolo, 2022; Hong et al., 2018).

The quantitative effect of pyrophosphatase (PPiase), an enzyme

that degrades the pyrophosphate (PPi) byproduct of IVT and is

heuristically included in most IVT schemes, remains unclear. While

the mechanism of action and rate that PPiase catalyzes the

degradation of PPi is well studied, its effect on the IVT system is

poorly understood, and it remains unclear why PPi needs to be

removed from the IVT system. Owing to this lack of mechanistic

understanding, there remains disagreement as to whether PPiase is

even useful for increasing IVT yields at all. Previous researchers have

reported PPiase to both be one of the most important components in
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their reaction schemes (Akama et al., 2012; Rosa et al., 2022), or to

have no effect on yields (Kanwal et al., 2018; Samnuan et al., 2022).

One phenomenon of interest to mechanistic modeling of IVT is the

crystallization of the PPi byproduct in the form of magnesium

pyrophosphate (Mg PPi2 ). This process has been associated with

decreased yields, but no mechanistic model has been published that

can describe major trends in these data (Akama et al., 2012; Young

et al., 1997).

In parallel to research on the manufacturing of RNA, recent

efforts in the design of biological nanostructures for potential

therapeutic and diagnostic uses have incidentally increased under-

standing of IVT. It has become well understood that Mg PPi2

crystallization in the presence of DNA forms Mg PPi2 –DNA compo-

sites that remove DNA from solution (Kim et al., 2019, 2017). In

addition, Mg PPi2 –RNA composites have been observed and studied

in conditions where crystallization ofMg PPi2 occurs in the presence

of RNA (Baker et al., 2018; Shopsowitz et al., 2014). These DNA and

RNA nanostructures have primarily been investigated with the goal

of identifying synthesis–structure relationships for the engineering of

delivery or diagnostic platforms. However, the knowledge that

Mg PPi2 solid formation has this effect on both an essential reagent

and the product of the reaction has profound implications for the

engineering of IVT. This phenomenon has never been quantitatively

modeled as part of a larger system for understanding the kinetics

of IVT.

An additional unmet challenge in the mechanistic modeling of

IVT is to develop generalizable models for arbitrary target RNA

sequences. While predicting complex phenomena such as RNA

secondary structure remains a grand challenge, incorporating simple

characteristics like sequence length is a straightforward first step in

developing generally applicable and easily translatable IVT models.

Most previous work in applying mechanistic models to IVT data has

ignored the effect of sequence length in both model development

and data collection (Akama et al., 2012; van de Berg et al., 2021;

Young et al., 1997), and the most complete past work in incorporat-

ing sequence length into mechanistic models of IVT was restricted by

the limited data and fundamental understanding of the transcription

process available at the time (Arnold et al., 2001).

In this work, a mechanistic model is developed for IVT that

incorporates new quantitative descriptions of the crystallization of

magnesium pyrophosphate, the sequestration of DNA due to

crystal formation, and the degradation of PPi by PPiase. To

generalize this model across multiple target RNA sequences of

different lengths, our transcription rate law incorporates descrip-

tions of both initiation and elongation steps. This mechanistic

model is fit to a literature data set that is unique in the published

literature in measuring the dynamics of PPi concentration (Akama

et al., 2012). The inclusion of these new phenomena into the model

enables it to capture important trends in this data set. In addition,

the model quantitatively predicts the effect of adding PPiase to the

IVT system. Our model for the IVT rate accurately predicts the

effect of sequence length on the IVT rate measured for an

independent set of experiments (Rosa et al., 2022).

2 | REVIEW OF PAST MODELS OF IVT
REACTIONS

The primary process of IVT is the polymerization of RNA from four

nucleoside triphosphate (NTP) monomers, which has the overall

stoichiometry:

N N N N

N N

(ATP) + (UTP) + (CTP) + (GTP)

→ +( − 1)PPi + ( − 1)H,

A U C G

all all

(1)

where

N N N N N= + + +all A U C G (2)

and NA , NU, NC, and NG are the numbers of adenosine triphosphate,

uridine triphosphate, cytidine triphosphate, guanosine triphosphate

(ATP, UTP, CTP, and GTP) monomers incorporated into each RNA

sequence. The reaction forms PPi and proton (H) byproducts. A typical

IVT scheme requires a linearized template DNA of the target sequence,

NTPs, T7 RNA polymerase (T7 RNAP), and a magnesium salt in an

aqueous buffered reaction at 37°C and a pH around 7.5–8 (Beckert &

Masquida, 2011). In addition, many IVT reaction schemes include PPiase,

surfactants, spermadine, and dithiothreitol. However, past mechanistic

models of IVT have only focused on modeling the concentrations and

effects of NTPs, T7 RNAP, and Mg, and there is little to no public data

describing the effect on IVT by the latter set of components.

