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A B S T R A C T

The in vitro transcription reaction (IVT) is of growing importance for the manufacture of RNA vaccines and 
therapeutics. While the kinetics of the microscopic steps of this reaction (promoter binding, initiation, and 
elongation) are well studied, the rate law of overall RNA synthesis that emerges from this system is unclear. In 
this work, we show that a model that incorporates both initiation and elongation steps is essential for describing 
trends in IVT kinetics in conditions relevant to RNA manufacturing. In contrast to previous reports, we find that 
the IVT reaction can be either initiation- or elongation-limited depending on solution conditions. This initiation- 
elongation model is also essential for describing the effect of salts, which disrupt polymerase-promoter binding, 
on transcription rates. Polymerase-polymerase interactions during elongation are incorporated into our modeling 
framework and found to have nonzero but unidentifiable effects on macroscopic transcription rates. Finally, we 
develop an extension of our modeling approach to quantitatively describe and experimentally evaluate RNA- and 
DNA-templated mechanisms for the formation of double-stranded RNA (dsRNA) impurities.

1. Introduction

The in vitro transcription (IVT) reaction for synthesis of RNA is a 
necessary step for the production of a growing number of vaccines and 
therapeutics. IVT is a cell-free biochemical reaction that requires a DNA 
template and a DNA-dependent RNA polymerase enzyme, most 
commonly T7 RNA polymerase. A kinetic law for the rate of RNA syn
thesis as a function of the concentrations of these catalysts can aid in 
design, optimization, and mechanistic understanding of the IVT process. 
However, a rate law for IVT in conditions relevant to RNA 
manufacturing has not been fully developed.

The elementary kinetic mechanisms that constitute IVT are well 
studied. Each of the promoter binding, initiation, promoter release, and 
elongation steps has been studied using a diverse and orthogonal set of 
tools, including thermodynamic measurements [1,2], kinetic modeling 
[3–6], structural analysis [7,8], and single-molecule experiments 
[9–11]. Despite this microscopic understanding, there is little research 
into the emergent macroscopic kinetics of systems in which these steps 
coexist. This knowledge gap is relevant in the context of manufacturing 
long RNA sequences (>1000 bp), such as mRNA and self-amplifying 
RNA (saRNA) vaccines.

The work of Arnold et al. [12] is the most complete past approach to 
modeling macroscopic transcription rates. Arnold et al. report that the 
estimated elongation rate constant is much greater than the estimated 
initiation rate constant and conclude that the IVT reaction is initiation 
limited for all industrially relevant sequence lengths. However, this 
work is incomplete and not representative of the IVT reaction in a bio
manufacturing context. As will be described in the results section, the 
kinetic model used by Arnold et al.is not appropriate for the synthesis of 
long RNA sequences. Secondly, this previous work estimated tran
scription and elongation rate constants using a poorly defined parameter 
estimation approach in which the number of fitted parameters nearly 
equaled the number of data points. It is well understood that this 
approach can be extremely sensitive to experimental noise or 
out-of-model effects. As a consequence, their estimated elongation rate 
constant (5.8×1071 /s

)
is not only far greater than orthogonal estimates 

from single-molecule studies (~1.7 × 102 1/s) [10], but is 103 times 
greater than the diffusion-limited rate constant, which implies that it is 
an aphysical artifact of errors in the parameter estimation process. These 
considerations are relevant for practitioners in the field of RNA 
manufacturing. For example, Boman et al. [13] rely on Arnold et al.’s 
conclusion of initiation limitation to estimate the effect of sequence 
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length on IVT rates for process development. A kinetic modeling 
approach that appropriately incorporates all steps of the transcription 
process can serve as a useful tool for several aspects of RNA 
manufacturing, including accelerating process development of new se
quences and designing dynamic models of IVT.

Beyond predicting the rates of product RNA formation, kinetic 
modeling can be a useful tool for understanding the formation of double- 
stranded RNA (dsRNA) impurities. Double-stranded RNA is a highly 
immunogenic byproduct of IVT which is costly to remove in downstream 
purification. Multiple mechanisms have been proposed to describe the 
formation of dsRNA, including RNA-templated 3’ addition [14] and 
DNA-templated synthesis of antisense RNA followed by hybridization 
[15]. While both of these mechanisms have been experimentally 
observed within the context of model systems, their usefulness for the 
quantitative process development of the IVT reaction is unclear and 
there are no publications on attempting to quantify the kinetic pre
dictions of these mechanisms.

In this work, we investigate a kinetic rate law that incorporates 
polymerase-promoter binding, initiation, and elongation steps from a 
first-principles standpoint. We show that this initiation-elongation 
model is necessary for describing the rate of transcription in regimes 
relevant to the manufacturing of mRNA. We demonstrate how the ki
netic parameters of this model can be estimated from a minimal set of 
experiments, which allows for a comparative analysis between different 
DNA sequences and serves as a guide for practitioners on trouble
shooting and understanding the application of IVT to novel sequences. 
We consider both the effect of polymerase-polymerase interactions and 
polymerase-DNA binding disruptions on the kinetic predictions of this 
model. Finally, we develop an extension of our modeling approach to 
quantitatively describe and experimentally evaluate RNA-templated and 
DNA-templated mechanisms for dsRNA formation.

