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 A B S T R A C T

Probabilistic uncertainties in the model parameters result in distributional uncertainties in the model pre-
dictions. While such uncertainty descriptions have been incorporated into model predictive control (MPC) 
formulations using polynomial chaos theory (PCT), more care is required to ensure integral action than in 
traditional MPC. This article thoroughly examines offset-free formulations of PCT-based MPC for multiple-
input, multiple-output linear time-invariant systems. We compile, prove, and validate features of multiple 
stochastic MPC formulations. Under mild assumptions, these features include (i) guarantees for the existence 
of a full column-rank integrator to eliminate offset in multiple performance indices; (ii) guarantees of nominal 
closed-loop stability for the unconstrained systems, and (iii) computationally efficient, spectrally accurate 
resolution of parametric uncertainty. Application of our stochastic MPC formulations to setpoint tracking and 
disturbance rejection in numerical case studies demonstrate the asymptotic removal of offset in all higher-order 
contributions to output variation due to parametric uncertainty.
1. Introduction

Stochastic Model Predictive Control (SMPC) is a form of Model 
Predictive Control (MPC) that explicitly accounts for stochastic noise, 
disturbances, and parametric uncertainties (Heirung, Paulson, O’Leary, 
& Mesbah, 2018; Morari & Lee, 1999). SMPC accounts for the stochastic 
nature of state trajectories by optimizing a specific loss function over 
the entire probability distribution of state trajectories (Mesbah, 2016). 
Manipulated variable constraints are deterministic whereas state and 
output constraints in SMPC can be specified in expectations on cer-
tain variables or as chance constraints which restrict the probability 
of specified events. SMPC has been proposed for applications where 
handling uncertainty is critical such as in quantitative finance (Bem-
porad, Puglia, & Gabbriellini, 2011), autonomous vehicle path plan-
ning (Mammarella et al., 2018), and control of manufacturing pro-
cesses (Heirung et al., 2018; Tian, Prakash, Zavala, Olson, & Gopaluni, 
2020; Van Hessem & Bosgra, 2006).

I This manuscript is an extension of von Andrian and Braatz (2019).
∗ Corresponding author.
E-mail address: braatz@mit.edu (R.D. Braatz).

1 Although Xiu and Karniadakis (2002) discusses PCT applied to stochastic differential equations (SDEs), a more appropriate terminology would be PCE applied 
to random ODEs. Put simply: for SDEs, due to additional randomness imparted by an additive white noise term, the output random variable trajectories are not 
uniquely determined when the uncertain parameter vector 𝜃 is known a priori. However, for random ODEs, if 𝜃 is known, then the output random variable 
trajectories are uniquely determined. The interested reader may find (Filip, Javeed, & Trefethen, 2019) and references therein useful.

SMPC is computationally more expensive than MPC, as the space of 
feasible state trajectories to numerically optimize over is significantly 
enlarged by process stochasticity. As such, a fundamental challenge of 
SMPC is the formulation of an on-line, low computational cost method 
able to effectively propagate uncertainty forward and preserve informa-
tion on the probability distribution of the outputs (Mesbah, 2016). This 
need motivates the use of Polynomial Chaos Theory (PCT) in SMPC, 
which is a method of expressing a random variable in terms of a sum 
of orthogonal polynomials of another random variable (e.g., Hermite 
Polynomials of Gaussian Variables Cameron & Martin, 1947). While 
the control based on a process model with probabilistic parameter 
uncertainties is inherently harder than control based on a comparable 
nominal model, PCE provides a systematic way of approximating the 
stochastic system to any degree of accuracy. Early work applied this 
method of approximation to uncertain systems modeled by random 
ordinary differential equations (ODEs) (Xiu & Karniadakis, 2002),1 
with later extensions to partial differential equations with uncertain 
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parameters (Lucia, Zometa, Kögel, & Findeisen, 2015; Luo, 2006). In 
numerous case studies, PCT has been shown to reduce the computa-
tional costs of trajectory optimization while simultaneously performing 
highly accurate uncertainty propagation (Kim & Braatz, 2012; Lucia 
et al., 2015; Lucor, Su, & Karniadakis, 2004; Paulson, Streif, Findeisen, 
Braatz, & Mesbah, 2018).  Recently, PCT has been incorporated into 
optimal and robust control algorithms to systematically address para-
metric uncertainties and estimate probabilities of rare events (Hsu & 
Bhattacharya, 2020; Piprek, Gros, & Holzapfel, 2019a, 2019b).

The use of PCT-based SMPC in manufacturing processes with high-
dimensional output spaces was demonstrated by Paulson, Mesbah, 
Streif, Findeisen, and Braatz (2014). Although the approach signifi-
cantly reduced the effects of uncertainty on the controlled variables, the 
formulations were not designed to be offset-free. That is, the process 
outputs did not necessarily converge asymptotically in time to new 
setpoints for step changes in the setpoints. Offset-free control is a desir-
able property in many applications (Maeder, Borrelli, & Morari, 2009; 
Maeder & Morari, 2010; Muske & Badgwell, 2002), because the setpoint 
usually represents a current optimal operating point of the process, such 
as the current demand or composition of a product (Luyben, 2007). 
Such applications motivate the formulation of a provably offset-free 
SMPC control strategy.

Motivated by the above considerations, this work describes a suite 
of offset-free formulations of SMPC that integrate PCT into Quadratic 
Dynamic Matrix Control (QDMC). QDMC is a control algorithm that is 
widely used in industry, due to its good setpoint tracking properties 
and its ability to handle input and output constraints and multiple-
input, multiple-output (MIMO) systems (Garcia & Morshedi, 1986). The 
optimization in QDMC can be formulated as a quadratic program (QP), 
which can be solved efficiently by convex optimization solvers (Morari 
& Lee, 1999). Galerkin projection of the stochastic model is used to 
obtain a deterministic model of PC coefficients, which is then fed 
to QDMC-based SMPC formulations (Garcia & Morshedi, 1986). We 
present SMPC formulations that guarantee zero offset and nominal 
closed-loop stability of the unconstrained systems. In particular, we 
prove our SMPC formulations to contain a full-column rank integrator 
with the appropriate choice of controller variables and weights, which 
leads to zero offset and closed-loop stability.

Regarding the novelty of this work, we emphasize that previous 
provably offset-free QDMC formulations for MIMO systems produce 
zero offset by including additive integrating disturbance terms in para-
metrically certain models (see, e.g., Morari and Lee (1999) and Pan-
nocchia and Rawlings (2003) and references therein). These results, 
furthermore, are foundational and span decades of literature from 
the 1970s to the early 2000s. The present work demonstrates prov-
ably offset-free QDMC formulations for parametrically uncertain mod-
els, where, in addition to additive integrating disturbance terms, we 
must consider disturbance terms arising from multiplicative paramet-
ric uncertainty in the modeled dynamics (Morari & Zafiriou, 1989). 
More specifically, our approach using PCT distinguishes from exist-
ing scenario-based or constraint-tightening and stochastic tube-based 
methods which synthesize controllers for similar systems (see, e.g., Ar-
cari, Iannelli, Carron, and Zeilinger (2023) and Fagiano, Schildbach, 
Tanaskovic, and Morari (2015) and references therein). The develop-
ment of our formulations necessarily depends on theorems and lemmas 
in previous work. In order to both preserve continuity in and contribute 
novelty to the existing discussion, we delineate our key results from 
previous theorems and lemmas with references to Appendix.

The article is organized as follows. Section 2 provides mathematical 
background on linear time-invariant (LTI) systems, step-response mod-
els, QDMC, and MIMO closed-loop integral action. Section 3 presents 
a proof that (unconstrained) QDMC controller formulation in MIMO 
LTI systems contains a full column-rank integrator under mild con-
ditions on the plant LTI system coefficients and controller weights. 
Section 4 describes PCT and Galerkin projection for LTI systems in 
SMPC. Section 5 describes our main contributions to PCT-based QDMC 
2 
formulations that guarantee nominal and robust stability.  Finally, Sec-
tions 6 and 7 provide two illustrative numerical case studies. The first 
case is the control of a small-scale series–parallel reaction network in a 
continuously stirred tank reactor (CSTR). The second case is the control 
of a large-scale network of heat exchangers. Both cases demonstrate the 
effectiveness of PCT-based QDMC formulations in achieving accurate 
forward uncertainty propagation and offset-free control with robust 
closed-loop performance.

This article significantly expands on a conference paper (von An-
drian & Braatz, 2019) by extending the methodology to the MIMO 
case, providing precise statements of the theoretical results, providing 
proofs of all the theoretical results, discussing additional formulations 
for nominal and robust stability, and validating the methodology on 
two more challenging case studies, with one having a high-dimensional 
state space.

2. Definitions and preliminary background

This section defines the class of MIMO LTI process models studied 
in this article. For context, first we briefly describe the formulation of
deterministic QDMC in terms of the step-response matrices of the process 
models (see, e.g., Qin and Badgwell (2003) and references therein). 
Then a series of lemmas are given that rigorously define conditions 
for (i) open- and closed-loop system bounded-input, bounded-output 
(BIBO) stability, (ii) additive disturbance-free closed-loop integral ac-
tion in the MIMO system, and (iii) offset-free control in the multiple 
performance index case due to having a full column-rank integrator 
in the controller. We finally use these definitions to prove that uncon-
strained QDMC for the MIMO case is offset-free in multiple performance 
indices.

2.1. Definitions and notations

Denote N = {0, 1, 2,…} as the natural numbers, 1𝑝 as the vector of 
ones of dimension 𝑝, 0𝑛, 𝐼𝑛 ∈ R𝑛×𝑛 as the zero and identity matrices 
respectively, and 1𝛺 as the indicator function on the set 𝛺 ∈ R𝑛. 
For 𝑥 ∈ R𝑛, denote ‖𝑥‖ as the Euclidean norm of 𝑥. Given square 
matrices 𝑊𝑖 ∈ R𝑛𝑖×𝑛𝑖  and column vectors 𝑣𝑖 ∈ R𝑛𝑖  where 𝑖 = 1, 2,… , 𝑘
and 𝑛𝑖 are non-zero positive integers, denote the block-diagonal matrix 
construction as

diag[𝑊1,𝑊2,… ,𝑊𝑘] =
⎡

⎢

⎢

⎣

𝑊1
⋱

𝑊𝑘

⎤

⎥

⎥

⎦

∈ R
(
∑

𝑖 𝑛𝑖
)

×
(
∑

𝑖 𝑛𝑖
)

,

and the column-vector concatenation as

vec[𝑣1, 𝑣2,… , 𝑣𝑘] =
⎡

⎢

⎢

⎣

𝑣1
⋮
𝑣𝑘

⎤

⎥

⎥

⎦

∈ R
∑

𝑖 𝑛𝑖 .

Given matrices 𝐴 ∈ R𝑎×𝑏 and 𝐵 ∈ R𝑐×𝑑 , denote 𝐴⊗𝐵 ∈ R(𝑎𝑐)×(𝑏𝑑) as the 
Kronecker product of 𝐴 and 𝐵 (Brewer, 1978). Denote ‖⋅‖2 and ‖⋅‖𝐹
as the spectral and Frobenius norms of 𝐴, respectively. All deviations 
from these notations will be noted explicitly at the time of use.

2.2. Linear time-invariant systems and step-response models

Consider the impulse response of a discrete-time MIMO LTI system,

𝑦(𝑡) ∶=
∞
∑

𝑖=1
𝐻𝑖𝑢(𝑡 − 𝑖), (1)

where 𝑡 ∈ N is the time index, 𝑦 ∈ R𝑛𝑦  is the output vector, 𝑢 ∈ R𝑛𝑢  is 
the input vector, and 𝐻𝑖 ∈ R𝑛𝑦×𝑛𝑢  are unit-impulse response matrices. 
Assume that 𝑢(𝑡) = 0 for 𝑡 ≤ 0, which implies that 𝑦(0) = 0, i.e., the sys-
tem is operating at steady state at the initial time. The formulation (1) 
implicitly assumes that 𝐻0 = 0, implying that the current output only 
depends on previous inputs so as not to violate causality. For any sys-
tem (1) that is BIBO stable, the coefficients 𝐻  are absolutely summable, 
𝑖
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i.e., ∑𝑖
‖

‖

𝐻𝑖
‖

‖

< ∞. Restrict the system (1) to have finite memory of the 
past, that is, 𝐻𝑖 = 0 for 𝑖 > 𝑁 where 𝑁 ∈ N is defined as the truncation 
number. The value of 𝑁 is selected based on the system dynamics and 
sampling time used for system identification, e.g., industrial implemen-
tations typically choose sampling time so that 𝑁 = 30 is large enough 
to capture the system dynamics (Cutler & Ramaker, 1980). When 𝑁
is poorly chosen, truncation errors due to model-plant mismatch accu-
mulate and performance of the predictive model becomes poor (Lund-
ström, Lee, Morari, & Skogestad, 1995). These assumptions are all very 
reasonable for industrial application, for which MPC is applied on top 
of pre-stabilized lower level regulatory loops, e.g., see Morari and Lee 
(1999) and Qin and Badgwell (2003) and references therein.