In addition to the transcription reaction, past mechanistic models

for IVT have included a number of secondary processes based on

experimental observations and first principles. First, a network of

equilibrium reactions between free species concentrations and

complexes such as MgNTPs are described using a series of algebraic

relations (Kern & Davis, 1997). In addition, past mechanistic models

have included additional kinetic phenomena, including Mg2PPi

crystallization, RNA degradation, and T7 RNAP degradation (Akama

et al., 2012; van de Berg et al., 2021; Young et al., 1997). While the

latter two of these phenomena were introduced to help conform IVT

models to individual data sets and are not directly observed in the

context of IVT, Mg2PPi crystallization is a confirmed phenomenon

that is easily reproduced owing to the visibility of solid formation.

Past mechanistic models have focused on isolated operating

regimes and design spaces of the IVT reaction due to the diversity of

goals involved. The first mechanistic model for describing trajectories

of solution concentrations in the IVT reaction was primarily focused

on empirically modeling experimental data (Young et al., 1997). This

work uniquely focused on modeling the presence of aborts, which are

short transcription sequences that do not match the desired full

sequence. A later work (Arnold et al., 2001) developed a mechanistic

model of IVT with the goal of deriving rate expressions from the first

principles of the known biochemistry of IVT. This work is unique in

quantitatively including initiation, elongation, and termination of the

RNA polymerization process into an IVT mechanistic model, and in

including quantitative descriptions of the effect of DNA concentra-

tion on IVT rate. Another study (Akama et al., 2012) developed a

mechanistic model to describe IVT in tandem with Mg PPi2
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crystallization. A recent study (van de Berg et al., 2021) built on two

past models (Akama et al., 2012; Young et al., 1997) to fit a data set

collected for a range of operating conditions.

The most comprehensive published data set on Mg PPi2

crystallization in IVT is by Akama et al. (2012), which is referred to

as the Akama data set in this work. This data set includes the temporal

evolution of both RNA and PPi concentrations, which is unique

among published data sets. Despite the high quality and relevance of

the Akama data set, no publications (not even Akama et al.) have fit

these temporal reaction trajectories to a mechanistic model using the

statistical techniques of parameter estimation. Our mechanistic

model, which is described in Section 3, is fit to the Akama data set.

3 | MATERIALS AND METHODS

3.1 | Mechanistic model formulation

Our mechanistic model uses a set of differential equations:

d

dt
V

[DNA]
= − ,sequestration (3)

d

dt
V

[RNA]
= ,tr (4)

d

dt
N V V V

[PPi]
= ( − 1) − − ,

tot
all tr solid PPiase (5)

d

dt
N V

[ATP]
= − ,

tot
A tr (6)

d

dt
N V

[UTP]
= − ,

tot
U tr (7)

d

dt
N V

[CTP]
= − ,

tot
C tr (8)

d

dt
N V

[GTP]
= − ,

tot
G tr (9)

d

dt
V

[Mg]
= −2 ,

tot
solid (10)

d

dt
V

[Nuc]
= ,nuc (11)

d

dt
V

[Pi]
= 2 ,

tot
PPiase (12)

which track the temporal evolution of 10 state variables representing

the total concentration of species in the reaction: DNA, RNA, PPi,

ATP, UTP, CTP, GTP, Mg, phosphate (Pi), and Mg PPi2 nuclei

(Figure 1). The model contains five kinetic processes: the transcrip-

tion reaction (Vtr), nucleation and growth of Mg PPi2 crystals (Vnuc,

Vsolid), agglomeration ofMg PPi2 nuclei and DNA (Vsequestration), and the

degradation of PPi by PPiase (VPPiase).

The process of transcription was modeled using a quasisteady‐

state assumption as the time constants associated with the

transcription of a single transcript (3–30 s) are substantially lower

than the time constant of substrate consumption in the data used in

this work (0.25–0.5 h) (Koh et al., 2018; Tang et al., 2011). The

transcription rate was modeled as a process of reversible binding of

T7 RNAP (P) and DNA promoter (DNA), coupled with an irreversible

initiation step and an elongation step dependent on the number

of each base in the sequence (SI Section 1). The overall rate of

transcription is equivalent to the rate of chain initiation, which is

modeled as first order in the concentration of polymerase–DNA

initiation complex ( ⋅P DNA)

⋅V k= [P DNA],tr i (13)

where ki is an initiation rate constant. In addition to initiation, an

elongation step is required for the formation of RNA. Without loss of

generality, the effective rate constant for an elongating RNAP to

incorporate an ATP is given as

( )
k

k

K
K

=
[MgATP]

1 + + [MgATP]

[Mg]

+ [Mg]
.