2. Results

2.1. Analysis of initiation-elongation kinetic model

The structure of the initiation-elongation model used in this work is a 
variant of a model postulated (but not experimentally explored) in a past 
publication [16]. The IVT reaction involves a series of binding, initia
tion, and elongation kinetic steps. This reaction network was approxi
mated to operate in a quasi-steady state as the time associated with the 
synthesis of a single transcript as measured by single-molecule experi
ments (3–30 s) is substantially lower than the time constant of substrate 
consumption for the data in this work (0.25–0.5 h) [10,17]. In this 
model, polymerase (P) and the DNA promoter (DNAp) reversibly bind to 
form a complex (P⋅DNAp) that can undergo transcription initiation at a 
rate ki. Here, initiation is defined as the transition in which the poly
merase both begins translocation along the DNA promoter and dissoci
ates from the promoter region. The initiation process involves a number 
of sequential kinetic sub-steps [17]. For the purpose of developing a 
macroscopically identifiable model in the quasi-steady limit, we lump 
these steps as a single first-order kinetic process. After initiation, the 
polymerase translocates across the DNA sequence in an elongation state 
(PE). Similarly to initiation, the elongation of the RNA strand by a single 
base pair involves a number of sequential kinetic processes, which are 
repeated for each base pair in the sequence [4]. We lump these 
sequential kinetic processes as a single first-order kinetic process with an 
effective rate constant ke,tot. Initiation frees the DNA promoter to be 

further bound by incoming polymerase. Transcription termination was 
assumed to be instantaneous for the linearized DNA templates used in 
RNA manufacturing. In addition, this model neglects the formation of 
short sequences resulting from abortive transcription. Considering that 
these aborts comprise a negligible mass fraction of the IVT product of 
long transcripts, this abortion process can be considered part of the 
effective dissociation rate of the initiation complex, where koff below 
incorporates both polymerase-promoter disassociation and abortion. 
Schematically, the transcription process is represented as 

P + DNAp

kon

⇄

koff

P⋅DNApPE

ke,tot

→

-P

RNA. (1) 

While transcription in the low-volume environment of a cell is 
commonly modeled as a stochastic process [18], this reaction is modeled 
as a deterministic process in this work owing to the large number of RNA 
polymerase molecules in a macroscopic IVT reaction (>1012 for all ex
periments performed in this work). In addition, we assume that this 
reaction system is well-mixed. A consequence of describing the complex 
initiation and elongation processes, which involve and equilibrium 
process of NTP binding, is that these lumped initiation and elongation 
rate constants are dependent on solution conditions, notably tempera
ture, pH, nucleoside triphosphate (NTP), and Mg concentrations. Here 
we model the IVT reaction rate as a function of DNA and RNA poly
merase concentrations to serve as a framework for understanding the 
effects of other process variables. The rate of RNA synthesis is equivalent 
to the initiation rate, 

Rtr = ki
[
P⋅DNAp

]
, (2) 

which is dependent on the concentration of the initiation complex. This 
complex concentration is derived using a quasi-steady state approxi
mation (SI Section 1),  

where [P]tot and [DNA]tot are total polymerase and DNA concentrations 
and 

α = 1 +
ki

ke,tot
, KMD =

ki + koff

kon
. (4) 

This hypothesized model differs from the approach of Arnold et al. [12] 
in two key ways. Firstly, the removal of DNA promoter and RNA poly
merase at different points in the process allow for a single DNA chain to 
feature multiple bound elongating polymerase molecules. Secondly, no 
assumptions are made regarding the relative concentration of DNA and 
polymerase during derivation of the rate law, which allows the model to 
operate across a broader space of species concentrations. For α = 1, the 
proposed model converges to the structure of the rate law used by 
Martin and Coleman [19] in describing oligonucleotide transcription 
rates, which is based on an assumption that the effect of elongation is 
negligible. This rate law is referred to as an initiation-limited model in this 
work and is a special case of the presented initiation-elongation model.

The initiation-elongation model predicts that the limiting step de
pends on relative DNA and polymerase concentrations. In the regime 
where α[DNA]tot ≪ [P]tot, the limiting factor is the number of DNA 
promoter binding sites, and the overall rate converges to 

[
P⋅DNAp

]
=

[P]tot + α[DNA]tot + KMD −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

([P]tot + α[DNA]tot + KMD)
2
− 4α[P]tot[DNA]tot

√

2α ,
(3) 
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Rtr =
ki[DNA]tot[P]tot

[P]tot + KMD
. (5) 

In this limit, the predictions of the initiation-limited model and the 
initiation-elongation model converge. We refer to this limit as the initi
ation-limited regime. Conversely, in the regime where [P]tot ≪  α[DNA]tot, 
the rate law converges to 

Rtr =
(

k− 1
i + k− 1

e,tot

)− 1 [DNA]tot[P]tot

[DNA]tot +
KMD

α

, (6) 

in which the rate of transcription is limited by the combined timescale of 
initiation and elongation. Considering that for long (>1000 base pair) 
sequences, ke,tot < ki, we refer to this case as an elongation-limited regime.

2.2. Initiation-elongation model is necessary to describe IVT kinetic data

To validate the structure of the initiation-elongation model, the rate 
of transcription of a 2078 base pair DNA template encoding the firefly 
luciferase gene (Fluc) was measured as a function of DNA and T7 RNA 
polymerase concentrations (Fig. 1). Both the initiation-limited model 
(with parameters KMD and ki) and the initiation-elongation model (with 
parameters KMD, ki, and α) are fit to these data. As the solution con
centrations of DNA and T7 RNA polymerase used in these experiments 

are too high to give identifiable estimates for KMD, a Bayesian prior for 
KMD of 50 ± 25 nM was used based on previous measurements [3]. This 
was acceptable for the fitting process as the main goal of these experi
ments was to estimate ki and α. Bayesian information criterion analysis 
showed that the additional parameter of the initiation-elongation model 
provided a significant improvement in fitting over the initiation-limited 
model (SI Section 2.5). The initiation-elongation model (unlike the 
initiation-limited model) describes key trends in the data, including the 
linear relationship between RNA polymerase concentrations and reac
tion rate in the high-DNA regime and the linear relationship between 
DNA template concentration and reaction rate in the low-DNA regime. 
Uncertainty analysis indicates that the parameter estimates of the 
initiation-elongation model are practically identifiable and that the 
uncertainty region of ki and α are not highly correlated with uncertainty 
in KMD. This indicates that the exact choice for the prior value of KMD has 
a minor effect on the estimates of ki and α.