After introducing control input differences 𝛥𝑢(𝑡) ∶= 𝑢(𝑡)−𝑢(𝑡−1), the 
impulse-response model (1) can be reformulated as 

𝑦(𝑡) =
∞
∑

𝑖=1
𝐺𝑖𝛥𝑢(𝑡 − 𝑖), (2)

where 𝐺𝑖 ∶=
∑∞

𝑗=𝑖 𝐻𝑗 are the unit step-response coefficient matrices. 
Since 𝐻𝑖 = 0 for 𝑖 > 𝑁 , it follows that 𝐺𝑖 = 𝐺𝑁  for 𝑖 > 𝑁 . The 
summation in (2) has finitely many terms) because 𝛥𝑢(𝑡 − 𝑖) = 0 for 
all 𝑖 ≥ 𝑡. The step-response coefficient matrices 𝐺𝑖 can be calculated by 
applying a unit step input to the system for each input variable, either 
from data or from any model of the process. The truncation time 𝑁 is 
chosen as the value at which the step-response coefficient matrices 𝐺𝑖
asymptotically approach some constant value for unit step inputs (Finn, 
Wahlberg, & Ydstie, 1993).

Dynamic matrix control (DMC) is an MPC algorithm that uses the 
unit step-response model (2) to predict the system output within the 
prediction horizon. The model is fed to an on-line optimization to 
compute the current and future time control actions, i.e., 𝑢(𝑡)∗, 𝑢(𝑡 +
1)∗,…, which optimize the performance objectives over a prediction 
horizon.

Suppose that, for a real process, either a process simulator or 
system identification procedures (see, e.g., Ljung (1999) and refer-
ences therein) indicate the validity of a dynamic input–output response 
structure of the form (2). Denoting 𝑝 ∈ N as the finite length of the 
prediction horizon, the model (1) is constructed for each current time 
𝑡 and provides predictions 𝑦̂(𝑡+𝑘|𝑡) of the real process outputs 𝑦(𝑡+𝑘|𝑡)
at future times 𝑡 + 𝑘 where 𝑘 ∈ {1, 2,… , 𝑝}. In other words, a total 
of 𝑝𝑛𝑦 scalar outputs are computed at each time step by an imperfect 
process model which is conditioned on information from all prior times. 
Encoding these details, DMC uses the predictive model formulation 

𝑦̂(𝑡 + 𝑘|𝑡) ∶=
∞
∑

𝑖=1
𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) + 𝑛̂(𝑡 + 𝑘|𝑡), (3)

where 𝑛̂(𝑡 + 𝑘|𝑡) is a modeled disturbance term to account for model-
plant mismatch at the current time. DMC estimates the process distur-
bance as the current difference between the true output response and 
measured output response, i.e., 𝑛̂(𝑡+𝑘|𝑡) ∶= 𝑦m(𝑡)−𝑦(𝑡), 𝑘 ≥ 0. For further 
analysis, the key contributions to the system response under (3) can be 
distinguished by rearranging the terms as 

𝑦̂(𝑡 + 𝑘|𝑡) =
∞
∑

𝑖=1
𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) + 𝑛̂(𝑡 + 𝑘|𝑡) (4a)

=
𝑘
∑

𝑖=1
𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖)

+
∞
∑

𝑖=𝑘+1
𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) + 𝑛̂(𝑡 + 𝑘|𝑡) (4b)

=
𝑘
∑

𝑖=1
𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) + 𝑓 (𝑡 + 𝑘|𝑡) + 𝑛̂(𝑡 + 𝑘|𝑡), (4c)

where 

𝑓 (𝑡 + 𝑘|𝑡) ∶=
∞
∑

𝐺𝑖𝛥𝑢(𝑡 + 𝑘 − 𝑖) (5)

𝑖=𝑘+1

3 
is the free response at time 𝑡 + 𝑘 during the iteration at time 𝑡. For the 
current time (i.e., when 𝑘 = 0), the above assumptions and construc-
tions imply that 𝑓 (𝑡|𝑡) = 𝑦(𝑡), which further implies that 𝑛̂(𝑡 + 𝑘|𝑡) =
𝑦m(𝑡) − 𝑓 (𝑡|𝑡). Intuitively, the first term in (4c) represents the forced 
response, which is the system output response due to the changes in 
the control inputs in the future. The second term is the free response, 
which is the system output response when there are no step changes in 
the control inputs in the future (i.e., 𝛥𝑢(𝑡 + 𝑘) = 0 for all 𝑘 ≥ 0, that is, 
𝑢(𝑡+𝑘) = 𝑢(𝑡−1) for all 𝑘 ≥ 0). The last term is the measured disturbance 
at the current time.

2.3. Quadratic dynamic matrix control

QDMC is the form of DMC that uses a quadratic objective function to 
quantify process and controller performance, e.g., rapid setpoint track-
ing and disturbance rejection with constraints on actuation (Garcia & 
Morshedi, 1986). At each process time 𝑡, QDMC is given the current 
measurement 𝑦m(𝑡) and a desired setpoint 𝑦sp(𝑡) to compute the current 
and future time optimal input step changes 𝛥𝑢(𝑡)∗, 𝛥𝑢(𝑡+1)∗,… subject to 
process and control input constraints. The optimal inputs are obtained 
by solving a constrained QP, that is, an optimization that minimizes 
a quadratic function over a polytopic constraint set on the inputs and 
outputs (Nocedal & Wright, 2006).

More specifically, QDMC uses the process model in (4c)–(5) to 
predict the future 𝑝 outputs in the prediction horizon and to minimize a 
quadratic objective function  ∈ R≥0 over the next 𝑐 ∈ N control action 
step changes 𝛥𝑢(𝑡), 𝛥𝑢(𝑡 + 1),… , 𝛥𝑢(𝑡 + 𝑐 − 1), where 𝑐 ≤ 𝑝 is termed the 
control horizon. Defining 
𝑒(𝑡 + 𝑖|𝑡) ∶= 𝑦̂(𝑡 + 𝑖|𝑡) − 𝑦sp(𝑡 + 𝑖) (6)

as the predicted setpoint error (aka offset from setpoint), the optimal 
control objective is 

 ∶=
𝑝
∑

𝑖=1
𝑒(𝑡 + 𝑖|𝑡)⊤𝑊𝑦𝑖𝑒(𝑡 + 𝑖|𝑡) +

𝑐
∑

𝑖=1
𝛥𝑢(𝑡 + 𝑖 − 1)⊤𝑊𝑢𝑖𝛥𝑢(𝑡 + 𝑖 − 1), (7)

where all weight matrices 𝑊𝑦𝑖 ∈ R𝑛𝑦×𝑛𝑦  and 𝑊𝑢𝑖 ∈ R𝑛𝑢×𝑛𝑢  are designed 
to be positive definite. The weight matrices encode the trade-off be-
tween setpoint tracking and actuation magnitude. Introducing output 
path constraints and control input limitations, the convex QP solved 
by QDMC becomes 
min




s.t. 𝐴𝑖𝑦̂(𝑡 + 𝑖|𝑡) ≤ 𝑏𝑖, ∀𝑖 ∈ {1, 2,… , 𝑝},

𝑢min ≤ 𝑢(𝑡 + 𝑖 − 1) ≤ 𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

𝛥𝑢min ≤ 𝛥𝑢(𝑡 + 𝑖 − 1) ≤ 𝛥𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

(8)

where  ∶= {𝛥𝑢(𝑡), 𝛥𝑢(𝑡+1),… , 𝛥𝑢(𝑡+ 𝑐 −1)}, and 𝐴𝑖 ∈ R𝑚×𝑛𝑦 , 𝑏𝑖 ∈ R𝑚, 
and 𝑢min, 𝑢max, 𝛥𝑢min, 𝛥𝑢max ∈ R𝑛𝑢  specify the constraints. To simplify 
notation, denote 
𝛥𝐮(𝑡) ∶= vec[𝛥𝑢(𝑡), 𝛥𝑢(𝑡 + 1),… , 𝛥𝑢(𝑡 + 𝑐 − 1)], (9a)

𝐲̂(𝑡) ∶= vec[𝑦̂(𝑡 + 1|𝑡), 𝑦̂(𝑡 + 2|𝑡),… , 𝑦̂(𝑡 + 𝑝|𝑡)], (9b)

𝐲sp(𝑡) ∶= vec[𝑦sp(𝑡 + 1), 𝑦sp(𝑡 + 2),… , 𝑦sp(𝑡 + 𝑝)], (9c)

𝐞(𝑡) ∶= 𝐲̂(𝑡) − 𝐲sp(𝑡), (9d)

𝑊𝑦 ∶= diag[𝑊𝑦1,𝑊𝑦2,… ,𝑊𝑦𝑝], (9e)

𝑊𝑢 ∶= diag[𝑊𝑢1,𝑊𝑢2,… ,𝑊𝑢𝑐 ], (9f)

where the predicted error signal 𝐞(𝑡) depends on the previous control 
actions applied to the system. The convex quadratic structure of the 
objective function is seen in the expression 
 (𝐞(𝑡), 𝛥𝐮(𝑡)) = 𝐞(𝑡)⊤𝑊 𝐞(𝑡) + 𝛥𝐮(𝑡)⊤𝑊 𝛥𝐮(𝑡). (9g)
𝑦 𝑢
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Fig. 1. Block diagram for the closed-loop system with additive disturbances 𝑑𝑢 and 𝑑𝑦, 
and feedback structure with controller 𝐾.

For proving integral action and evaluating closed-loop performance 
in the sections that follow, the user-specified setpoint, which is an 
exogenous input to the system, is taken as constant. That is, 𝑦sp(𝑡) = 𝑦sp
for all time 𝑡, which further implies that 𝐲sp(𝑡) = 1𝑝 ⊗ 𝑦sp. In both 
constrained and unconstrained QDMC, solving the convex QP in (8) 
at each sampling time 𝑡 produces the optimal input step change series 
𝛥𝐮(𝑡)∗. In practice, however, only the first optimal step change input 
𝛥𝑢(𝑡)∗ is actually applied to the system. The remaining 𝛥𝑢(𝑡+1)∗, 𝛥𝑢(𝑡+
2)∗,… , 𝛥𝑢(𝑡+𝑐−1)∗ solutions can be used to warm-start an initial guess 
to the QP solver at the next time step 𝑡 + 1. Therefore, the inputs 𝑢(𝑡)
evolve via the control law 
𝑢(𝑡) = 𝑢(𝑡 − 1) + [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝛥𝐮(𝑡)

∗. (10)

2.4. Multiple performance index offset-free control, Z-transforms, and
transfer functions

Consider the closed-loop plant construction with multiple endoge-
nous and exogenous inputs and outputs in Fig.  1. In defining the 
performance objectives and conditions for optimal controller synthesis 
(e.g., disturbance rejection, setpoint tracking), we pose the perfor-
mance index vector, aka error vector, as 𝑒(𝑡) ∈ R𝑛𝑦 . An integrator in 
the controller applied to an asymptotically stable single-input single-
output system implies that — in the absence of measurement noise 
and disturbances — the error 𝑒(𝑡) asymptotically converges to zero 
when the specified setpoint 𝑦sp is held constant (Rawlings, Mayne, & 
Diehl, 2017).2 In other words, the formulation is offset-free in some 
single performance index. However, for a closed-loop MIMO response 
model, an integrator may or may not exist for every performance index, 
motivating controller designs with full column-rank integrators.  These 
concepts and others are rigorously presented below.

The discrete-time transfer function from inputs to outputs are writ-
ten in terms of the Z-transform. 