K

A
e

1
[MgPPi] 2

i,PPi

(14)

This formulation is based on a dual Michaelis–Menten structure

that has proved useful in previous work (Akama et al., 2012) and

includes a term previously used in the literature describing the

competitive inhibition of nucleoside addition by PPi (Arnold

et al., 2001). Using a quasisteady assumption, the concentration of

initiation complex is given as (SI Section 1)

F IGURE 1 Major species in the IVT reaction model. The
elongation of mRNA chains produces pyrophosphate (PPi)
byproducts. This byproduct can complex with magnesium to form
solid crystals, which sequester DNA, inhibiting transcription. The
pyrophosphatase enzyme inhibits the formation of crystals by
decreasing the free concentration of PPi. IVT, in vitro transcription;
mRNA, messenger RNA.
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⋅

α K

α K α

α
[P DNA] =

[P] + [DNA] +

− ([P] + [DNA] + ) − 4 [P][DNA]

2
,

MD

MD
2

(15)

where

( )α k K=1 + + + + , = ,
N

k

N

k

N

k

N

k

k k

ki MD
+A

A

U

U

C

C

G

G

i off

on
(16)

and kon and koff are rate constants for T7 RNAP and the DNA

promoter binding and unbinding, respectively (SI Section 2). Whereas

Akama et al. (2012) modeled the rate ofMg PPi2 solid formation using

empirical induction time models, we use classical nucleation theory

(Myerson et al., 2019):













( )V
k S

S

ˆ =
ˆ exp for > 1,

0 for ≤ 1,

B

S
nuc

nuc
− ˆ

ln2 (17)

where S is the supersaturation,

S = ,
[Mg PPi]

[Mg PPi]
2

2 eq
(18)

and B̂ and k̂nuc are the dimensionless free energy barrier to nucleation

and the nucleation rate constant, respectively. The total rate of a

solid formation of PPi (in mol L−1 h−1) is modeled in keeping with

previous work as (Peng et al., 2015)









V

k S S

S
ˆ =

ˆ [Nuc]^ ln for > 1,

0 for ≤ 1,
solid

g (19)

where k̂g is a rate constant governing the growth of nuclei as a

function of nuclei concentration, [Nuc]. The number of model

parameters can be reduced, by some algebraic manipulation (see SI

Section 3), to give













( )V
S

S
=

exp for > 1,

0 for ≤ 1,

B

S
nuc

−

ln2 (20)









V
k S S

S
=

[Nuc]ln for > 1,

0 for ≤ 1,
solid

growth
(21)

where kgrowth and B are the fitted parameters and [Nuc] is the rate‐

normalized concentration of nuclei. In addition, based on qualitative

work demonstrating the agglomeration ofMg PPi2 crystals and DNA

(Kim et al., 2019), a term was included to describe the rate of DNA

sequestration in the solid phase:

V k= [DNA][Nuc],sequestration d (22)

which hypothesizes that the rate is first order in both DNA

concentration and rate‐normalized nuclei concentration with a rate

constant kd. Past work has qualitatively shown that a similar

phenomenon takes place in sequestering RNA (Shopsowitz

et al., 2014). However, the experimental procedure used by Akama

et al. (2012) redissolved any solid before measuring RNA concentra-

tions, meaning that any RNA sequestration cannot be observed from

the Akama data set.

Enzymatic degradation of PPi is modeled by

V k
K

= [PPiase]
[MgPPi]

[MgPPi] +
,PPiase PPiase

M,PPiase
(23)

with the rate law and parameters from a kinetic study of PPiase (Chao

et al., 2006), where [PPiase] is in units of volume‐based enzyme

activity (UμL−1).

The above rates are dependent on the concentration of

complexes, such as MgATP andMg PPi2 . The concentrations of these

complexes over time are modeled by a set of algebraic equations that

describe known equilibrium relations and material balances of the

system. In this work, it is assumed that the equilibrium constants

associated with all NTPs are the same, and NTPs are treated as a

lumped state for the purpose of thermodynamic calculations, defining

a total NTP concentration,

[NTP] = [ATP] + [UTP] + [CTP] + [GTP] .tot tot tot tot tot (24)

The material balances for the ionic species are

[Mg] = [Mg] + [MgPPi] + [HMgPPi] + [MgNTP]

+ 2[Mg NTP]

+2[Mg PPi] + [HMgNTP] + [H MgPPi] + [MgPi],

tot

2

2 2

(25)

[NTP] = [NTP] + [HNTP] + [HMgNTP] + [MgNTP]

+ [Mg NTP],

tot

2

(26)

[PPi] = [PPi] + [MgPPi] + [Mg PPi] + [HPPi] + [HMgPPi]

+ [H PPi] + [H MgPPi],

tot 2

2 2

(27)