With the structure of the initiation-elongation model validated, a 
model-based design of experiments (MBDOE) approach using the D- 
optimal criterion was employed to choose experimental conditions that 
best identify the two key kinetic parameters (ki and α) of three more 
DNA sequences with differing DNA sequence length and initiation 
sequence: a dodecamer sequence matching the first 12 base pairs of the 
Fluc sequence and sequences coding for the COVID spike protein and 
EGFP protein (Table 1). MBDOE analysis indicated that two experiments 
corresponding to the initiation and elongation limited regimes were 
sufficient to practically identify the two parameters. When necessary to 
achieve greater parameter precision after one round of data collection, 
the MBDOE process was iterated. Table 1 shows the sequences used, 
their length, first three initiating base pairs, and their estimated kinetic 
parameters. An average per-base pair elongation rate constant is 
calculated as 

ke,bp = Nallke,tot (7) 

to aid in comparison between sequences.

2.3. Kinetic modeling indicates that polymerase-polymerase interactions 
and pausing during elongation have nonzero but unidentifiable effects on 
macroscopic reaction rates

The initiation-elongation model is a minimal approach to under
standing the kinetic trends of the IVT system and uses a number of ap
proximations. One key approximation is that all polymerase molecules 
in the elongation state advance with the same rate constant regardless of 
their position on the chain or the local density of polymerase molecules. 
This approximation is not valid in the case where polymerase molecules 
can hinder each other's progress along the DNA sequence, which has 
been observed in the context of T7RNA polymerase [20]. In addition, 
this polymerase-polymerase exclusion can be exacerbated by the 
pausing of polymerase during elongation [21,22]. The possibility of 
polymerase-polymerase interactions and pausing raises several ques
tions relevant for the engineering of the IVT system. In what regimes, if 
any, can these polymerase-polymerase interactions distort the pre
dictions of the initiation-elongation model presented above? In addition, 
can the extent of these interactions be assessed using macroscopic rate 
measurements?

To answer these questions, we developed a kinetic model that ex
tends the initiation-elongation model to represent elongation as a totally 
asymmetric simple exclusion process (TASEP). The model assumes that 
polymerase molecules elongate by unidirectional transitions between M 
L-nucleotide sized segments, where L is the estimated exclusion width of 
the polymerase molecule. Schematically, this model has the structure 

P + DNAp

kon

⇄

koff

P⋅DNAp

ki

⟶

− DNAp

P1⟶ P2 ⋅⋅⋅ PM ⟶

− P

RNA (8) 

Fig. 1. Transcription Kinetics of Fluc Sequence. 
Measured transcription rate as a function of T7 RNA polymerase and DNA 
concentrations with initiation-elongation model predictions after fitting. Other 
solution conditions are held constant as described in Methods section. Reaction 
rate is linear with respect to RNA polymerase in the regime of α[DNA]tot ≫  [P]tot 
(points in upper left of graph) and linear with respect to DNA concentrations in 
regime of α[DNA]tot ≪ [P]tot (lower right of graph). Error bars on data points 
represent estimated 1σ experimental error based on triplicate experiments. 
Shaded areas are 95 % prediction intervals of model based on estimated 
covariance matrix.
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where Pi represents a polymerase molecule on the ith segment. Exclusion 
between particles is represented by the form of the rate law describing 
translocation between segments. Past work has focused on developing 
and validating mean-field approximations for these rates that account 
for both polymerase-polymerase interactions and pausing of polymerase 
molecules during elongation [22]. Using these rate laws, we developed 
an approximate analytical expression to predict macroscopic reaction 
rates (SI Section 2). In the most general case including pausing and 
polymerase-polymerase interactions, the derived rate law is 

Rtr = ki
[
P⋅DNAp

] [DNA]tot −
β
[
P⋅DNAp

]

KMD − θ
[DNA]tot + γ

[
P⋅DNAp

]
(9) 

where the initiation complex 
[
P ⋅DNAp

]
is defined by  

with the composite parameters 

γ = ki
fτ2

1 + fτ, β =
Lk2

i
kekon

, θ =
koff

kon
, (11) 

where f and τ represent the frequency of pausing events and the time
scale of pauses, respectively, following the approach of Wang et al. [22] 
We refer to the model in this general case as the long pause (LP) model. 
Intuitively, the dimensionless parameter γ represents the relative 
importance of pausing to the transcription system, and setting γ to zero 
results in a simpler model that neglects the effect of pauses (which we 
call the short pause (SP) model). The parameter β represents the relative 
importance of polymerase-polymerase interactions on the system. 
Setting β to zero recovers the initiation-elongation model.