Definition 1.  [Z-transform, see, e.g., Chen (1984)] Let 𝑗 denote the 
imaginary unit, 𝑡 ∈ N, and 𝑧 ∈ C. Given a sequence of vectors 𝑥(𝑡) ∈ R𝑛, 
the unilateral Z-transform of 𝑥(𝑡) is denoted as 𝑋(𝑧) ∈ C𝑛 and is given 
by 

𝑋(𝑧) ∶= (𝑥(𝑡))(𝑧) ∶=
∞
∑

𝑖=0
𝑥(𝑖)𝑧−𝑖. (11)

For a region  ⊂ C which encloses all points 𝑧 for which summation 
(11) converges, the inverse Z-transform is defined by the contour 
integral 

𝑥(𝑡) ∶= −1(𝑋(𝑧))(𝑡) ∶= 1
2𝜋𝑗 ∮

𝑋(𝑧)𝑧𝑡−1 d𝑧. (12)

2  This statement of integrator action also implies zero offset in the presence 
of any combination of constant values for the disturbance and setpoint, 
provided that the measurement noise 𝑛 is zero.
4 
Here we provide several pertinent MIMO LTI system lemmas. Al-
though the lemmas are well-known in the control theory literature, 
the proofs are written out for completeness in the Appendix, with 
suggested references for further reading. Using these lemmas, we show 
that closed-loop integral action leads to offset-free control in MIMO LTI 
systems under mild conditions on the integrator matrix 𝐾I. The transfer 
functions 𝐺(𝑧) ∈ R𝑚×𝑛 are assumed to only contain rational entries. A 
pole of the transfer function 𝐺(𝑧) is defined as a pole of any of the 
entries of 𝐺(𝑧).  In general, for a linear system to be BIBO stable, its 
transfer function can only have poles strictly within the open unit circle, 
so that the impulse response coefficients remain absolutely summable. 
This is shown in the following lemma:

Lemma 1 (BIBO Stability). Suppose that 𝑢(𝑡) ∈ R𝑛 is a bounded input 
sequence. Let 𝑦(𝑡) ∈ R𝑚 denote the sequence of outputs, and suppose that 
𝑌 (𝑧) = 𝐺(𝑧)𝑈 (𝑧) and all poles 𝑧𝑖 of 𝐺(𝑧) lie within the open unit circle. 
Then the sequence 𝑦(𝑡) is bounded and 𝑔(𝑡) (the inverse Z-transform of 𝐺(𝑧)) 
satisfies ‖𝑔(𝑡)‖2 ≤ 𝐶𝑔

(

(max𝑖 |𝑧𝑖| + 𝜖)𝑡
) for every 𝜖 > 0 and some scalar, 

real-valued 𝐶𝑔 > 0 which depends on 𝜖.
The proof of Lemma  1 is in Appendix  A.1. The next lemma discusses 

intuition behind the presence of an integrator in the closed-loop of an 
LTI MIMO system response. 

Lemma 2 (Integrator Action). Suppose that 𝑈 (𝑧) = 𝐾(𝑧)𝐸(𝑧) and the 
controller transfer function 𝐾(𝑧) is a matrix with rational entries, and 
𝐾(𝑧) = 𝐾I(𝑧 − 1)−1 + 𝐾̃, where 𝐾̃ has entries with poles all lying within 
the open unit circle. Then 𝑢(𝑡) = 𝐾I

∑𝑡
𝑖=1 𝑒(𝑖)+𝑑(𝑡), where 𝑑(𝑡) is a bounded 

sequence.

The proof of Lemma  2 is in Appendix  A.2. 

Remark 1.  The matrix 𝐾I is known as the integrator of the controller 
transfer function 𝐾(𝑧). Intuitively, for closed-loop systems, the integra-
tor adds the errors 𝑒(𝑡) and multiplies by the matrix 𝐾I. In the SISO 
case, 𝐾I is a scalar, so as long as 𝐾I ≠ 0, the cumulative effect of the 
control action is always present. However, in the MIMO case, 𝐾I may 
not be full column rank, so the cumulative effect of the errors may not 
be present in all output directions.

The next lemma is necessary to show that MIMO closed-loop in-
tegrator action is offset-free under some mild assumptions on the 
closed-loop transfer function.

Lemma 3 (Multiple Performance Index Closed-Loop Integrator Action is 
Offset-free). Suppose that 𝐸(𝑧) = 𝐺(𝑧)𝑌sp(𝑧) and 𝐺(𝑧) = (𝑧 − 1)𝑘𝐺̃(𝑧)
for some integer 𝑘 ≥ 1, and 𝐺̃(𝑧) has no poles at 𝑧 = 1. If all poles of 
𝐺(𝑧) lie within the open unit circle and lim𝑡→∞ 𝑦sp(𝑡) = 𝑐, then the multiple 
performance index error vector 𝑒(𝑡) ∈ R𝑛𝑦  has the property lim𝑡→∞ 𝑒(𝑡) = 0.

The proof of Lemma  3 is in Appendix  A.3. The main application 
of Lemmas  1–3 is to prove that certain formulations of controllers 
are offset-free, i.e., lim𝑡→∞ 𝑦(𝑡) = 𝑦sp. Consider the standard closed-
loop feedback system in Fig.  1, with output disturbances 𝑑𝑦 and input 
disturbances 𝑑𝑢. The transfer function of the MIMO LTI system is 

𝑃 (𝑧) =
𝑁
∑

𝑖=1
𝐻𝑖𝑧

−𝑖, (13)

where the 𝐻𝑖 are the impulse response coefficients in (1), so 𝑃 (𝑧)
is the Z-transform of the LTI system. Let 𝐾(𝑧) represent the transfer 
function of the controller. If the setpoint 𝑦sp converges as in Lemma  3, 
assuming that (𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧)

)−1 exists and is proper,3 the closed-loop 
exogenous-input, exogenous-output response using Z-transforms is

𝑌 (𝑧) =
(

𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧)
)−1(

𝑃 (𝑧)𝐾(𝑧)𝑌sp(𝑧) +𝐷𝑦(𝑧) + 𝑃 (𝑧)𝐷𝑢(𝑧)
)

.

3 This statement is equivalent to 𝐼𝑛𝑦 + 𝑃 (∞)𝐾(∞) being invertible (see, 
e.g., Lemma 5.1 of Zhou and Doyle (1998)).
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where the setpoint 𝑦sp ∈ R𝑛𝑦 , input disturbances 𝑑𝑢 ∈ R𝑛𝑢 , and output 
disturbances 𝑑𝑦 ∈ R𝑛𝑦  are exogenous inputs into the system. Then the 
overall error response is
𝐸(𝑧) = 𝑌 (𝑧) − 𝑌sp(𝑧)

=
(

𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧)
)−1 (

−𝑌sp(𝑧) +𝐷𝑦(𝑧) + 𝑃 (𝑧)𝐷𝑢(𝑧)
)

= 𝐺sp(𝑧)𝑌sp(𝑧) + 𝐺𝑑𝑦 (𝑧)𝐷𝑦(𝑧) + 𝐺𝑑𝑢 (𝑧)𝐷𝑢(𝑧),

which separates the transfer function contributions to the offset error 
resulting from 𝐺sp(𝑧) = −𝐺𝑑𝑦 (𝑧) = −

(

𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧)
)−1 and 𝐺𝑑𝑢 (𝑧) =

(

𝐼𝑛𝑦+𝑃 (𝑧)𝐾(𝑧)
)−1𝑃 (𝑧). If the controller formulation 𝐾(𝑧) has an integra-

tor then, under some mild conditions which follow from using Lemma 
3, the formulation is offset-free. Specifically, assume that the transfer 
matrix for the plant 𝑃 (𝑧) is BIBO stable, and assume that 

𝐾(𝑧) = 1
𝑧 − 1

𝐾I + 𝐾̃(𝑧), (14)

where 𝐾̃(𝑧) has no poles at 𝑧 = 1. Note that 𝑃 (1) = 𝐺𝑁 , which is 
the steady-state response of the LTI in (1). In order to prevent pole-
zero cancellation, we assume that 𝑃 (1)𝐾I is a full column-rank matrix. 
Intuitively, this means that the integrator 𝐾I is sensitive to all directions 
of inputs which can induce change in the output from the plant 𝑃 (𝑧). 
Note that 
lim
𝑧→1

(𝑧 − 1)(𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧)) = 𝑃 (1)𝐾I, (15)

which, by inverting the equation above, further implies that 

lim
𝑧→1

1
𝑧 − 1

(𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧))−1 = (𝑃 (1)𝐾I)−1, (16)

and 
lim
𝑧→1

(𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧))−1 = lim
𝑧→1

(𝑧 − 1)(𝑃 (1)𝐾I)−1 = 0. (17)

Therefore, 𝐺sp(𝑧) = −(𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧))−1 = (𝑧 − 1)𝐺̃(𝑧) where 𝐺̃(𝑧) has 
no poles at 𝑧 = 1. By Lemma  3, checking that a controller is offset-free 
in multiple performance indices while in the presence of integrators 
reduces to inspecting whether (i) 𝐺sp(𝑧) has poles within the open unit 
circle only and (ii) the disturbances 𝑑𝑦 and 𝑑𝑢 asymptotically converge 
to some constants as 𝑡 → ∞. A similar argument holds for the transfer 
function 𝐺𝑑𝑢 (𝑧). The above discussions lead to Theorem  1. 

Theorem 1.  Consider the closed-loop system with disturbances 𝑑𝑦 and 𝑑𝑢
in Fig.  1. Assume that the controller formulation 𝐾(𝑧) contains an integrator 
𝐾I, 𝑃 (1)𝐾I in (14) is full column rank (and thus invertible), and all poles 
of 𝐺𝑑𝑦 = −𝐺sp = (𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧))−1 and 𝐺𝑑𝑢 (𝑧) = (𝐼𝑛𝑦 + 𝑃 (𝑧)𝐾(𝑧))−1𝑃 (𝑧)
lie within the open unit circle. Then, the closed-loop system is offset-free in 
all 𝑛𝑦 performance indices, i.e., lim𝑡→∞ 𝑒(𝑡) = 0, if the limits lim𝑡→∞ 𝑑𝑦 and 
lim𝑡→∞ 𝑑𝑢 exist.

In particular, when there are no plant input and output distur-
bances, i.e., 𝑑𝑦 = 𝑑𝑢 = 0, the controller formulation is offset-free 
when 𝐾(𝑧) has an integrator and no pole-zero cancellation occurs. In 
Sections 3 and 5, Theorem  1 is used to formulate offset-free controllers 
for unconstrained QDMC and PCE-based QDMC, respectively. 

Remark 2. Theorem  1 shows that, if 𝑃 (1) is full column rank (which 
implies that the plant is controllable), a sufficient condition for closed-
loop stability is that 𝐾I has full column rank. Otherwise, the conclusion 
of Theorem  1 may not hold.

Theorem  1 formalizes a well-known fact that QDMC achieves offset-
free regulation when appropriate weights are used (see, e.g., Morari 
and Lee (1999) and Qin and Badgwell (2003); technicalities follow in 
Section 3). Since this property is only tacitly assumed in the literature, 
we feel the need to distinguish Theorem  1 because the theorem impli-
cations demonstrate a fundamental strength of the PCE-based QDMC 
method (discussion follows in Section 5).
5 
3. Offset-free unconstrained deterministic QDMC formulations

This section shows that unconstrained deterministic QDMC formu-
lations contain a full column-rank integrator, which by Theorem  1 
implies that the closed-loop system is offset-free in all performance in-
dices. Following the discussion in Section 2.3, the input and output con-
straints are removed from (8) and, at every time 𝑡, the unconstrained 
convex QP 
min
𝛥𝐮(𝑡)

 (𝐞(𝑡), 𝛥𝐮(𝑡)), (18)

is solved, where  (𝐞(𝑡), 𝛥𝐮(𝑡)) is given by (9g), and 𝐞(𝑡), which is defined 
by (6) and (9d), depends linearly on future control actions 𝛥𝐮(𝑡) as in 
(9a). Convex, unconstrained QPs have closed-form analytical solutions. 
First compute the gradient of (9g) with respect to 𝛥𝐮(𝑡) by direct 
differentiation: 
𝜕
𝜕𝛥𝐮

= 2𝛥𝐮(𝑡)⊤𝑊𝑢 + 2𝐞(𝑡)⊤𝑊𝑦
𝜕𝐞
𝜕𝛥𝐮

= 2𝛥𝐮(𝑡)⊤𝑊𝑢 + 2𝐞(𝑡)⊤𝑊𝑦
𝜕𝐲̂
𝜕𝛥𝐮

∈ R1×𝑛𝑢𝑐 ,
(19)

where the second equality holds by assuming 𝑦sp does not depend 
on 𝛥𝐮(𝑡). To compute the partial derivative of the MIMO LTI model 
predictions 𝐲̂(𝑡), expand (4c) into

𝐲̂(𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝑦̂(𝑡 + 1|𝑡)
𝑦̂(𝑡 + 2|𝑡)

⋮
𝑦̂(𝑡 + 𝑝|𝑡)

⎤

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1𝛥𝑢(𝑡) + 𝑓 (𝑡 + 1|𝑡) + 𝑛̂(𝑡)
𝐺1𝛥𝑢(𝑡 + 1) + 𝐺2𝛥𝑢(𝑡) + 𝑓 (𝑡 + 2|𝑡) + 𝑛̂(𝑡)

⋮
𝐺1𝛥𝑢(𝑡 + 𝑐 − 1) +⋯ + 𝐺𝑐𝛥𝑢(𝑡) + 𝑓 (𝑡 + 𝑐|𝑡) + 𝑛̂(𝑡)

⋮
𝐺1𝛥𝑢(𝑡 + 𝑝 − 1) +⋯ + 𝐺𝑝𝛥𝑢(𝑡) + 𝑓 (𝑡 + 𝑝|𝑡) + 𝑛̂(𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.