[Buffer] = [Buffer] + [HBuffer],tot (28)

[Pi] = [Pi] + [MgPi],tot (29)

where the complex concentrations are defined by the equilibrium

relations

K[HNTP] = [H][NTP] ,HNTP (30)

K[HMgNTP] = [HNTP][Mg] ,HMgNTP (31)

K[HPPi] = [H][PPi] ,HPPi (32)

K[HMgPPi] = [HPPi][Mg] ,HMgPPi (33)

K[H PPi] = [HPPi][H] ,2 H PPi2 (34)

K[H MgPPi] = [H PPi][Mg] ,2 2 H MgPPi2 (35)

K[HBuffer] = [H][Buffer] ,Buffer (36)
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K[MgNTP] = [Mg][NTP] ,MgNTP (37)

K[Mg NTP] = [MgNTP][Mg] ,2 Mg NTP2 (38)

K[MgPPi] = [Mg][PPi] ,MgPPi (39)

K[Mg PPi] = [MgPPi][Mg] ,2 Mg PPi2 (40)

K[MgPi] = [Mg][Pi] .MgPi (41)

Finally, the proton concentration is determined by a charge

balance. While all species in the reaction contribute to the charge

balance in theory, limited reporting of the exact counterions used in

reaction feedstocks makes exact accounting of charges infeasible.

The buffering salts are approximated to be the primary components.

[H] + [HBuffer] = [OH] + [Cl], (42)

where

[OH] =
10

[H]

−14

(43)

and [Cl] is the initial concentration of Cl added via the HCl–Tris buffer

used for the reaction (SI Section 11). For calculation of transcription

kinetics, without loss of generality, the concentration of [MgATP] is

calculated as

[MgATP] = [MgNTP]
[ATP]

[NTP]
.

tot

tot
(44)

As for all first‐principles models of complex reactions, some

assumptions and simplifications are made: (1) The elongation rate

law (14) ignores the effect of noncoding and coding sequence

identity. (2) The transcription rate model ignores interactions

between RNAP molecules and pausing of transcription. (3)

Product quality variables, such as the presence of aborts and

double‐stranded RNA, are not considered in this work, as the

literature data describing these byproducts are sparse. (4)

Degradation of RNA and T7 RNAP are not considered as those

effects were not essential for capturing the dynamics of the

Akama data set. (5) The Michaelis–Menten description of PPiase

action is a simplification of a more sophisticated network of

reversible and irreversible reactions (Halonen et al., 2002;

Tammenkoski et al., 2007). In addition, the rate law used in this

work has only been shown for PPiase from Helicobacter pylori,

which is not commonly used in IVT (Chao et al., 2006). However,

as the PPi concentrations in the Akama data are relatively high,

the most important part of this rate law is the maximum rate,

which is quantitatively well understood and captured by such a

simple model. (6) The nucleation‐growth model does not take into

account the effects of size heterogeneity of Mg PPi2 crystals and

the contribution to total solid formation of the nuclei formation

step. (7) Crystallization of magnesium hydrogen phosphate

(MgHPi), which has been postulated as an additional process in

the IVT system (Kim et al., 2019), is not considered.

3.2 | Computational methods

Model evaluation and parameter optimization are performed in the

Julia language. The set of equations in the preceding section is

combined into a system of differential algebraic equations that are

solved forward in time using the high‐order integrators available in

the DifferentialEquations.jl package. Experimental measurements are

assumed to have additive, uncorrelated measurement errors with a

normal distribution of zero mean and diagonal measurement error

covariance matrix Vy . Parameter estimation is performed in log10

space, to search the large numerical space and to best represent the

prior distribution of parameters, where the vector k represents the

log10 of the parameters. The prior distribution for k is assumed to

follow a normal distribution with mean μ and covariance Vμ, which is

equivalent to assuming a log‐normal distribution of parameters.

MAP estimation of the vector k was carried out:

⊤ ⊤y u k V k y u k k μ V k μmin ( − ( )) ( )( − ( )) + ( − ) ( − ),
k

y μ
−1 −1 (45)

where y is the vector containing all of the experimental data used for

estimating parameters and u k( ) is the vector of corresponding model

outputs as a function of the log10 parameter vector k . The error

covariance matrix V
*k
of the best‐fit estimate k* is approximated by

(Beck & Arnold, 1977)

⊤( )k k V S V S Vcov( * − ) = ≈ + ,k y μtrue *
−1

−1
(46)

where ktrue denotes the true log10 of the parameters and S is the

sensitivity of the model outputs with respect to the vector k .

Additional details on the parameter estimation strategy can be found

in SI Section 5.