The complexity and number of parameters of the LP model raises a 
question of practical identifiability. If the transcription system truly 
behaved in accordance with equations (9) and (10), could it be distin
guished from the initiation-elongation model with macroscopic mea
surements? Can macroscopic measurements be used to identify the 
parameters γ and β? Bayesian information criterion analysis indicates 
that neither of the SP or LP models fit the kinetic data collected in this 
work better than the initiation-elongation model (SI Section 2.5). 
Moreover, the same is true for synthetic data generated by the SP and LP 
models in the case of reasonable estimates for microscopic parameters 
and experimental noise. In fitting this synthetic data, neither the SP nor 
LP model can identifiably recover estimates for all of their kinetic pa
rameters, resulting in highly correlated parameter confidence regions.

While the initiation-elongation model can describe the output of the 
more complicated LP and SP models, the resulting fitted kinetic pa
rameters do not match the microscopic ground truth values used to 

generate the data. This implies that the measured kinetic parameters in 
Table 1 may serve as effective parameters that do not perfectly reflect 
microscopic rates of initiation and elongation. The effective initiation 
rate constant estimated from data generated by the SP model is 
approximately 80–90 % of the ground truth value. In the case of data 
generated by the LP model, the estimated initiation rate constant is 
dependent on values of γ but can be significantly lower (SI Section 2.5). 
The estimated elongation rate constant is not distorted by more than 10 
% in either of these cases.

2.4. Initiation-elongation model describes sensitivity of transcription rates 
to salt addition

Past research has noted that the addition of salts, including the 
necessary magnesium cofactor, to the IVT system can decrease tran

scription rates by disrupting the binding between RNA polymerase and 
the DNA promoter [3,23]. The initiation-elongation model is a useful 
tool for quantitative understanding the effect of salt concentrations on 
transcription rates. Equations (5) and (6) show a non-obvious emergent 
result of the initiation-elongation model. While both initiation- and 
elongation-limited regimes can be described using a Michaelis-Menten 
structure, the effective Michaelis-Menten constant differs between the 
two by a factor of α. Intuitively, the elongation-limited regime is less 
sensitive than the initiation-limited regime to disruptions in 
polymerase-promoter binding.

In order to describe the effect of salt addition on overall transcription 
rates, a model for the effect of salt concentrations on KMD is required. In 
this work, we assume that the inhibitory effects of salts and other re
action components on polymerase-promoter binding are due to rapid 
processes that reach equilibrium much faster than the rates of elonga
tion, as opposed to longer-timescale processes that can inactivate DNA 
promoters during transcription in vivo [24]. The IVT system contains 
multiple salts, including NTPs, magnesium, buffers, and associated 
counterions. It has been shown that different salts affect transcription 
rates to different degrees [23]. While the literature on salt effects on 
protein-DNA binding is substantial [25], there is little published work on 
the practical problem of modeling this relationship in the context of 
mixed-salt systems relevant to IVT. We adapted a previously proposed 
approach that augments the predictions of counterion condensation 
(CC) theory with an effective salt concentration [26]: 

K =
koff

kon
= K0

(
[salt]

1 mole

)n

(12) 

where K0 represents the intrinsic binding strength of the DNA promoter, 
and [salt] is an effective salt concentration calculated as 

Table 1 
Transcription parameters of DNA sequences. Each sequence is characterized by its length and first three initiating nucleotides (init). Additional sequence information is 
shown in SI Section 7.

Length Init. Parameter

ki (s− 1) α ke,tot × 10− 2 (s− 1) ke,bp × 10− 9 (s− 1)

Fluc 2078 AGA 0.34 ± 0.03 9.9 ± 0.7 3.8 ± 0.2 7.8 ± 0.6
Fluc dodecamer 12 AGA 0.42 ± 0.08 0.7 ± 0.3 – –
COVID 4243 AGA 0.36 ± 0.04 20 ± 4 1.9 ± 0.3 8.1 ± 0.1
EGFP 942 GGG 0.78 ± 0.14 15 ± 3 5.6 ± 0.8 5.3 ± 0.8

αγ
([

P⋅DNAp
]

[DNA]tot

)3

+

(

α+
β

[DNA]tot
− γ

(
[P]tot

[DNA]tot
+

θ
[DNA]tot

+ α
))([

P⋅DNAp
]

[DNA]tot

)2

−

(
[P]tot

[DNA]tot
+α+

KMD

[DNA]tot
− γ

[P]tot

[DNA]tot

)([
P⋅DNAp

]

[DNA]tot

)

+
[P]tot

[DNA]tot
=0

(10) 
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[salt] =
∑Nion

i=1
ωion,i[ioni] (13) 

where ωion,i is a weighting factor specific to each cation and anion i in the 
IVT system (SI Section 3.2). While this relation was developed as an 
empirical extension of classical CC theory [27], we show that it emerges 
naturally from an extended treatment of CC theory that includes the 
presence of multiple salts (SI Section 3). While CC theory is a dramati
cally simplified rendering of the physics of ligand-DNA interactions that 
can be modeled with greater fidelity using computational techniques 
that incorporate biomolecule structure and diffuse ion binding [28,29], 
this relation describes key trends in experimental binding data of mixed 
salt systems and is useful in an engineering context. While this relation 
has previously been shown to represent trends in thermodynamic 
binding data [26], additional assumptions are required to extend it to 
describing KMD, which combines binding thermodynamics with the ki
netic processes of initiation and abortion. To adapt this thermodynamic 
relation to kinetic modeling, we assume that kon is constant at a value of 
5.67 × 10− 2 s− 1 nM− 1 [17]. While kon has been shown to be sensitive to 
salt [26], this approximation is valid in the high salt limit in which KMD 
is very large. Similarly, we assume here that salt concentrations do not 
affect the kinetics of initiation. One effect of these approximations is that 
the parameter K0 incorporates the kinetic effects of abortion (through 
the rate constant koff) and is thus best considered to be an empirical 
parameter that incorporates both thermodynamic and kinetic processes. 
According to CC theory, the constant n represents the number of cations 
displaced upon polymerase-DNA binding, a prediction which has been 
shown to correlate with experimental results [30]. Based on an 
approximate structural analysis of T7 RNA polymerase, we hypothesized 
that a reasonable estimate for n was 5.08. We validated this choice of n, 
fitting a single parameter K0, on published data of KMD as a function of 
sodium chloride addition (Fig. 2A) [3]. We find that this model suitably 
describes changes in KMD in the high-salt limit.