The free responses 𝑓 (𝑡 + 𝑘|𝑡) and disturbance terms 𝑛̂(𝑡) do not depend 
on current and future step changes. Therefore, the Jacobian of 𝐲̂(𝑡) with 
respect to 𝛥𝐮(𝑡) has structure 𝐆 defined by 

𝐆 ∶=
𝜕𝐲̂
𝜕𝛥𝐮

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1 0 0 ⋯ 0
𝐺2 𝐺1 0 ⋯ 0
𝐺3 𝐺2 𝐺1 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 0
𝐺𝑐 𝐺𝑐−1 𝐺𝑐−2 ⋯ 𝐺1
⋮ ⋮ ⋮ ⋮ ⋮
𝐺𝑝 𝐺𝑝−1 𝐺𝑝−2 ⋯ 𝐺𝑝−𝑐+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (20)

Since 𝐲̂(𝑡) depends linearly on 𝛥𝐮(𝑡), collect a vector of free responses 
as 
𝐟 (𝑡) ∶= vec[𝑓 (𝑡 + 1|𝑡), 𝑓 (𝑡 + 2|𝑡),… , 𝑓 (𝑡 + 𝑝|𝑡)], (21)

and condense the MIMO LTI model predictions into 
𝐲̂(𝑡) = 𝐆𝛥𝐮(𝑡) + 𝐟 (𝑡) + 1𝑝 ⊗ 𝑛̂(𝑡). (22)

The globally optimal solution to (18) is the input step change profile 
𝛥𝐮(𝑡)∗ which evaluates (19) to the zero vector (Nocedal & Wright, 
2006). Taking the transpose of (19), assuming 𝑊𝑢 and 𝑊𝑦 are symmet-
ric,4 and assuming as in Section 2.3 that 𝑦sp is constant for all time 𝑡, 
results in the linear equations 
(

𝜕
𝜕𝛥𝐮

)⊤
|

|

|

|

|𝛥𝐮(𝑡)∗
= 2𝑊 ⊤

𝑢 𝛥𝐮(𝑡)∗ + 2𝐆⊤𝑊 ⊤
𝑦 (𝐲̂(𝑡) − 1𝑝 ⊗ 𝑦sp)

= 2𝑊𝑢𝛥𝐮(𝑡)∗ + 2𝐆⊤𝑊𝑦
(

𝐆𝛥𝐮(𝑡)∗

+ 𝐟 (𝑡) + 1𝑝 ⊗ 𝑛̂(𝑡) − 1𝑝 ⊗ 𝑦sp
)

= 0.

(23)

4 Any non-symmetric square weight matrix 𝑊  producing the quadratic form 
𝑥⊤𝑊 𝑥 may always be re-formulated in symmetric form as 𝑊s =

1
2
(𝑊 + 𝑊 ⊤)

to produce an equivalent quadratic form, i.e., 𝑥⊤𝑊 𝑥 = 𝑥⊤𝑊 𝑥.
s
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Denoting the weighting matrix 𝐕 ∶=
(

𝐆⊤𝑊𝑦𝐆+𝑊𝑢
)−1𝐆⊤𝑊𝑦 and solving 

for 𝛥𝐮(𝑡)∗ gives
𝛥𝐮(𝑡)∗ = −𝐕(𝐟 (𝑡) + 1𝑝 ⊗ 𝑛̂(𝑡) − 1𝑝 ⊗ 𝑦sp)

= −𝐕
(

𝐟 (𝑡) − 1𝑝 ⊗ 𝑦(𝑡) + 1𝑝 ⊗ (𝑦m(𝑡) − 𝑦sp)
)

= −𝐕
(

𝐟 (𝑡) − 1𝑝 ⊗ 𝑓 (𝑡|𝑡) − 1𝑝 ⊗ 𝑒curr (𝑡)
)

, (24)

where 𝑒curr (𝑡) ∶= 𝑦sp − 𝑦m(𝑡) is defined as the current-time measured 
error from the setpoint. To obtain an expression for the unconstrained 
QDMC explicit control law 𝑢(𝑡), substitute (24) into (10) to obtain 
𝑢(𝑡) = 𝑢(𝑡 − 1) + [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕(1

𝑝 ⊗ 𝑒curr (𝑡))

− [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
(

𝐟 (𝑡) − 1𝑝 ⊗ 𝑓 (𝑡|𝑡)
)

.
(25)

Next, we show that the controller evolving with (25) contains an 
integrator in the sense of Lemma  2. Since the third term in (25) 
consists of only free responses, it depends linearly and only on the 
previous control actions 𝑢(𝑡 − 1), 𝑢(𝑡 − 2),… , 𝑢(𝑡 − 𝑁). Therefore, we 
may take the Z-transform of (25) and rearrange terms to obtain 𝑈 (𝑧) =
𝐾QDMC(𝑧)𝐸curr (𝑧), where 𝐾QDMC(𝑧) contains an integrator. In order to 
do so, we require Lemma  4. 

Lemma 4.  Extending the current-time free response 𝑓 (𝑡|𝑡) with future free 
responses 𝐟 (𝑡) gives 

[

𝑓 (𝑡|𝑡)
𝐟 (𝑡)

]

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑓 (𝑡|𝑡)
𝑓 (𝑡 + 1|𝑡)
𝑓 (𝑡 + 2|𝑡)

⋮
𝑓 (𝑡 + 𝑝|𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1 𝐻2 ⋯ 𝐻𝑁−1 𝐻𝑁
𝐺2 𝐻3 ⋯ 𝐻𝑁 0
𝐺3 𝐻4 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮

𝐺𝑝+1 𝐻𝑝+2 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝑢(𝑡 − 1)
𝑢(𝑡 − 2)

⋮
⋮

𝑢(𝑡 −𝑁)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

.

(26)

The reader may intuit the proof of Lemma  4 by noting that, in the 
free response component (5) of the system output response 𝐲 in (1) and 
(2), control actions do not change after time 𝑡−1. Theorem  2 is readily 
obtained from Lemma  4. 

Theorem 2.  Consider the LTI predictive model given by (22) and 
assume that the controller evolution dynamics is governed by (25). Then 
𝐾QDMC(𝑧) = 𝐴(𝑧)−1𝐵, where 

𝐵 = [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕(1
𝑝 ⊗ 𝐼𝑛𝑦 ) ∈ R𝑛𝑢×𝑛𝑦 (27)

and 𝐴(𝑧) ∈ R𝑛𝑢×𝑛𝑢  is the degree-𝑁 matrix polynomial of the variable 𝑧−1
given by

𝐴(𝑧) =

(

𝐼𝑛𝑢 − 𝑧−1𝐼𝑛𝑢 −
𝑁
∑

𝑖=1
𝐴𝑖𝑧

−𝑖

)

with 𝐴(1) = 0𝑛𝑢 .

Proof.  The fact that 𝐵 has the form in (27) follows immediately from 
(25). To compute polynomial matrix 𝐴(𝑧), expand the free response 
residual between future and current time as 

𝐟 (𝑡) − 1𝑝 ⊗ 𝑓 (𝑡|𝑡) =

⎛

⎜

⎜

⎜

⎜

⎝

⎡

⎢

⎢

⎢

⎢

⎣

𝐺2 𝐻3 ⋯ 𝐻𝑁 0
𝐺3 𝐻4 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮

𝐺𝑝+1 𝐻𝑝+2 ⋯ 0 0

⎤

⎥

⎥

⎥

⎥

⎦

− 1𝑝 ⊗
[

𝐺1 𝐻2 ⋯ 𝐻𝑁−1 𝐻𝑁
]

)

𝑢past ,

(28)

where the sequence of all 𝑁 past inputs is defined by 
𝑢past ∶= vec

[

𝑢(𝑡 − 1), 𝑢(𝑡 − 2),⋯ , 𝑢(𝑡 −𝑁)
]

. (29)

Applying (28) to the free response terms in (25) and taking the Z-
transform gives 

𝑈 (𝑧) = 𝑧−1𝑈 (𝑧) + 𝐵𝐸curr (𝑧) +
𝑁
∑

𝐴𝑖𝑧
−𝑖𝑈 (𝑧), (30)
𝑖=1

6 
which has the matrix coefficients 

𝐴1 = −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕

⎡

⎢

⎢

⎢

⎢

⎣

𝐺2 − 𝐺1
𝐺3 − 𝐺1

⋮
𝐺𝑝+1 − 𝐺1

⎤

⎥

⎥

⎥

⎥

⎦

;

𝐴𝑖 = −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕

⎡

⎢

⎢

⎢

⎢

⎣

𝐻𝑖+1 −𝐻𝑖
𝐻𝑖+2 −𝐻𝑖

⋮
𝐻𝑖+𝑝 −𝐻𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, ∀ 𝑖 ≥ 2.

(31)

Rearranging (30) gives the Z-transform of the structured control law 
expression 

𝑈 (𝑧) =

(

𝐼𝑛𝑢 − 𝑧−1𝐼𝑛𝑢 −
𝑁
∑

𝑖=1
𝐴𝑖𝑧

−𝑖

)−1

𝐵𝐸curr (𝑧) ∶= 𝐴(𝑧)−1𝐵𝐸curr (𝑧). (32)

To show that 𝐴(1) = 0𝑛𝑢 , we check that 
∑𝑁

𝑖=1 𝐴𝑖 = 0𝑛𝑢 . This result is 
readily derived from the matrix coefficient definitions in (31). Summing 
from 𝑖 = 2 gives 

𝑁
∑

𝑖=2
𝐴𝑖 = −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕

⎡

⎢

⎢

⎢

⎢

⎣

−
∑2

𝑖=2 𝐻𝑖

−
∑3

𝑖=2 𝐻𝑖
⋮

−
∑𝑝+1

𝑖=2 𝐻𝑖

⎤

⎥

⎥

⎥

⎥

⎦

= −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕

⎡

⎢

⎢

⎢

⎢

⎣

−(𝐺2 − 𝐺1)
−(𝐺3 − 𝐺1)

⋮
−(𝐺𝑝+1 − 𝐺1)

⎤

⎥

⎥

⎥

⎥

⎦

= −𝐴1

(33)

by the definition of the step-response coefficient matrices 𝐺𝑖. □

As a corollary to Theorem  1, we can characterize QDMC con-
troller integrator 𝐾I using the transfer function 𝐾QDMC(𝑧). Note that 
𝐾I = lim𝑧→1(𝑧 − 1)𝐾QDMC(𝑧) = lim𝑧→1(𝑧 − 1)𝐴(𝑧)−1𝐵. Assuming that 
lim𝑧→1(𝑧−1)𝐴(𝑧)−1 = lim𝑧→1((𝑧−1)−1𝐴(𝑧))−1 exists and is invertible, the 
computation of the integrator 𝐾I can then be found using the L’Hôpital 
rule. Specifically, 

𝐾I = lim
𝑧→1

((𝑧 − 1)−1𝐴(𝑧))−1𝐵 =

(

𝐼𝑛𝑢 +
𝑁
∑

𝑖=1
𝑖𝐴𝑖

)−1

𝐵. (34)

Therefore, the unconstrained QDMC formulation contains an integrator 
𝐾I given in (34). Theorem  1 further implies that, when the uncon-
strained QDMC formulation is applied to the closed-loop system, if 
the poles of (𝐼𝑛𝑢 + 𝐾QDMC(𝑧)𝑃 (𝑧))−1 and (𝐼𝑛𝑢 + 𝐾QDMC(𝑧)𝑃 (𝑧))−1𝑃 (𝑧)
lie within the unit circle, and 𝑃 (1)𝐾I is invertible, then the controller 
formulation is offset-free in all 𝑛𝑦 performance indices.

Remark 3. Zafiriou (1990) proves robust and nominal asymptotic 
stability for QDMC controllers with hard input and output constraints, 
but these proofs often rest on relatively conservative assumptions on 
the nonlinear state-to-controller mapping and do not guarantee integral 
action. In the event of controller saturation of the activation of hard 
state constraints, under constrained QDMC, the state may converge to 
a new closed-loop equilibrium that deviates from the setpoint. This 
behavior is illustrated in the simulation results for the first case study 
shown in Fig.  8.