Local gradient‐based optimization is carried out with

L‐BFGS optimization using the ForwardDiff.jl and NLopt.jl packages

in Julia to compute model output sensitivities to parameters and use

those sensitivities in gradient‐based optimizers, respectively (Liu &

Nocedal, 1989). Multistart optimization using 4000 random starting

points is performed to search for a global optimum (Martí, 2003).

Best‐fit parameter estimates in k* are given in Table 1, and the

parameter error covariance matrix V
*k
is given in SI Section 10.

4 | RESULTS

4.1 | Fitting model to calibration data

The batch IVT reaction model is fit to the Akama data set, which

consists of three parts (Akama et al., 2012). The first, and primary,

source of data is a set of temporal trajectories of RNA and PPi

concentrations for 13 different sets of Mg, NTP, and T7 RNAP input

concentrations, each recorded at 9 timepoints (Figure 2). In addition,

a set of data depicting the initial rate of RNA synthesis for 20

different sets of initial Mg and NTP concentrations was collected

STOVER ET AL. | 5
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(Figure 3a). Finally, Akama et al. (2012) conducted a set of

experiments solely to assess the solubility of magnesium in the

presence of NTP and PPi in the absence of transcription (Figure 3b).

This data set contains 50 different sets of initial NTP and PPi inputs.

The PPiase enzyme is not present in any of the calibration data used

in this work.

The model features 24 parameters, which are fixed based on

literature data, estimated from the calibration data using a Bayesian

prior from the literature, or estimated from the calibration data

without a prior (SI Section 5). The model demonstrates an ability to

describe the trends of the calibration data set. PPi, a byproduct of

transcription, initially grows rapidly as the transcription reaction

progresses, but reaches a peak in concentration after which the PPi

concentration decays rapidly due to competing Mg PPi2 solid

formation (Figure 2a). Mg PPi2 solid formation is prevented in cases

of high NTP and low Mg concentration (Figure 2b,c). In cases of solid

formation, the reaction halts before reaching full conversion of NTPs

(Figure 2d–f). At low NTP concentrations, increasing NTP concentra-

tion increases initial transcription rates. However, at higher NTP

concentrations, this effect reverses as the addition of NTP decreases

free Mg concentrations (Figure 3a). When small amounts of PPi (less

than one equivalent of Mg) are added to aqueous Mg in the absence

of the transcription reaction, Mg PPi2 solid formation decreases the

concentration of Mg in solution after 24 h (Figure 3b). However,

greater PPi input up to two equivalents of Mg decreases the amount

of solid precipitate formed as the system is pushed toward the

TABLE 1 Model parameters.

Parameter Units Process Prior value Value after fitting

ki h−1 Transcription initiation prior 102.97±0.6 (Koh et al., 2018) 103.61±0.06

ke h−1 Transcription elongation prior 105.72±0.3 (Tang et al., 2011) 105.20±0.11

koff h−1 T7 RNAP–DNA binding prior 103.64±0.5 (Koh et al., 2018) 103.74±0.43

kon h nM−1 −1 T7 RNAP–DNA binding prior 102.31±0.1 (Koh et al., 2018) 102.30±0.10

K1 M Transcription MgNTP dependence – 10−3.59±0.18

K2 M Transcription Mg dependence – 10−3.59±0.20

Ki,PPi M Transcription PPi inhibition prior 10−3.70±0.6 (Arnold et al., 2001) 10−4.38±0.17

kgrowth moles h−1 Mg PPi2 solid growth – 100.59±0.30

B arb. unit Mg PPi2 solid growth prior 101.13±0.2 (Akama et al., 2012) 101.65±0.09

kd h M−1 −1 DNA‐Mg PPi2 agglomeration – 104.99±0.34

KHNTP M−1 Ion equilibrium prior 106.91±1.16 106.91±0.04

KHMgNTP M−1 Ion equilibrium prior 102.08±1.16 102.08±0.10

KHPPi M−1 Ion equilibrium prior 109.02±1.16 109.02±0.10

KHMgPPi M−1 Ion equilibrium prior 103.32±1.16 103.32±0.10

KH PPi2
M−1 Ion equilibrium prior 106.26±1.16 106.26±0.20

KH MgPPi2
M−1 Ion equilibrium prior 102.11±1.16 102.11±0.20

KMgNTP M−1 Ion equilibrium prior 104.54±1.16 104.10±0.14

KMg NTP2 M−1 Ion equilibrium prior 101.77±1.16 101.87±0.29

KMgPPi M−1 Ion equilibrium prior 104.80±1.16 105.16±0.15

KMg PPi2
M−1 Ion equilibrium prior 102.57±1.16 103.99±0.11

KMgPi M−1 Ion equilibrium 101.88 101.88

Mg PPi2 eq M Ion equilibrium prior 10−4.85±2 (Akama et al., 2012) 10−3.89±0.07

kPPiase Mh (U∕μL)−1 −1 Degradation of PPi 60 (SI Section 7) 60

KM,PPiase M Degradation of PPi 2.14 × 10−4 (Chao et al., 2006) 2.14 × 10−4

Note: Strategy and sources for generating prior values of equilibrium constants are discussed in SI Section 6. Error on parameter priors represents a 95%

confidence interval using standard deviation estimated from the literature. Error on parameter posteriors represents the 95% pointwise confidence
intervals as approximated by drawing samples from the probability distribution defined by the parameter error covariance matrix. The unit U represents
enzyme activity units, discussed in SI section 7.