To test the prediction of the initiation-elongation model that the salt 
sensitivity of the IVT reaction differs between the initiation and elon
gation limited regimes, we measured the transcription rate of the Fluc 
construct as a function of sodium chloride addition. Two reaction 
schemes with different DNA concentrations (117.5 and 9.2 nM) are 
tested with solution conditions (including 192 nM T7 RNA polymerase) 
otherwise held constant. The ratios α[DNA]tot/[P]tot of the two schemes 
are 5.6 and 0.5, reflecting that these experiments probed an elongation- 
limited regime and a region primarily governed by initiation limitation, 
respectively. The two reaction schemes exhibited significantly different 
responses to salt addition (Fig. 2B). After fitting a single parameter K0, 
the initiation-elongation model described these trends. The difference in 

behavior between reaction conditions cannot be predicted by a model 
which only considers initiation limitations.

In order to understand how salt sensitivity varies between sequences, 
the same kinetic measurements are performed on the EGFP sequence 
using an IVT scheme analogous to the low-DNA Fluc kinetics discussed 
above (containing equal DNA concentrations by mass of transcribed 
region). If the parameter K0 of the two sequences is the same, model 
prediction indicates that the salt sensitivity should be the same as the 
Fluc construct within the range of experimental precision. It was instead 
found that the EGFP sequence was significantly less sensitive to salt 
addition than the COVID sequence. In our modeling framework, this 
lower sensitivity is parametrized as a lower value for K0. Table 2 shows 
estimated values of K0 for the two tested sequences, as well as the 
implied KMD in the absence of sodium chloride addition. These calcu
lated values of KMD validate the Bayesian prior used for the estimation of 
parameters in Table 1.

2.5. Extending modeling approach to the formation of dsRNA impurities

Double-stranded RNA (dsRNA) is an immunogenic byproduct of the 
IVT reaction. These dsRNA byproducts are heterogeneous in size and 
sequence, and a given RNA product molecule may contain both single 
and double stranded regions. As such, dsRNA is challenging to remove in 
downstream processing steps of RNA manufacturing. Two mechanisms 
for dsRNA formation in IVT have been proposed, which share undesired 
polymerase binding as a common feature. A mechanism of RNA self- 
templated extension has been shown to produce short double-stranded 
segments in oligomeric model systems [14], and has been used as the 
conceptual basis for strategies to decrease dsRNA formation based on 
immobilization and high salt concentrations [31]. Conversely, a mech
anism of DNA-templated antisense RNA synthesis has been shown to 
form hybridized dsRNA structures for specific sequences [15]. While 
each of these mechanisms has been used as the conceptual basis for 
engineering strategies to reduce dsRNA formation, there is no work in 
understanding the quantitative implications of these models for 
input-output relations of dsRNA formation.

Fig. 2. Effect of salt addition on IVT kinetics. 
(A) Semi-empirical model describing effect of salt addition of polymerase-promoter binding can describe trends in KMD, particularly in the range of high salt con
centrations (>150 mM NaCl added). Data from Maslak and Martin [3]. (B) Applying this model for KMD to transcription kinetics of long sequences explains the 
difference in salt sensitivity between two reaction schemes that only differ in DNA concentration. The reaction scheme in the elongation-limited regime ([DNA]tot =

117.5 nM) is less sensitive that the scheme in the initiation-limited regime ([DNA]tot = 9.2 nM) to disruptions in polymerase-promoter binding due to salt addition. 
Model predictions are shown after fitting a single parameter K0 (2.5 mM). (C) The EGFP sequence was measured to be less sensitive to salt addition than the Fluc 
sequence in analogous (equal DNA mass) reaction conditions. Model predictions are shown for best fit K0 estimates for each sequence (0.75 mM for EGFP).

Table 2 
Estimated binding parameters of measured sequences. Each sequence is char
acterized by its length and first three initiating nucleotides (init). Additional 
sequence information is shown in SI Section 7.

Parameter

Length Init. K0 (mM) KMD at [NaCl] added = 0 (nM)

Fluc 2078 AGA 1.5–3.0 40–70
EGFP 942 GGG 0.5–1.0 25–35

N.M. Stover et al.                                                                                                                                                                                                                               Archives of Biochemistry and Biophysics 778 (2026) 110737 

5 



Considering that undesired RNA polymerase binding is the founda
tion of both mechanisms, the modeling approach developed in this 
work, which explicitly considers both free polymerase solution con
centrations and polymerase-DNA binding, serves as a necessary platform 
for modeling dsRNA formation kinetics. We developed an extension of 
the initiation-elongation model to incorporate the binding of free RNA 
polymerase to either an undesired promoter on RNA (RNAup) or an 
undesired promoter on the antisense DNA strand (DNAup) (Fig. 3A). This 
model considers dsRNA to be a homogeneous chemical species. While 
this description is not perfectly representative of the known heteroge
neity of dsRNA, it is appropriate for understanding trends in macro
scopic dsRNA quantities. Using this schematic model, we derived 
quantitative input-output relations to model the fraction of dsRNA in the 
IVT product (SI Section 4). In addition to the approximations used to 
derive the initiation-elongation model, we assume that the amount of 
dsRNA product is much less than the ssRNA product and that undesired 
binding is a relatively rare event compared to the desired binding.