4. Polynomial chaos expansions and Galerkin projection

This section summarizes PCEs of random variables and Galerkin 
projection of MIMO LTI systems with parametric uncertainty. Let 
(𝛺, ,P) be a probability space and let 𝜃 ∈ 𝛺 ⊂ R𝑛 be a random variable 
on 𝛺 representing a vector of parameters with uncertainties. For any 
measurable square-integrable functions 𝐹 ∶ R𝑛 → R and 𝐺 ∶ R𝑛 → R, 
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define the inner product of 𝐹  and 𝐺 under the probability measure 
induced by 𝜃 as an expectation over R𝑛, i.e., 

⟨𝐹 (𝜃), 𝐺(𝜃)⟩ ∶= E[𝐹 (𝜃)𝐺(𝜃)] = ∫𝛺
𝐹 (𝑥)𝐺(𝑥)𝑓𝜃(𝑥) d𝑥, (35)

where 𝑓𝜃 ∶ R𝑛 → R≥0 is the probability density function (PDF).  To 
ensure the validity of PCEs, the probability distribution of the underly-
ing parametric uncertainty 𝜃 must satisfy some regularity assumptions. 
Specifically, 𝜃 should be a continuous random variable with sufficiently 
small tail probabilities to guarantee existence of all moments so that the 
expectation of any polynomial is well-defined. These assumptions are 
easily satisfied in many manufacturing and control applications and are 
summarized in the following assumption:

Assumption 1.  We assume that 𝜃 satisfies the following condi-
tions (Rahman, 2018)

• 𝜃 is an absolutely continuous random variable on 𝛺 ⊆ R𝑛 with 
continuous PDF 𝑓𝜃 .

• 𝜃 has bounded moments of all orders, that is, 

E[ |𝜃𝐣| ] ∶= ∫R𝑛
|𝑥𝐣|𝑓𝜃(𝑥)𝑑𝑥 < ∞ (36)

where 𝐣 = (𝑗1, 𝑗2,… , 𝑗𝑛) ∈ N𝑛 is a multinomial index with 𝑥𝐣 =
𝑥𝑗11 𝑥𝑗22 ⋯ 𝑥𝑗𝑛𝑛  and total degree 𝑑 ∶= | 𝐣 | =

∑𝑛
𝑘=1 𝑗𝑘.

• 𝑓𝜃 is exponentially integrable, that is, there exists a real-valued 
scalar 𝛼 > 0 such that5

∫R𝑛
𝑒−𝛼‖𝑥‖𝑓𝜃(𝑥) d𝑥 < ∞.

The first condition is required to prevent the uncertainty structure 
from being singular, such as those uncertainties having an infinite 
probability density on measure-zero subsets (e.g., the Dirac delta mea-
sure). The second condition is required to ensure that expectations 
of polynomial functions of 𝜃 are well-defined, which is required for 
the PCE expansions that follow. The third condition is much more 
technical, but is essential to ensure that 𝜃 is uniquely defined by its 
moments. This highly technical condition is known as the ‘‘moment 
problem’’ in the literature, and is not entirely crucial for the discussions 
that follow. The reader is referred to Schmüdgen (2017) for more 
details.

Intuitively, these assumptions are made to ensure that the modeled 
parametric uncertainties are well-behaved on the operating space 𝛺 of 
interest, which is easily verified for many manufacturing applications. 
For example, if 𝜃 has compact support (i.e., the set {𝑥 ∈ R𝑛

| 𝑓𝜃(𝑥) ≠
0} has a compact closure) and a continuous PDF, then the above 
assumptions are satisfied. Moreover, if 𝜃 is any multivariate Gaussian 
variable (as is most commonly assumed in process control applications), 
the above assumptions are immediately satisfied. The components of 
𝜃 need not be independent, i.e., influences from different parametric 
uncertainties may be correlated.

If the above assumptions are satisfied, then Theorem  3 holds. 

Theorem 3 (Polynomial Chaos Expansions (Ernst, Mugler, Starkloff, & 
Ullmann, 2012; Rahman, 2018)). Suppose the random parameter 𝜃 satisfies 
Assumption  1, and 𝑦(𝜃) ∈ 2(𝛺, ,P) is a real-valued square-integrable 
system output function of 𝜃. Then there exists a Polynomial Chaos Expansion 

𝑦(𝜃) =
∞
∑

𝑘=0
𝑦𝑘𝛷𝑘(𝜃), (37)

5 This condition implies that the probability of observing very large para-
metric uncertainties in the nominal process is exceedingly rare and decays 
quicker than exponentially.
7 
where the weighting factors 𝑦𝑘 ∈ R𝑛𝑦  are deterministic, and each of the 
𝛷𝑘 ∶ R𝑛 → R are random polynomial basis functions of 𝜃 ∈ 𝛺 which are 
orthonormal with respect to the probability measure induced by 𝜃. That is, 
⟨𝛷𝑖(𝜃), 𝛷𝑗 (𝜃)⟩ ∶= E[𝛷𝑖(𝜃)𝛷𝑗 (𝜃)]

= ∫R𝑛
𝛷𝑖(𝑥)𝛷𝑗 (𝑥)𝑓𝜃(𝑥) d𝑥 = 𝛿𝑖,𝑗 ,

(38)

where 𝛿𝑖,𝑗 = 1 for 𝑖 = 𝑗; otherwise 𝛿𝑖,𝑗 = 0. Furthermore, the (Galerkin) 
projection of 𝑦 onto 𝛷𝑘 is given by 

𝑦𝑘 = ⟨𝑦,𝛷𝑘(𝜃)⟩ = ∫R𝑛
𝑦(𝑥)𝛷𝑘(𝑥)𝑓𝜃(𝑥) d𝑥. (39)

and the convergence of the expectation of truncated expansion terms of 𝑦(𝜃)
is given in the 2-sense, i.e., 

E
⎡

⎢

⎢

⎣

(

𝑦(𝜃) −
𝐾
∑

𝑘=0
𝑦𝑘𝛷𝑘(𝜃)

)2
⎤

⎥

⎥

⎦

= ∫R𝑛

(

𝑦(𝑥) −
𝐾
∑

𝑘=0
𝑦𝑘𝛷𝑘(𝑥)

)2

𝑓𝜃(𝑥) d𝑥

→ 0 𝑎𝑠 𝑚 ∈ N → ∞.

(40)

In manufacturing applications, the means and variances of uncer-
tain process outputs are of practical interest. By conventions such as 
in Cameron and Martin (1947) and Xiu and Karniadakis (2002), these 
vectors may be expressed in the PCT framework by defining 𝛷0 ∶= 1, 
which implies that E[𝛷𝑘(𝜃)𝛷0(𝜃)] = E[𝛷𝑘(𝜃)] = 0 for 𝑘 > 0. Thereafter, 
the simple expressions for component-wise means and variances, 

E[𝑦(𝜃)] = 𝑦0, Var[𝑦(𝜃)] =
∞
∑

𝑘=1
𝑦2𝑘 , (41)

are obtained. In the one-dimensional case where 𝜃 ∈ R, the polynomial 
basis functions 𝛷𝑘 can be indexed by increasing degree due to the 
natural ordering of 𝑘 ∈ N. The polynomial basis functions for some 
common real-valued random variables are given in Table  1. In the 
𝑛-dimensional case where 𝜃 ∈ R𝑛 and each of the elements 𝜃𝑗 for 
𝑗 = 1, 2,… , 𝑛 is an independent, identically distributed (i.i.d.) random 
variable, the polynomial basis functions 𝛷𝑘(𝜃) can be taken as the 
product of the desired basis polynomial for each dimension 𝑗. For 
example, consider the case where 𝜃 is a standard Gaussian random 
vector. The polynomial basis functions are then constructed as products 
of Hermite polynomials for each 𝜃𝑗 , i.e., 

𝑦(𝜃) =
∞
∑

𝑖1 ,𝑖2 ,…,𝑖𝑛=0
𝑦𝑖1 ,𝑖2 ,…,𝑖𝑛

𝑛
∏

𝑗=1
𝛷𝑖𝑗 (𝜃𝑗 ), (42)

where 𝛷𝑘 ∶ R → R is the 𝑘th Hermite polynomial. Moreover, when all 
components 𝜃𝑗 are i.i.d., the total number of unique expansion terms 
𝑀 is given by the binomial coefficient 

𝑀 =
(

𝑛 + 𝑑
𝑑

)

, (43)

where 𝑛 is the number of uncertain parameters, and 𝑑 is the highest 
total degree of the polynomial functions.6 Although the number of 
terms in (43) scales combinatorially as (𝑛𝑑 ), in practice an accurate 
representation and propagation of uncertainty can be achieved with 
a low value of 𝑑, e.g., as shown in von Andrian and Braatz (2019, 
2020). This property makes PCE a computationally efficient way of 
incorporating uncertainties of parameters into SMPC, where one must 
approximate each uncertain parameter as a truncation of the PCE 
expansion. This approach is known as the Galerkin projection method, 
which is described in the next section.

6 The formula (43) can be observed from a bijection between the number 
of expansion terms 𝑀 and the number of ways to arrange 𝑑 red balls and 𝑛
blue balls in a line.
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Table 1
Some continuous orthogonal basis functions, their commonly used symbols, and associated weight functions 𝑤(𝑥) (i.e., scaled forms of probability 
distributions 𝑓𝜃 (𝑥) used for quadrature rules Davis & Polonsky, 1972; Petzke, Mesbah, & Streif, 2020) which find use in PCE applications. 
Populated with reference to Davis and Rabinowitz (1984), Xiu and Karniadakis (2002), and Zelen and Severo (1972). Legendre and Chebyshev 
polynomials are special cases of Jacobi polynomials, which are included due to their utility in fast spectral and quadrature methods (Boyd, 
2001). The support of the distributions is the closure of set {𝑥|𝑓𝜃 (𝑥) ≠ 0} ⊆ R𝑛. Shape parameters 𝛼 > −1 and 𝛽 > −1 are real-valued. Distributions 
and orthogonal basis functions may be transformed to other supports by affine maps, e.g., the four parameter beta distribution discussed in 
Couaillier and Savin (2019) is of practical interest. The interested reader may consult (Szegő, 1975) for more details on the theory of classical 
orthogonal polynomials.
 Distribution 𝑓𝜃 (𝑥) Support 𝑥 Polynomial basis functions Weight function 𝑤(𝑥) 
 Uniform [−1, 1] Legendre 𝑃𝑛(𝑥) 1  
 – [−1, 1] Chebyshev first kind 𝑇𝑛(𝑥) (1 − 𝑥2)−1∕2  
 Wigner unit semicircle [−1, 1] Chebyshev second kind 𝑈𝑛(𝑥) (1 − 𝑥2)1∕2  
 Transformed beta (Couaillier & Savin, 2019) [−1, 1] Jacobi 𝑃 (𝛼, 𝛽)

𝑛 (𝑥) (1 − 𝑥)𝛼 (1 + 𝑥)𝛽  
 Unit-rate exponential R≥0 Laguerre 𝐿𝑛(𝑥) exp(−𝑥)  
 Unit-rate gamma R≥0 Generalized Laguerre 𝐿(𝛼)

𝑛 (𝑥) 𝑥𝛼 exp(−𝑥)  
 Gaussian R Hermite 𝐻𝑛(𝑥) exp(−𝑥2)  
4.1. Galerkin projection method for MIMO LTI systems with parametric 
uncertainty

Consider the MIMO LTI impulse- and step-response system with 
parametric uncertainty 

𝑦(𝑡; 𝜃) ∶=
∞
∑

𝑖=1
𝐻𝑖(𝜃)𝑢(𝑡 − 𝑖) =

∞
∑

𝑖=1
𝐺𝑖(𝜃)𝛥𝑢(𝑡 − 𝑖), (44)

where each of the 𝐻𝑖(𝜃) and 𝐺𝑖(𝜃) =
∑∞

𝑗=𝑖 𝐻𝑗 (𝜃) are parameterized by 
the random vector 𝜃 ∈ R𝑛. In order to ensure that the equality in (44) 
for a step-response model remains valid, assume that ∑∞

𝑖=1
‖

‖

𝐻𝑖(𝜃)‖‖ < 𝑀
almost surely (i.e., with probability one) for some positive real-valued 
constant 𝑀 > 0. This assumption implies that the corresponding step-
response system in (44) is BIBO stable  for all possible values of the 
parametric uncertainty 𝜃. i.e. Now, for any BIBO stable random output 
response 𝑦(𝑡; 𝜃) depending on random parameter vector 𝜃, Theorem  3 
shows that 𝑦(𝑡; 𝜃) ∈ 2(𝛺, ,P) admits a PCE of form (37). To elucidate 
the role the temporal dependence plays on the output response in the 
PCE of 𝑦(𝑡; 𝜃), define the coefficient 𝑦𝑘(𝑡) by applying the Galerkin 
projection method which involves performing a projection of (44) onto 
the PCE basis functions 𝛷𝑘(𝜃) as in 

𝑦𝑘(𝑡) ∶= E[𝑦(𝑡; 𝜃)𝛷𝑘(𝜃)] = ∫R𝑛

∞
∑

𝑖=1
𝐻𝑖(𝜃)𝑢(𝑡 − 𝑖)𝛷𝑘(𝜃) d𝜃

=
∞
∑

𝑖=1

(

∫R𝑛
𝐻𝑖(𝑥)𝛷𝑘(𝑥)𝑓𝜃(𝑥) d𝑥

)

𝑢(𝑡 − 𝑖).