Abbreviations: NTP, nucleoside triphosphate; PPi, pyrophosphate; RNAP, RNA polymerase.
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solubleMgPPi complex. The magnitude of precipitation is decreased

upon the addition of NTP.

4.2 | Predicting effect of PPiase on the IVT system

The above calibration data are for experiments that did not include

PPiase. In addition to these data, Akama et al. (2012) generated a

small data set describing the effect of PPiase on reaction yields,

which is used for model validation in this work (Figure 4). Akama and

coworkers did not report the quantity of PPiase added but showed

that when PPiase was used, the concentration of PPi was

indistinguishable from zero over the course of the reaction.

Even though a new species is added to the reaction that is not

present in the calibration data set, it is possible to use these data to

validate the model as parameters describing the kinetics of PPiase

activity are considered to be fixed from the literature (Table 1), and

because the excess use of PPiase in this context renders the exact

kinetics parameters of PPiase unimportant. PPiase addition was set to

an excess value of 1 UμL−1 in the model to predict these results. Our

model predictions for the effect of PPiase on the IVT reaction are

within the experimental error bars (Figure 4).

4.3 | Predicting effect of sequence length

Rosa et al. (2022) collected trajectories of IVT yields for a set of three

DNA constructs varying in length between 1195 and 5299

nucleotides (Figure 5), with excess (4 UmL−1) PPi in the reaction.

Our model is able to predict the dependency of the transcription rate

on sequence length. This data set was not used in fitting the model

parameters.

(a) (b) (c)

(d) (e) (f)

F IGURE 2 Model fitting results compared with fitting data set of dynamic concentration trajectories. Temporal trajectories of PPi (a–c) and
RNA (d–f) concentration as a function of changing T7 RNA polymerase (a, d), NTP (b, e), and Mg (c, f) input concentrations. Purple dashed lines
represent maximum possible mRNA yield based on stoicheometry (not shown in plot E as changing NTP input results in a range of maximum
yields). Shaded areas about each model prediction are the 95% prediction interval (SI Section 4). NTP, nucleoside triphosphate; PPi,
pyrophosphate; RNAP, RNA polymerase.
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5 | DISCUSSION

The primary result of this work is that adding a nucleation‐growth

model for Mg PPi2 crystallization, as well as a quantitative term

describing the first‐order agglomeration of DNA andMg PPi2 nuclei, is

a sufficient addition to past models to describe trends in experi-

mental data. Our modeling of the additional phenomena is consistent

with the qualitatively understood physics of the IVT system. This

mechanism can additionally predict the effect of adding the PPiase

enzyme on IVT yields, and is the first mechanistic model to do so.

Validating this model on recent data demonstrates an ability to

predict IVT rates across a range of input conditions and sequence

lengths.

This work identifies Mg PPi2 solid formation as an important

failure mode that is highly nonlinear, and the value of our model is its

ability to predict these nonlinear effects (Figure 2). As such, our

model is a suitable foundation for the development of model‐based

optimal design and control strategies. In addition, the incorporation

(a) (b)

F IGURE 3 Model fitting results compared with a fitting data set of initial reaction rates andMg PPi2 solubility. Initial transcription rates as a
function of NTP and Mg input concentrations represented by RNA yields after 5 min of reaction (a). Magnesium (initially 4 mM) remaining in
solution after 24 h as a function of input PPi and NTP input concentrations in the absence of the transcription reaction (b). Shaded areas about
each model prediction are the 95% prediction interval (SI Section 4). NTP, nucleoside triphosphate; PPi, pyrophosphate.

F IGURE 4 Model validation: effect of pyrophosphatase (PPiase).
Model predictions are compared with the experimental results of
Akama et al. (2012), showing the yields of otherwise identical
reaction conditions with and without PPiase. Shaded areas about the
model predictions are 95% prediction interval (SI Section 4). The error
bar on each experimental data point is the 95% confidence interval
based on the t‐distribution of points taken in triplicate. PPi,
pyrophosphate.