For a mechanism of RNA-templated dsRNA formation, our modeling 
approach predicts that the product dsRNA fraction is proportional to 

[dsRNA]t
[R]t

∝
[R]t

[DNA]tot −
[
P⋅DNAp

] (14) 

where [dsRNA]t and [R]t are the concentrations of dsRNA and total RNA 
at a given extent of reaction, and 

[
P ⋅DNAp

]
is the same quantity given by 

equation (3). In the case of DNA-templated antisense synthesis, gener
ating mechanistic predictions is more difficult given the dynamics of the 
sense-antisense hybridization step. Kinetic studies of analogous systems 
indicate that the rate constant of this hybridization is 10− 5–10− 4 min− 1 

nm− 1, which implies a time constant of approximately 1–10 min for the 

reaction concentrations used in this work. Considering that the time 
constant of the IVT reactions studied in this work take place on time 
scales of about 20–600 min, the hybridization step was approximated as 
instantaneous. While this approximation may neglect these hybridiza
tion trends, it lends a dramatic simplification to model predictions. In 
the case of DNA-templated dsRNA formation, our modeling approach 
predicts that 

[dsRNA]f
[R]f

∝
[DNA]tot

[DNA]tot −
[
P⋅DNAp

] (15) 

Equations (14) and (15) can either be viewed as competing models, or as 
two components of a larger modeling strategy that includes both RNA- 
and DNA-templated pathways. In the context of this work, we focus on 
their evaluation as competing models.

The macroscopic predictions of these models differ in two key ways. 
First, the RNA-templated model predicts that the dsRNA fraction (the 
ratio of dsRNA concentration to total RNA concentration) is low at early 
timepoints and rises linearly with respect to reaction conversion, while 
the DNA-templated model predicts that the dsRNA fraction is constant 
with respect to reaction conversion. In addition, the RNA-templated 
model, which assumes a competition between RNA and DNA as bind
ing sites, predicts that dsRNA formation should trend to zero as the 
concentration of DNA is increased. The DNA-templated model predicts 
some dependence between input DNA and dsRNA formation, but pre
dicts a finite asymptotic value of dsRNA formation.

To evaluate these models, we measured the final mass fraction of 
dsRNA in the Fluc IVT product as a function of the extent of reaction 
(Fig. 3B). Above a fractional conversion of 40 %, the dsRNA fraction of 
the system was relatively constant. However, timepoints collected at 
earlier conversions showed a decreasing trend, which is not consistent 

Fig. 3. Assessing Kinetic Models for dsRNA Formation. 
(A) Kinetic models for dsRNA formation are based on polymerase binding and initiation at undesired sites, which competes with the formation of the desired single- 
stranded product. In an RNA-templated mechanism, RNA polymerase binds to transient loop-back RNA structures and elongates across the RNA sequence, syn
thesizing dsRNA. In a DNA-templated mechanism, RNA polymerase binds to an undesired antisense promoter and synthesizes antisense RNA. These antisense RNA 
products hybridize with the main product RNA, which our model assumes is an instantaneous process. (B) Fraction of dsRNA in the IVT product as a function of the 
extent of reaction. Model predictions are calibrated based on the final timepoint to show conceptual predictions. Reactions are performed with 192 nM of T7 RNA 
polymerase and 9.2 nM of Fluc DNA. (C) The dsRNA fraction after complete conversion is not significantly affected by DNA input concentrations. Model predictions 
are shown using the previous parameter calibration. Reactions are performed with 192 nM of T7 RNA polymerase.
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with the predictions of either model. The same measurements performed 
on the COVID and EGFP constructs showed a similar nonincreasing 
result (SI Section 5). In addition, we measured the dsRNA fraction at 
complete conversion as a function of input DNA (Fig. 3C). We found that 
these data did not exhibit a clear statistical trend. We found that varying 
the concentrations of polymerase enzyme and salts did not significantly 
affect final dsRNA fractions (SI Section 5).

3. Discussion

Given the ubiquity of in vitro transcription in industrial RNA 
manufacturing, a kinetic framework that incorporates both DNA tem
plate and RNA polymerase concentrations to predict rates of RNA syn
thesis is a crucial tool to effectively use both expensive catalysts. In this 
work, we find that a model which incorporates both initiation and 
elongation steps is required to describe kinetic data across a range of 
DNA and RNA polymerase concentrations. Contrary to previous reports, 
we show that the limiting step is dependent on solution conditions and 
that the reaction system can be limited by the rate of elongation.