(45)

Interchanging the integral operator and the infinite summation in 
(45) follows from the fact that ∑∞

𝑖=1
‖

‖

𝐻𝑖(𝜃)‖‖ < 𝑀 almost surely 
and by dominated convergence. Denoting the (𝑖, 𝑘)th inner product of 
impulse-response coefficient matrices 𝐻𝑖(𝜃) and step-response coeffi-
cient matrices 𝐺𝑖(𝜃) with basis function 𝛷𝑘(𝜃) as 

𝐻𝑖,𝑘 ∶= ⟨𝐻𝑖(𝜃), 𝛷𝑘(𝜃)⟩ = ∫R𝑛
𝐻𝑖(𝑥)𝛷𝑘(𝑥)𝑓𝜃(𝑥) d𝑥, (46)

and 

𝐺𝑖,𝑘 ∶= ⟨𝐺𝑖(𝜃), 𝛷𝑘(𝜃)⟩ = ∫R𝑛
𝐺𝑖(𝑥)𝛷𝑘(𝑥)𝑓𝜃(𝑥) d𝑥, (47)

results in the non-random MIMO LTI system for the 𝑘th PCE coefficient 
of 𝑦(𝑡; 𝜃) defined as 

𝑦𝑘(𝑡) ∶=
∞
∑

𝑖=1
𝐻𝑖,𝑘𝑢(𝑡 − 𝑖) =

∞
∑

𝑖=1
𝐺𝑖,𝑘𝛥𝑢(𝑡 − 𝑖). (48)

For the purposes of numerical simulation, the expansion must be trun-
cated at some finite order 𝐾 ∈ N. By denoting
𝑦PCE(𝑡) ∶= vec[𝑦0(𝑡), 𝑦1(𝑡),… , 𝑦𝐾−1(𝑡)], (49)

PCE
𝑖 ∶= vec[𝐻𝑖,0,𝐻𝑖,1,… ,𝐻𝑖,𝐾−1], (50)

PCE ∶= vec[𝐺 ,𝐺 ,… , 𝐺 ]
𝑖 𝑖,0 𝑖,1 𝑖,𝐾−1

8 
= vec

[ ∞
∑

𝑗=𝑖
𝐻𝑖,0,

∞
∑

𝑗=𝑖
𝐻𝑖,1,… ,

∞
∑

𝑗=𝑖
𝐻𝑖,𝐾−1

]

, (51)

the expanded non-random MIMO LTI system containing all the desired 
PCE coefficients can be written as 

𝑦PCE(𝑡) =
∞
∑

𝑖=1
PCE

𝑖 𝑢(𝑡 − 𝑖) =
∞
∑

𝑖=1
PCE𝑖 𝛥𝑢(𝑡 − 𝑖). (52)

The mean vector and variance vectors can be approximated by 

E[𝑦(𝑡; 𝜃)] ≈ 𝑦0(𝑡), Var[𝑦(𝑡; 𝜃)] ≈
𝐾−1
∑

𝑖=1
𝑦𝑖(𝑡)2, (53)

where the variance is taken component-wise on the output vector. 
System (52) for the PCE coefficients can then be used to formulate 
offset-free QDMC controllers. We develop this key idea in more detail 
in Section 5.

4.2. Galerkin projections of nonlinear ODEs with parametric uncertainty

Some MIMO process models have a state–space representation with 
significant nonlinear structure. For such models, expressing the cor-
responding input–output response model of the form (44) is not an-
alytically tractable, especially in cases where the Galerkin projection 
integral in (45) does not have a closed form in terms of elementary 
functions. This subsection describes an approximate method, based 
on work by Xiu and Karniadakis (2002), for obtaining the PCE step-
response coefficient matrices PCE𝑖 . Suppose that a system of nonlinear 
ODEs with uncertain parameters and deterministic input dynamics is 
modeled by 
d𝑥
d𝑡

= 𝑓 (𝑥, 𝑢, 𝜃), (54)

where 𝑡 ∈ R is the continuous time, 𝑥 ∈ R𝑛𝑥  is the state vector, 
𝑢 ∈ R𝑛𝑢  is the vector of inputs, and 𝑓 is some sufficiently smooth but 
otherwise arbitrary function. Append the linear measurement equations 
𝑦(𝑡; 𝜃) = 𝐶𝑥(𝑡, 𝜃) for some exactly known matrix 𝐶 ∈ R𝑛𝑦×𝑛𝑥  to model the 
random vector of observable quantities 𝑦(𝑡; 𝜃) ∈ R𝑛𝑦 . Then approximate 
the dynamics of (54) using the order-𝑃  truncated PCE of the state 
variable 𝑥 as 

d
d𝑡

(𝑃−1
∑

𝑘=0
𝑥𝑘𝛷𝑘(𝜃)

)

≈ 𝑓

(𝑃−1
∑

𝑘=0
𝑥𝑘𝛷𝑘(𝜃), 𝑢, 𝜃

)

. (55)

An expanded ODE system for PCE coefficients is obtained by the 
Galerkin projection method: 
d𝑥𝑗
d𝑡

=

⟨

𝑓

(𝑃−1
∑

𝑘=0
𝑥𝑘𝛷𝑘(𝜃), 𝑢, 𝜃

)

, 𝛷𝑗 (𝜃)

⟩

= ∫ 𝑓

(𝑃−1
∑

𝑥𝑘𝛷𝑘(𝜃), 𝑢, 𝜃

)

𝛷𝑗 (𝑥)𝑓𝜃(𝑥) d𝑥,

(56)
R𝑛 𝑘=0
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where 𝑥𝑗 is the 𝑗th continuous-time PCE coefficient of the state variable 
𝑥. The 𝑗th continuous-time PCE coefficient of the output variable can 
be obtained similarly, 

𝑦𝑗 (𝑡) = 𝐶 ∫R𝑛

𝑃−1
∑

𝑘=0
𝑥𝑘𝛷𝑘(𝜃)𝛷𝑗 (𝑥)𝑓𝜃(𝑥) d𝑥 = 𝐶𝑥𝑗 (𝑡), (57)

which follows immediately from the orthogonality of the polynomial 
basis 𝛷𝑘(𝜃). Similarly to the deterministic case in (2), the step-response 
coefficient matrices PCE𝑖  in (52) can be obtained by applying a step in-
put, obtaining the step-response profile of each of the PCE coefficients, 
and then discretizing the response profile to obtain the step-response 
coefficients matrices PCE𝑖 .

5. Offset-free PCE-based QDMC formulations

This section describes three PCE-based QDMC formulations which 
differ in how the variances of high-order PCE coefficients for process 
output predictions and observations are weighted in the control ob-
jective. The formulations encode different levels of confidence in the 
model due to parametric uncertainty, making different assumptions 
regarding the observability of higher order PCE coefficients in the 
process measurements. For the PCE-based QDMC formulation setting 
higher order PCE coefficient variance measurements to zero exactly, we 
also specify necessary and sufficient conditions for nominal and robust 
stability for unconstrained systems. Much of the notation is re-used 
from Section 2.3.

Although the three PCE-based QDMC controller formulations differ 
in the structure of 𝑦PCEm (𝑡) and 𝑦̂PCE(𝑡 + 𝑘|𝑡), the formulations continue 
to retain integrators and offset-free properties under the hypotheses of 
Theorems  1 and 2. That is, all of the controllers achieve offset-free 
control for the expected value of each of the multiple performance 
indices. The multiple performance indices are interpreted in the PCE-based 
context to mean an expanded setpoint tracking error 𝑒PCE(𝑡 + 𝑖|𝑡) ∈ R𝑛𝑦𝐾

for 𝑖 ∈ {1, 2,… , 𝑝} in all PCE coefficients of the system output.

5.1. PCE-based QDMC formulations

PCE-based QDMC shares the same mathematical structure as QDMC 
presented in Section 2.3, but with one notable difference. First perform 
a finite-memory truncation of the PCE-based MIMO LTI model (44) to 
obtain 

𝑦PCE(𝑡) =
𝑁
∑

𝑖=1
PCE

𝑖 𝑢(𝑡 − 𝑖) =
∞
∑

𝑖=1
PCE𝑖 𝛥𝑢(𝑡 − 𝑖), (58)

where 𝑁 is the truncation number determined from system identifi-
cation procedures. Let 𝑦PCEm (𝑡) denote the measurement value of 𝑦PCE, 
𝑛̂PCE(𝑡 + 𝑘|𝑡) ∶= 𝑦PCEm (𝑡) − 𝑦PCE(𝑡) denote the disturbance for 𝑘 ∈
{1, 2,… , 𝑝}, and 𝑦̂PCE(𝑡 + 𝑘|𝑡) denote the prediction model.7 Denote the 
expanded vector of PCE coefficient setpoints as 

𝑦PCEsp (𝑡) ∶= vec[𝑦sp(𝑡), 0, … , 0]. (59)

Essentially, (59) encapsulates the control objective to asymptotically 
eliminate all higher-moment system output variations — which arise 
from parametric uncertainty in the system — about a nominal reference 
signal. In other words, the goal is to stabilize the distribution of system 
outputs to the deterministically specified setpoints. Letting 𝑒PCE(𝑡 +

7 Although high-order PCE coefficients are not observable in practice, 
𝑦PCEm (𝑡) may be defined by setting the measured output equal to the zeroth-
order PCE coefficient and assuming all higher order coefficients equal zero 
(see, e.g., (76) below).
9 
𝑖|𝑡) ∶= 𝑦̂PCE(𝑡+ 𝑖|𝑡) − 𝑦PCEsp (𝑡+ 𝑖), define the modified PCE-based setpoint 
tracking objective function  PCE ∈ R≥0 as 

 PCE ∶=
𝑝
∑

𝑖=1
𝑒PCE(𝑡 + 𝑖|𝑡)⊤PCE

𝑦𝑖 𝑒PCE(𝑡 + 𝑖|𝑡)

+
𝑐
∑

𝑖=1
𝛥𝑢(𝑡 + 𝑖 − 1)⊤𝑊𝑢𝑖𝛥𝑢(𝑡 + 𝑖 − 1),

(60)

where each of the PCE
𝑦𝑖 ∈ R𝑛𝑦𝐾×𝑛𝑦𝐾 and 𝑊𝑢𝑖 ∈ R𝑛𝑢×𝑛𝑢  is positive semi-

definite. In parallel with (8), the convex QP solved by PCE-based QDMC 
is 
min


 PCE(𝛥𝑢(𝑡), 𝛥𝑢(𝑡 + 1),… , 𝛥𝑢(𝑡 + 𝑐 − 1))

s.t. 𝐴PCE
𝑖 𝑦̂PCE(𝑡 + 𝑖|𝑡) ≤ 𝑏𝑖, ∀𝑖 ∈ {1, 2,… , 𝑝},

𝑢min ≤ 𝑢(𝑡 + 𝑖 − 1) ≤ 𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

𝛥𝑢min ≤ 𝛥𝑢(𝑡 + 𝑖 − 1) ≤ 𝛥𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

(61)

where   is defined as in (8), 𝐴PCE
𝑖 ∈ R𝑚×𝑛𝑦𝐾 carries a sparse structure 

depending on the controller formulations that follow, and 𝑏𝑖 ∈ R𝑚

is defined as in (8). Per the discussion in Section 3, the convex and 
quadratic structure of  PCE is due to the PCE-based MIMO LTI model 
(44) depending linearly and only on past control actions  . 