F IGURE 5 Representing various combinations of the extended
green fluorescent protien (eGFP), SARS‐CoV‐2 spike protein receptor
binding domain (RBD), and CAS9 Model validation: IVT yields of
multiple DNA sequences of varying lengths (Rosa et al., 2022).
Shaded areas about the model predictions are 95% prediction
intervals (SI Section 4). The error bars on the data points are 95%
confidence intervals based on the standard deviation estimated from
the entire data set of Rosa et al. (2022). IVT, in vitro transcription.
DNA sequences used in Rosa et al. are combinations of the extended
green fluorescent protien (eGFP), SARS‐CoV‐2 spike protein receptor
binding domain (RBD), and CAS9 genes.
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of sequence length into model predictions is a first step for the

development of models that are easily adaptable to arbitrary RNA

sequences.

5.1 | Mg PPi2 solid formation is a crucial element
for describing IVT

Past experimental studies have shown that DNA agglomerates

with Mg PPi2 nuclei during IVT, removing DNA from solution

(Wang et al., 2019). The inclusion in the model of terms describing

this sequestration of DNA (22) is able to describe trends in the

calibration data, especially the early halting of reactions that do

not go to full conversion (Figure 2). When paired with ion

equilibrium laws describing the known thermodynamics of the

system, this model is able to describe the conditions at which solid

formation, and therefore reaction halting, occurs. At high NTP

concentrations, NTP competes with PPi for the Mg ion, which

leads to decreasedMg PPi2 solution concentrations and decreased

solid formation (Figure 3b). This in turn prevents early halting of

the reaction (Figure 2b,e). By the same mechanism, solid

formation and reaction halting are prevented at low Mg

concentrations (Figure 2c,f). The model also has the ability to

describe the competition between the irreversible kinetic pro-

cesses of transcription and DNA sequestration. Increased T7

RNAP concentration increases the initial rate of reaction

(Figure 2d); while this causes solid formation to initiate earlier

(Figure 2a), it ultimately leads to higher yields.

This model clears up some misconceptions and misprescriptions

in the academic literature. Past studies in the mechanistic modeling of

IVT have noted that the onset of crystallization is associated with a

decrease or complete stoppage in transcription rates (Akama

et al., 2012; Kern & Davis, 1997), but have attributed this stoppage

to the onset of Mg PPi2 crystallization causing a decrease in

magnesium concentration in the solution. Our analysis shows that

this pathway cannot describe trends in data on its own (SI Section 9).

Our model uses an entirely different explanatory pathway to describe

this phenomenon.

While this development may seem like an academic distinc-

tion, the true cause of early halting is highly relevant for IVT

process development and control. The general message from past

work that has been transmitted to practitioners is that because

Mg PPi2 solid formation decreases the solution concentration of

Mg, reactions should be designed with a high concentration of Mg

to preempt this effect. The literature contains many reports in the

last 3 years of academic researchers justifying IVT reaction

schemes and explaining results based on this idea (Pregeljc

et al., 2023; Rosa et al., 2022; Samnuan et al., 2022). While the

higher‐order effects of magnesium on the IVT system remain

poorly understood, one conclusion from this work is that the

decrease in free Mg concentration due to Mg PPi2 solid formation

cannot solely describe the early stopping of IVT as measured by

Akama et al. (2012).

5.1.1 | Model describes mechanism of action of
PPiase

The PPiase enzyme, which degrades PPi, is commonly added to IVT

reaction schemes on a heuristic basis. The data set used to fit our

model (Figure 2) did not include the use of the PPiase enzyme. Data

from Akama et al. (2012) describing the effect of adding PPiase on

IVT yields was used for model validation (Figure 4). When PPiase was

added to the reaction, PPi was degraded to phosphate, preventing

solid formation and sequestration of DNA as well as competitive

inhibition of the transcription process. The quantitative predictions of

the model that PPiase extends the length of the reaction without

changing initial rates are consistent with the observed data (Figure 4).

As described in Section 4.2, the addition of PPiase to an IVT

reaction system can lead to increases in reaction yield, depending on

system inputs. However, despite the widespread adoption of PPiase

based on heuristic observations, researchers provide conflicting

explanations for the importance of both Mg PPi2 crystallization and

PPiase to the IVT system, and many “rational” attempts at IVT

optimization start by removing PPiase (Kanwal et al., 2018; Samnuan

et al., 2022). We hypothesize that a key reason for disagreement in

the literature is due to the input dependence of the crystallization

process.Mg PPi2 is a key yield‐limiting process, but only in a select set

of regimes. Experiments performed in regimes in which crystallization

does not occur will report yield to be insensitive to PPiase input. The

model developed in this work represents a first step toward a unified

understanding of the behavior of regimes sensitive and insensitive to

PPiase.

5.2 | Mechanistic model predicts effect of
sequence length on transcription rates

In addition to the small Akama data set describing the effect of

PPiase (Figure 4), our model was validated on data from Rosa et al.