A primary goal of this work is to inform rapid and economical IVT 
process development, which currently involves data-driven designs of 
experiments to assess input-output relations. Since different DNA se
quences and lengths transcribe with different kinetics, these designs are 
often repeated for each manufactured sequence. In our modeling 
approach, differences between sequences are encoded by kinetic pa
rameters. We demonstrate that the key kinetic parameters of tran
scription (ki and α) can be identified with only two experiments (taken in 
the elongation and initiation limited regimes, respectively). The 
measured values of these parameters are correlated with physical intu
ition and prior literature (Table 1). Sequences with the same three 
initiating base pairs (AGA) had the same initiation rate constant within 
the uncertainty of our measurements (0.3 − 0.5 s− 1). The EGFP 
construct, which contained the canonical initiation sequence (GGG), 
exhibited a significantly higher initiation rate constant (0.6 − 0.9 s− 1). 
These values are in the general range of previous reports from both 
single molecule and oligomeric studies (0.3 − 0.6 s− 1) [3,17] and are 
consistent with reports that mutations to the canonical initiation 
sequence decreased overall transcription rates [32]. We find that the 
parameter α, which describes the relative importance of elongation in 
the transcription process, is loosely correlated with sequence length. 
This in turn implies that the effective per-base-pair elongation rate is 
within 44–83 s− 1 for all sequences tested. This is in the same order of 
magnitude as previously reported values from single molecule studies 
(1.1 − 2.2× 102 s− 1) [11,33]. In addition, the estimated α of a tested 
oligomeric sequence is 1.0 within the interval of uncertainty, which 
confirms our intuition that transcription of oligomers is purely initiation 
limited.

Differences between the rate constants calculated in this work and 
those reported by previous researchers can be explained by two causes. 
These kinetic parameters are first-order approximations of multiple 
steps and as such are dependent on NTP concentrations, pH, tempera
ture, and other solution conditions. Solution concentrations of NTPs, 
magnesium, and other salts are typically much higher in the context of 
industrial RNA manufacturing (and this work) than in most fundamental 
studies of transcription kinetics. In the case of elongation rate constants, 
additional phenomena not included in our kinetic model such as non- 
specific polymerase binding and polymerase pausing may contribute 
to the mismatch between these results and single molecule values. In 
addition, kinetic modeling indicates that polymerase-polymerase in
teractions during elongation can manifest as a decrease in the effective 
initiation rate constant when analyzed with the initiation-elongation 
model. If the estimated initiation rate constant of a DNA sequence is 
significantly less than the initiation rate constant of its initiating olig
omer sequence, these polymerase-polymerase interactions could be a 
cause. We do not observe a significant difference between the Fluc and 

Fluc dodecamer sequence in this work, however. Previous work has 
observed that T7RNA polymerase-polymerase interactions can lead to 
the displacement of leading polymerase molecules from the DNA 
sequence [34]. While our model neglects this effect, it can serve as a 
useful starting point for quantitative analysis of the effects of this phe
nomenon on IVT process outputs.

Recent trends in IVT reaction engineering have added new relevance 
to the effect of salts, which disrupt polymerase-promoter binding, on 
transcription rates. Salt addition has been proposed as a method to shift 
transcription away from dsRNA impurities, which introduces tradeoffs 
in the context of RNA manufacturing [31]. In addition, industrial IVT 
schemes, including fed-batch reactions, increasingly use high NTP and 
Mg concentrations, which increases salt concentrations. Intuitively, 
transcription in the elongation-limited regime should be less affected by 
binding disruptions than transcription in the initiation-limited regime. 
We find that a simple semi-empirical model can describe trends in KMD 
as a function of salt concentration (Fig. 2A). Using this relation in 
combination with the initiation-elongation model, we predict the 
experimental result that transcription in the high-DNA elongation-li
mited regime is much less sensitive to salt addition than transcription in 
the low-DNA initiation-limited regime (Fig. 2B). Understanding this 
difference in sensitivity can inform reaction design in the context of 
industrial RNA manufacturing. In addition, we find that salt sensitivity 
varies between the Fluc and EGFP constructs studied in this work. In the 
context of our model, this difference is parametrized as a difference in 
the parameter K0, which combines binding thermodynamics with the 
kinetic process of polymerase-DNA disassociation due to abortion 
(Fig. 2C–Table 2). These differences may be related to the different 
initiation sequences of the two constructs (SI Section 7). Additional 
work is required to quantitatively understand how each of the kinetic 
processes of promoter escape, initiation, and abortion are affected by 
salt concentrations and how sequence contributes to these salt effects. In 
addition, while this work neglected the effect of abortion on overall NTP 
consumption, future kinetic modeling of this abortion step can help to 
predict the consumption of expensive co-transcriptional capping agents.

A key application of kinetic modeling in the context of IVT is in 
understanding input-output relationships for impurity formation. In this 
work, we extend the initiation-elongation model to consider two pro
posed mechanisms for formation of double-stranded RNA (dsRNA): 3’ 
RNA self-templated transcription and DNA-templated antisense tran
scription followed by hybridization (Fig. 3A). We evaluate the pre
dictions of these models relative to a macroscopic binding assay that 
estimated the total concentration of dsRNA in the system. While these 
assays typically cannot detect small (~40 base pair) regions of dsRNA, 
they have been shown to correlate with in vivo immune response [35]. 
As such, we regard them as an effective measurement of the class of 
dsRNA (i.e., long dsRNA) that is of interest in the manufacturing process.

Understanding the dynamic trends of dsRNA in the IVT reaction is 
relevant for RNA process development (SI Section 6). The dsRNA frac
tion in our reaction system was constant or decreasing as a function of 
reaction conversion, in contrast to the prediction of the RNA-templated 
model that the dsRNA fraction should increase as more RNA is synthe
sized (Fig. 3B). The RNA-templated model predicts that adding more 
DNA to the IVT system should shift the kinetic competition for poly
merase molecules away from RNA and proportionally decrease dsRNA 
formation. In contrast to these predictions, we find that increasing DNA 
concentrations did not significantly affect final dsRNA fractions 
(Fig. 3C). While the DNA-templated model does not diverge as 
dramatically from experimental results, it cannot describe the decrease 
in dsRNA fraction in early stages of the reaction. In addition, dsRNA 
fraction data collected by varying the concentration of polymerase 
enzyme and salt addition show ambiguous results which do not indicate 
that the predictions of the DNA-templated model are more effective than 
a constant null hypothesis (SI Section 5). A key approximation of our 
modeling approach is neglecting the kinetics of hybridization, which 
may be important for describing trends in these data. These ambiguous 
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results – that neither the RNA- nor DNA-templated models can quanti
tatively describe these process data – may owe to approximations made 
in model formulation, the presence of additional pathways for the for
mation of dsRNA structures detected by our assay, or the importance of 
confounding variables such as post-IVT processing in dsRNA detection.

While the presented results do not definitively identify a mechanism 
for explaining trends in macroscopic dsRNA formation, the modeling 
approach in this work serves as a platform for both future work and 
understanding trends in previously reported data. In both the RNA- and 
DNA-templated models, dsRNA formation is proportional to the ratio of 
Michaelis-Menten constants of desired and undesired promoter binding, 
respectively (SI Section 4). This implies that reaction engineering stra
tegies which differentially impact these two bindings can be used to 
limit dsRNA formation. This modeling observation gives quantitative 
structure to an array of strategies that previous researchers (with either 
mechanism in mind) have used to decrease dsRNA formation, including 
the use of engineered polymerase enzymes [36], high temperatures 
[37], salts [31], and chaotropic agents [38]. Future work in under
standing the kinetic pathways of dsRNA formation and the effects of 
sequence on binding, initiation, and abortion can add context to results 
indicating that changes in promoter sequence can effect dsRNA forma
tion [35].

4. Experimental procedures

4.1. In vitro transcription kinetic measurements

All in vitro reactions studied in this work took place and pH 8.0 and 
contained 5 mM of each NTP (ATP, CTP, GTP, and N1-Methyl
pseudouridine-5′-Triphosphate), 21.075 mM MgCl2, 45 mM of pH 7.9 
Tris-HCl buffer, 2 mM spermidine, 10 mM DTT, 6 U/mL of inorganic 
pyrophosphatase, and 400 U/mL of RNAase inhibitor. All reaction ma
terials were acquired from Hongene Biotech, other than MgCl2, which 
was acquired from Thermo Fischer. Transcription reactions were 
assembled at volumes between 50 and 100 μL and incubated at 37 ◦C. 
Aliquots of 6 μL were periodically removed and quenched in 60 μL of 50 
mM EDTA. These quenched samples were further diluted 36-fold (for a 
total dilution of 400-fold) and analyzed with the HPLC method of 
Welbourne et al. [39] to quantify the concentrations of the four NTPs. 
Linear regression analysis was used to quantify the rate of NTP decay. 
While an orthogonal analysis of the RNA product was possible, it was 
found that quantification of NTPs was less sensitive to both systematic 
and random experimental errors. In order to ensure that data points 
represented the initial rate of reaction, points collected at high conver
sion (below 2 mM of the limiting NTP remaining) were excluded from 
this analysis.

4.2. Measurement of dsRNA concentrations

The quantification of dsRNA was performed using the Lumit® dsRNA 
Detection Assay kit (Promega) according to the manufacturer's in
structions. White 96-well plates were obtained from Thermo Fisher 
Scientific/Corning®. Diluted reaction samples were prepared as 
described in the previous method section. The diluted samples were 
subsequently mixed with the dsRNA assay buffer to achieve an expected 
final dsRNA concentration of 2 ng/mL per well. Three technical repli
cates of each reaction sample were measured using a Thermo Fisher 
Varioskan® Flash plate reader with an integration time of 500 ms, and 
the results were averaged. Experimental variance between these tech
nical replicates was negligible relative to the variance between replicate 
reactions. Background luminescence was determined by averaging the 
readout from the 0 ng/mL dsRNA standard and was subtracted from all 
sample measurements.

To determine the dsRNA/mRNA fraction, mRNA concentration was 
quantified via HPLC using 400-fold diluted reaction samples.

4.3. Parameter estimation and model-based design of experiments for 
kinetic model

Model evaluation and parameter estimation are performed in the 
Julia language. In order to estimate the relevant kinetic parameters, the 
maximum likelihood estimate of the vector of parameters p was 

min
p

(y − u(p))⊤V− 1
y (k)(y − u(p)) (16) 

where y is the vector containing all of the experimental data used for 
estimating parameters and u(p) is the vector of corresponding model 
outputs as a function of the parameter vector p. The error covariance 
matrix Vp* of the best-fit estimate p* is approximated by 

cov(p* − ptrue) = Vp* ≈
(

S⊤V− 1
y S

)− 1
(17) 

where ptrue denotes the true parameters and S is the sensitivity of the 
model outputs with respect to the vector p.

To ensure precision in the estimated kinetic parameters, model- 
based design of experiments was performed to minimize the determi
nant of the estimated parameter covariance matrix, known as D-opti
mality. Given a hypothesized parameter set p̂ and a prior covariance 
matrix cov(p̂), experimental points x were chosen by solving the opti
mization 

min
x

⃒
⃒
⃒

[
S(x, p̂)⊤V− 1

p S(x, p̂)
)
+ cov(p̂)− 1

]− 1⃒⃒
⃒ (18) 

where S(x, p̂) is the sensitivity matrix of the experimental points x and 
the estimated parameters p̂, and |⋅| is the determinant. For both opti
mizations (parameter estimation and design of experiments), the 
gradient-based L-BFGS optimization was performed using the For
wardDiff.jl and NLopt.jl packages in Julia to compute model output 
sensitivities to parameters and use those sensitivities in gradient-based 
optimizers, respectively.
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