(2022), which modulated sequence length as an independent

variable. This data set is outside of the input and output range of

the calibration data set used in this work (Table 2). Considering that it

is heuristically understood amongst practitioners that the parameters

of the IVT reaction are sequence dependent as well as the

uncertainty associated with these data, we do not argue that our

model is correct by virtue of correctly predicting the reaction rates of

these experiments. These results should primarily be viewed as an

evaluation of the model's ability to predict the general trend of the

effect of sequence length on transcription rates.

These predictions may seem trivial, in the sense that they predict

that sequence length has roughly no effect on the mass‐based

transcription rate of the IVT system. However, most previous models

of IVT rely on the assumption of initiation–limitation and would

predict that the initial rates of the three curves in Figure 5 should be

identical (Akama et al., 2012; van de Berg et al., 2021; Young

et al., 1997). The only past work on developing expressions for the

transcription rate that attempts to model the effect of sequence
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length was carried out using a relative paucity of data and concluded

that the IVT reaction is primarily initiation‐limited (Arnold et al., 2001).

As such, the formulation presented in this work and demonstrated in

Figure 5 is a break with past modeling conventions and a framework

for the future development of IVT models.

5.3 | Limitations and directions for model
improvement

The mechanism in our model that is most poorly understood in the

literature is the physics by whichMg PPi2 solid formation inhibits the

forward progress of the reaction. The hypothesis presented in this

work—that Mg PPi2 nuclei agglomerate with DNA and decrease

solution DNA concentration—is the best available explanatory

mechanism based on findings of past qualitative work (Kim

et al., 2019) and the consistency of quantitative predictions with

data. However, the mechanistic understanding does not currently

exist to rule out interactions of Mg PPi2 nuclei and other biomole-

cules, such as T7 RNAP, as an alternative cause. In addition, the two‐

step hypothesis presented in this work—that crystals nucleate and

subsequently agglomerate with DNA—is currently indistinguishable

from a mechanism by which crystals directly nucleate on DNA. In

addition, a more developed understanding of how solution conditions

affect the inhibition process is needed to accurately extend these

results to different regimes. In the Akama data set, increasing

magnesium concentrations at already high Mg concentrations (from 8

to 20mM) has a nonnegligible effect on final yields without affecting

the initial rate (Figure 2c). The model does not have the ability to

describe this phenomenon, which is possibly due to Mg modulating

the rate of sequestration. While this behavior is a limited component

of the calibration data used in this work, capturing that effect would

be needed for describing regimes of high Mg concentration that

experienceMg PPi2 solid formation.

RNAP and DNA templates are two of the most costly

components required for the IVT reaction, and understanding the

highly nonlinear interactions of these components is essential for the

development of a generalizable model. For example, the elongation

of RNAP particles, approximated as a linear process in this work, is

known to feature pauses (Janissen et al., 2022). In addition, exclusion

between RNAP particles can decrease transcription rates due to

crowding and is commonly described using totally asymmetric simple

exclusion (TASEP) models (Wang et al., 2014). The effect of

transcriptional pausing can amplify the effects of particle exclusion.

Limitations due to polymerase exclusion should have an effect on the

regime of high RNAP and low DNA concentrations.

6 | CONCLUSION

Process development of the IVT reaction continues to rely on the

limited capabilities of heuristics‐based design‐of‐experiments and

data‐driven modeling methods. Mechanistic models for IVT stand to

provide rational and interpretable predictions of RNA yields outside

of previously tested design spaces. In this work, we synthesized the

first mechanistic model to feature an interpretable description of IVT

alongside magnesium pyrophosphate crystallization, DNA‐Mg PPi2

agglomeration, and PPiase enzyme activity. This model successfully

describes trends observed in IVT experimental data, many of which

lead to critically low RNA yields for previously unexplained reasons.

Given that the IVT reaction is a foundational component for the

manufacturing of a diverse and growing set of modern therapeutics,

this model has the potential to provide insights for a variety of

biomanufacturing systems.
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TABLE 2 Ranges of inputs and outputs in data explored in this work.

Author
T7
RNAP (nM)

DNA
(nM) NTP (mM) Mg (mM)

PPiase
(UmL−1)

Sequence
length (nt)

RNA
output (μM)

RNA
output (g L−1)

Akama et al. (2012) 50–100 7.4 3.2–12.8 8–20 0 868 2–3.5 0.65–1.3

Rosa et al. (2022) 124 90 31 50 4 1195–5299 5–20 8–14

Note: The Akama data set was used for model fitting (Figure 2), with the exception of PPiase addition data that was used for model validation (Figure 4).

The Rosa data (Figure 5) are used for model validation.
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