Remark 4.  To explicitly include output variances for each of the PCE 
coefficients in the control objective (60), define 
PCE

𝑦𝑖 = diag[𝑊𝑦𝑖, 𝐷,𝐷,… , 𝐷], (62)

where 𝐷 is a diagonal positive-definite matrix.
As an extension of Section 2.3, simplify the notation for PCE-based 

QDMC by defining 
𝐲̂PCE(𝑡) ∶= vec

[

𝑦̂PCE(𝑡 + 1|𝑡), 𝑦̂PCE(𝑡 + 2|𝑡),… , 𝑦̂PCE(𝑡 + 𝑝|𝑡)
]

, (63a)

𝐲PCEsp (𝑡) ∶= vec
[

𝑦PCEsp (𝑡 + 1), 𝑦PCEsp (𝑡 + 2),… , 𝑦PCEsp (𝑡 + 𝑝)
]

, (63b)

𝐞PCE(𝑡) ∶= 𝐲̂PCE(𝑡) − 𝐲PCEsp (𝑡) , (63c)

PCE
𝑦 ∶= diag

[

PCE
𝑦1 ,PCE

𝑦2 ,… ,PCE
𝑦𝑝

]

. (63d)

Then, using 𝛥𝐮(𝑡) as defined in (9a), the PCE-based QDMC objective is 
 PCE(𝐞PCE(𝑡), 𝛥𝐮(𝑡)) ∶= 𝐞PCE(𝑡)⊤PCE

𝑦 𝐞PCE(𝑡) + 𝛥𝐮(𝑡)⊤𝑊𝑢𝛥𝐮(𝑡). (63e)

Extending (25), the PCE-based QDMC control dynamics evolve accord-
ing to 
𝑢(𝑡) = 𝑢(𝑡 − 1) + [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ] 𝐕

PCE (1𝑝 ⊗ 𝑒PCEcurr (𝑡))

− [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ] 𝐕
PCE (

𝐟PCE(𝑡) − 1𝑝 ⊗ 𝑓PCE(𝑡|𝑡)
)

,
(64)

where 𝑒PCEcurr (𝑡) ∶= 𝑦PCEsp − 𝑦PCEm (𝑡), 𝑓PCE(𝑡|𝑡) is the free response of the 
prediction model 𝑦̂PCE at the current time, and 𝐟PCE(𝑡) is the PCE-
based vectorization of free responses similar to (21). In addition, the 
PCE-based weighting matrix 𝐕PCE and PCE-based overall step-response 
coefficient matrix 𝐆PCE are structured as 
𝐕PCE ∶=

(

𝐆PCE⊤PCE
𝑦 𝐆PCE +𝑊𝑢

)−1𝐆PCE⊤PCE
𝑦 , (65)

𝐆PCE ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺PCE
1 0 0 ⋯ 0

𝐺PCE
2 𝐺PCE

1 0 ⋯ 0

𝐺PCE
3 𝐺PCE

2 𝐺PCE
1 ⋱ ⋮

⋮ ⋮ ⋮ ⋱ 0
𝐺PCE
𝑐 𝐺PCE

𝑐−1 𝐺PCE
𝑐−2 ⋯ 𝐺PCE

1
⋮ ⋮ ⋮ ⋮ ⋮

𝐺PCE
𝑝 𝐺PCE

𝑝−1 𝐺PCE
𝑝−2 ⋯ 𝐺PCE

𝑝−𝑐+1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (66)

Since (58)–(66) are a reformulation of QDMC for an expanded 
MIMO LTI system of PCE coefficients, the controller formulation in 
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(64) always has an integrator. As such, the controllers presented below 
all contain integrators, with key differences appearing only in (i) the 
prediction model 𝑦̂PCE, (ii) the definition of the measurements 𝑦PCEm , and 
(iii) the weights corresponding to the higher-order PCE coefficients in 
the weight matrices PCE

𝑦𝑖 .

5.2. Offset-free controller formulations

5.2.1. PCE-based QDMC with zero-variance weight
The zero-variance weight controller formulation includes only the 

expected values of system outputs, i.e., the zeroth-order coefficients 
𝑦0, in the control objective. Equivalently, all high-order output vector 
variance weight matrices 𝐷𝑘 in (62) are excluded as in 

PCE
𝑦𝑖 ∶= diag[𝑊𝑦𝑖, 0𝑛𝑦 , 0𝑛𝑦 ,… , 0𝑛𝑦 ]. (67)

Simplifying the expressions in (64) and (65) produces a control law that 
is similar, but not equivalent, to the control law (25) previously derived 
for deterministic QDMC: 
𝑢(𝑡) = 𝑢(𝑡 − 1) + [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕0(1𝑝 ⊗ 𝑒curr (𝑡))

− [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕0
(

𝐟0(𝑡) − 1𝑝 ⊗ 𝑓0(𝑡|𝑡)
)

,
(68)

where 𝐟0 is the free response of the zeroth PCE coefficient for all future 
times 𝑖 = 1, 2,… , 𝑝, 𝑓0(𝑡|𝑡) is the free response of the zeroth PCE 
coefficient for the current time. Further, define the weighting matrix 
for the zeroth-order PCE coefficient, 
𝐕0 ∶=

(

𝐆⊤
0𝑊𝑦𝐆0 +𝑊𝑢

)−1𝐆⊤
0𝑊𝑦, (69)

where 𝑊𝑦 is the weight matrix of the expected value, as defined in (9e). 
Also, define the step-response coefficient matrix for the zeroth-order 
PCE coefficient as 

𝐆0 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐺1,0 0 0 ⋯ 0
𝐺2,0 𝐺1,0 0 ⋯ 0
𝐺3,0 𝐺2,0 𝐺1,0 ⋱ ⋮
⋮ ⋮ ⋮ ⋱ 0

𝐺𝑐,0 𝐺𝑐−1,0 𝐺1,0 ⋯ 𝐺1,0
⋮ ⋮ ⋮ ⋮ ⋮

𝐺𝑝,0 𝐺𝑝−1,0 𝐺𝑝−2,0 ⋯ 𝐺𝑝−𝑐+1,0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (70)

This formulation has an integrator, because the formulation is a specific 
case of (64). The advantage of this formulation over the conventional 
deterministic PCE, which produces control law (25), is that the ex-
pected value of the predicted output is used to calculate the setpoint 
error. The expected value takes into account the entire probability 
distribution of outputs, which is procedurally different from using a 
nominal value for the predicted output.

5.2.2. PCE-based QDMC with variance prediction reset to zero at every time 
step

At every time step 𝑡, there exists a measurement of the system 𝑦𝑚(𝑡)
indicating that the system has been exactly observed. With this perspec-
tive, assume that the higher order PCE coefficients of the free response 
at the current time, i.e., 𝑓PCE(𝑡|𝑡) = 𝑦(𝑡) as defined in Section 2.2, should 
be set to zero to reflect full certainty in the output value. When the 
variance prediction is reset to zero at every time step, the PCE-based 
free response 𝑓PCE(𝑡 + 𝑘|𝑡) is modified by setting the high-order PCE 
coefficients as 𝑓𝑗 (𝑡 + 𝑘|𝑡) = 0 for 𝑗 ∈ {1, 2,… , 𝐾 − 1}. The equation for 
the predictive model, however, remains unchanged: 

𝑦̂PCE(𝑡 + 𝑘|𝑡) ∶=
𝑘
∑

𝑖=1
PCE𝑖 𝛥𝑢(𝑡 + 𝑘 − 𝑖) + 𝑓PCE(𝑡 + 𝑘|𝑡) + 𝑛̂PCE(𝑡 + 𝑘|𝑡), (71)

where the PCE-based free response is expanded, and the PCE-based 
disturbance term 𝑛̂PCE(𝑡 + 𝑘|𝑡) is defined as 
𝑓PCE(𝑡 + 𝑘|𝑡) ∶= vec[𝑓0(𝑡 + 𝑘|𝑡), 𝑓1(𝑡 + 𝑘|𝑡),… , 𝑓𝐾−1(𝑡 + 𝑘|𝑡)]

(72)

= vec[𝑓0(𝑡 + 𝑘|𝑡), 0,… , 0],

10 
Fig. 2. Block diagram for the closed-loop system with PCE-based QDMC transfer 
function 𝐾QDMC(𝑧) and parametric uncertainty 𝜃 in the plant 𝑃 (𝑧, 𝜃). Note that the 
setpoint error 𝑒(𝑡) is not explicitly shown in this block diagram, but we have the 
projection 𝑒PCE = [𝐼𝑛𝑦 0𝑛𝑦 ⋯ 0𝑛𝑦 ]

⊤𝑒(𝑡).

𝑛̂PCE(𝑡 + 𝑘|𝑡) ∶= 𝑦PCEm (𝑡) − 𝑓PCE(𝑡|𝑡). (73)

Simplifying, the predictive model (71)–(73) gives the temporal evolu-
tion of the control law as 
𝑢(𝑡) = 𝑢(𝑡 − 1) − [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕

PCE(1𝑝 ⊗ 𝑒curr (𝑡))

− [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
PCE(𝐟PCE(𝑡) − 1𝑝 ⊗ 𝑓PCE(𝑡|𝑡)

)

= 𝑢(𝑡 − 1) − [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
PCE(1𝑝 ⊗ 𝑒curr (𝑡))

− [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕̃
(

𝐟0(𝑡) − 1𝑝 ⊗ 𝑓0(𝑡|𝑡)
)

,

(74)

where the weighting matrix is defined by 
𝐕̃ ∶=

(

𝐆PCE⊤PCE
𝑦 𝐆PCE +𝑊𝑢

)−1𝐆⊤
0𝑊𝑦. (75)

The controller (74) contains an integrator—the proof essentially follows 
the same structure as Theorem  2, except with minor modifications. 
Although (74) is similar to the formulation for zero variance weight in 
(68), the weight matrix 𝐕̃ has the PCE-based step-response coefficient 
matrices 𝐆PCE for high-order coefficients, whereas formulation (69) 
does not.

Remark 5.  In order to determine the value of 𝑒curr (𝑡), the definition 
for 𝑦PCEm (𝑡) can be made arbitrary in controller formulation (74), with a 
canonical definition shown in the next subsection.

5.2.3. PCE-based QDMC with output measurement variance of zero
Accepting that high-order PCE coefficients of the measurements 

of outputs are not practically observable, the current time output 
measurements may be assumed to represent the mean output value. 
That is, the measured value of all higher PCE coefficients is set to zero 
as in 
𝑦PCEm (𝑡) = vec[𝑦m(𝑡), 0,… , 0], (76)

where 𝑦m(𝑡) is the measured value of the system output at the current 
time 𝑡. This formulation implicitly assumes that all output measure-
ments have a much lower variance compared to the output prediction 
variance arising from parametric uncertainty alone. Unlike the for-
mulation in Section 5.2.2, the free responses of the higher-order PCE 
coefficients are not deliberately set to zero—and instead are derived 
from the MIMO LTI dynamics described by (44). As a result, the con-
troller described here contains an integrator as the controller dynamics 
follow precisely that of (64). The only modification to (64) is the 
definition of 𝑦PCEm (𝑡) using (76), which also influences 𝑒PCEcurr (𝑡).

5.3. Nominal and robust stability for zero output measurement variance 
controller

We proceed to specify sufficient conditions for nominal and robust 
stability for the controller formulation in Section 5.2.3. Corresponding 
conditions for the remaining controller formulations in Sections 5.2.1
and 5.2.2 may be specified similarly. Consider the closed-loop feedback 
structure in Fig.  2. The MIMO LTI plant with parametric uncertainty 
𝑃 (𝑧, 𝜃) takes the disturbed control signal 𝑢(𝑡) and outputs the disturbed 
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signal 𝑦(𝑡), which not yet expanded into PCE coefficients. The output 
𝑦(𝑡) is fed back as the measurement 𝑦m(𝑡), which is expanded into 
the PCE-based measured output 𝑦PCEm (𝑡) given by (76), which is finally 
compared as an error against the PCE setpoint value 𝑦PCEsp (𝑡) given in 
(59). The controller transfer function 𝐾QDMC(𝑧) represents the PCE-
based control law in (64), and the plant transfer function 𝑃 (𝑧, 𝜃)
represents the transfer function of the MIMO LTI system with uncertain 
parameters 𝜃. The nominal MIMO LTI plant 𝑃0(𝑧) can be viewed as 
the MIMO LTI system formed by a nominal realization of the random 
variable 𝜃. We herein define 𝑃0(𝑧) ∶= 𝑃 (𝑧, 𝜃0) for some 𝜃0 ∈ supp 𝜃, 
where supp 𝜃 denotes the support of 𝜃. The output measurement 𝑦m(𝑡)
and setpoint 𝑦sp(𝑡) have the zero-variance PCE projections 

𝑦PCEm (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑛𝑦
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

𝑦m(𝑡) , 𝑦PCEsp (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑛𝑦
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

𝑦sp(𝑡) , (77)

We have 𝑒PCEcurr (𝑡) = 𝑦PCEm (𝑡) − 𝑦sp(𝑡), and defining the PCE-based QDMC 
controller transfer function projection as 

𝐾̃(𝑧) ∶= 𝐾QDMC(𝑧)

⎡

⎢

⎢

⎢

⎢

⎣

𝐼𝑛𝑦
0
⋮
0

⎤

⎥

⎥

⎥

⎥

⎦

, (78)

leads up to Theorem  4 on nominal closed-loop stability:

Theorem 4 (Nominal Stability). Consider the input- and output-disturbed 
closed-loop feedback system in Fig.  2 with the PCE-based controller
𝐾QDMC(𝑧) and nominal MIMO LTI plant 𝑃0(𝑧) = 𝑃 (𝑧, 𝜃0). Then the Z-
transform of the non-expanded setpoint error 𝑒(𝑡) = 𝑦(𝑡) − 𝑦sp(𝑡) ∈ R𝑛𝑦

is 

𝐸(𝑧) =
(

𝐼𝑛𝑦 + 𝑃0(𝑧)𝐾̃(𝑧)
)−1

(

−𝑌sp(𝑧) +𝐷𝑦(𝑧) + 𝑃0(𝑧)𝐷𝑢(𝑧)
)

, (79)

where 𝐾̃(𝑧) is given in (78), 𝐾QDMC(𝑧) = 𝐴(𝑧)−1𝐵 and 𝐴(1) = 0𝑛𝑢 , as in 
Theorem  2. We obtain, in parallel with Theorem  2, the temporal evolution 
contribution of the control law as 

𝐵 = [𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
PCE (1𝑝 ⊗ 𝐼𝑛𝑦𝐾 ), (80)

and the degree-𝑁 matrix polynomial 𝐴(𝑧) specified by matrix coefficients 
𝐴𝑖 as 

𝐴(𝑧) =

(

𝐼𝑛𝑢 − 𝑧−1𝐼 −
𝑁
∑

𝑖=1
𝐴𝑖𝑧

−𝑖

)

, (81)

𝐴1 = −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
PCE

⎡

⎢

⎢

⎢

⎢

⎣

PCE2 − PCE1

PCE3 − PCE1
⋮

PCE𝑝+1 − PCE1

⎤

⎥

⎥

⎥

⎥

⎦

, (82)

𝐴𝑖 = −[𝐼𝑛𝑢 0𝑛𝑢 ⋯ 0𝑛𝑢 ]𝐕
PCE

⎡

⎢

⎢

⎢

⎢

⎣

PCE
𝑖+1 −PCE

𝑖

PCE
𝑖+2 −PCE

𝑖
⋮

PCE
𝑖+𝑝 −PCE

𝑖

⎤

⎥

⎥

⎥

⎥

⎦

, ∀𝑖 ≥ 2. (83)

In particular, if 𝑃0(1)𝐾I in 𝐾̃(𝑧) is invertible and all poles of −(𝐼𝑛𝑦 +

𝑃0(𝑧)𝐾̃(𝑧)
)−1 and −(𝐼𝑛𝑦 +𝑃0(𝑧)𝐾̃(𝑧)

)−1𝑃0(𝑧) lie within the unit circle, then 
the nominal closed-loop system with the PCE-based controller is closed-loop 
stable and offset-free for unconstrained systems.

Proof.  Follows readily from Theorem  2.  Specifically, the impulse and 
step response coefficients 𝐻𝑖 and 𝐺𝑖 in Theorem  2 are substituted with 
the expanded PCE impulse and step response coefficients PCE

𝑖  and 
PCE from the PCE-expanded model in Eq. (58). □
𝑖

11 
Fig. 3. Series–parallel reaction network and CSTR configuration studied. All reaction 
rate laws are bilinear in species concentrations. Species C is the desired high-value 
product produced by reaction rate constant 𝑘1, but all other reactions lower the 
selectivity to species C. Only inlet stream 1 volumetric flow rate 𝑞1 may be manipulated, 
e.g., with a valve.
Source: Re-printed with permission from von Andrian and Braatz (2020).

Similarly, a sufficient condition for robust stability can be formu-
lated by noting that the uncertainty is described by the random variable 
𝜃 and, if the controller renders the system closed-loop stable and offset-
free for all possible values of 𝜃, then the controller is also robustly 
stable. This is summarized in the following corollary:

Corollary 1 (Robust Stability). Consider the input- and output-disturbed 
closed-loop system in Fig.  2 with the PCE-based controller 𝐾QDMC(𝑧). The 
system is closed-loop stable and offset-free with probability one if 𝑃 (1, 𝜃)𝐾I
is invertible and all poles of −(𝐼𝑛𝑦 +𝑃 (𝑧, 𝜃)𝐾̃(𝑧)

)−1 lie within the unit circle 
with probability one.

6. Case study 1: Offset-free control of product concentration in a 
reaction network

This section evaluates the effectiveness of PCE-based QDMC for-
mulations in providing offset-free control to the manufacturing of a 
pharmaceutical intermediate in a continuously stirred tank reactor 
(CSTR). The case study is adapted from a series–parallel nucleophilic 
aromatic substitution reaction network (Reizman & Jensen, 2012). Such 
networks describe multi-step synthetic routes where selectivity towards 
the high-value product in a series reaction is lowered by side-product 
formation in parallel reactions. The model parameters for this process 
have high parametric uncertainty (Reizman & Jensen, 2012; Shen & 
Braatz, 2016).

More specifically, the reaction network and CSTR configuration 
summarized in Fig.  3 are numerically simulated. The network consists 
of five chemical species and four reactions. Each reaction rate law 
is modeled as a single rate constant parameter multiplying a second-
order, bilinear structure in the reacting species concentrations. With 
continuous ideal mixing and removal, the dynamic operation of the 
CSTR is modeled as the random nonlinear ODE system 
d𝑐A
d𝑡

=
𝑞1
𝑉
𝑐A,in − 𝑐A

𝑞1 + 𝑞2
𝑉

− 𝑐A𝑐B(𝑘1 + 𝑘2), (84a)

d𝑐B
d𝑡

=
𝑞2
𝑉
𝑐B,in − 𝑐B

𝑞1 + 𝑞2
𝑉

− 𝑐A𝑐B(𝑘1 + 𝑘2) (84b)

− 𝑐B𝑐C𝑘3 − 𝑐B𝑐D𝑘4, (84c)
d𝑐C
d𝑡

= −𝑐C
𝑞1 + 𝑞2

𝑉
+ 𝑐A𝑐B𝑘1 − 𝑐B𝑐C𝑘3, (84d)

d𝑐D
d𝑡

= −𝑐D
𝑞1 + 𝑞2

𝑉
+ 𝑐A𝑐B𝑘2 − 𝑐B𝑐D𝑘4, (84e)

where 𝑐𝑖 is the concentration of species 𝑖 = {A,B,C,D,E}, 𝑐𝑖,in is the 
inlet stream concentration of 𝑐𝑖, 𝑞1 and 𝑞2 are the total volumetric flow 
rates of inlet streams 1 and 2, and 𝑘𝑗 is the rate constant for reaction 
𝑗 = {1, 2, 3, 4}. In all numerical simulations, the rate constants 𝑘1 and 𝑘2
are uniformly distributed over the non-random intervals [𝑘1,min, 𝑘1,max]
and [𝑘2,min, 𝑘2,max], respectively. Rate constants 𝑘3 and 𝑘4 are specified 
deterministically, e.g., the rate constants may have been estimated 
well from previous experiments. Table  2 describes all non-random, 
time-invariant parameters used in numerically simulating (84).

For closed-loop simulations, the manipulated variable is 𝑞1, which 
contains species A. A manufacturing performance specification is given 
on the desired product, i.e., a concentration setpoint 𝑐  placed on 
C,sp
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Table 2
Non-random time-invariant parameters used in simulating (84). Adapted from von 
Andrian and Braatz (2020) with modifications to 𝑘1,nom, 𝑘2,nom, 𝑐A,in, 𝑘3, 𝑘4, and steady-
state operating conditions. The manipulated variable 𝑞1 is not specified since it may 
be any positive, real-valued, bounded input time series into the reactor.
 System parameter Description Nominal value Units  
 𝑘1,min Minimal rate constant 1 0.2789 L/mol-s 
 𝑘1,max Maximal rate constant 1 0.8927 L/mol-s 
 𝑘1,nom Nominal rate constant 1 0.5858 L/mol-s 
 𝑘2,min Minimal rate constant 2 0.1894 L/mol-s 
 𝑘2,max Maximal rate constant 2 0.9331 L/mol-s 
 𝑘2,nom Nominal rate constant 2 0.56125 L/mol-s 
 𝑘3 Reaction rate constant 3 3.264 L/mol-s 
 𝑘4 Reaction rate constant 4 0.01591 L/mol-s 
 𝑉 CSTR volume 5 L  
 𝑞2 Inlet 2 volumetric flow rate 1 L/s  
 𝑐A,in Inlet A concentration 0.3 mol/L  
 𝑐B,in Inlet B concentration 7.35 mol/L  
 𝑐A,ss Steady-state concentration of A 0.06044 mol/L  
 𝑐B,ss Steady-state concentration of B 1.72578 mol/L  
 𝑐C,ss Steady-state concentration of C 0.00957 mol/L  
 𝑐D,ss Steady-state concentration of D 0.07531 mol/L  
 𝑞1,ss Steady-state inlet 1 flow rate 2.75 L/s  
 𝑐A,0 Initial concentration of A 0 L/mol  
 𝑐B,0 Initial concentration of B 3.5 L/mol  
 𝑐C,0 Initial concentration of C 0 L/mol  
 𝑐D,0 Initial concentration of D 0.0025 L/mol  

the outlet concentration of species C. The control variable 𝑐C is directly 
measured without error. For a fixed nominal value of inlet 1 flow rate 
𝑞1,ss, the system (84) has an equilibrium point at [𝑐A,ss, 𝑐B,ss, 𝑐C,ss, 𝑐D,ss]⊤
(which can be found by a nonlinear equation solver), and the exact 
coordinates of this equilibrium point are provided in Table  2. The 
control inputs and output responses are expressed in terms of deviation 
variables as 𝑢 = 𝑞1 − 𝑞1,ss and 𝑦 ∶= 𝑐C − 𝑐C,ss, respectively. 

6.1. Non-random ODE system generation by PCE

In all numerical simulations, define the non-random, nominal values 
𝑘1,nom ∶= 1

2 (𝑘1,min +𝑘1,max) and 𝑘2,nom ∶= 1
2 (𝑘2,min +𝑘2,max) and rescale 𝑘1

and 𝑘2 by two i.i.d. random variables 𝜃1 and 𝜃2 as uniform distributions 
with support 𝜃1, 𝜃2 ∈ [−1, 1], i.e., we denote 𝜃1, 𝜃2 ∼ 𝑈 ([−1, 1]), by 
applying the linear and invertible change of variables 

𝑘1 =
𝑘1,min + 𝑘1,max

2
+

𝑘1,min − 𝑘1,max

2
𝜃1, (85a)

𝑘2 =
𝑘2,min + 𝑘2,max

2
+

𝑘2,min − 𝑘2,max

2
𝜃2. (85b)

For 𝜃1, 𝜃2 ∼ 𝑈 ([−1, 1]), Table  1 indicates that Legendre polynomials 
are the appropriate PCE basis set to use. We choose a fourth-order 
expansion on the two random parameters, i.e., 𝑑 = 4 and 𝑛 = 2 in 
(43), to expand each species 𝑐𝑖 into 𝑀 = 15 distinct coefficients 𝑐𝑖,𝑗,𝑘 as

𝑐𝑖 =
∑

𝑗,𝑘
𝑗+𝑘≤4

𝑐𝑖,𝑗,𝑘𝛷𝑗 (𝜃1)𝛷𝑘(𝜃2), (86)

where 𝛷𝑗 is the Legendre polynomial of degree 𝑗. The temporal evolu-
tion of PCE coefficients is then numerically computed by (i) substituting 
(86) into the ODE system (84), (ii) performing Galerkin projections as 
described in Section 4.2, and (iii) numerically integrating the expanded 
ODE system totaling 60 PCE coefficients. We apply the Polynomial 
Chaos Expansion Toolbox (PoCET) (Petzke et al., 2020), which uses 
symbolic algebra for computing the Galerkin projection integrals in 
Step 2. Assume that the initial state vector is non-random, so all the 
nonzero-order PCE coefficients for the expanded initial state vector are 
chosen to be zero exactly.
12 
Fig. 4. Histograms for 100000 random samples of 𝑐C at 40 s generated by Monte 
Carlo simulations (orange) and expanded PCE coefficient ODE system (blue).  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

6.2. Benchmarking forward uncertainty propagation with Monte Carlo sam-
pling

To benchmark the accuracy of the PCE approximations to the system 
dynamics in (84), Monte Carlo simulations are performed by solving 
the ODE system for various random sample draws of 𝑘1 and 𝑘2 using 
𝜃1, 𝜃2 ∼ 𝑈 ([−1, 1]) and the transformations (85). Monte Carlo sampling 
is a computationally expensive but highly accurate approximation to 
the temporally evolving probability distribution of 𝑐C. The sampling 
approach has been shown as an appropriate benchmark to use in other 
numerical studies (Kim, Shen, Nagy, & Braatz, 2013; von Andrian & 
Braatz, 2020).

With the Monte Carlo sampling approach, for an initial charge 
[𝑐𝐴,0, 𝑐𝐵,0, 𝑐𝐶,0, 𝑐𝐷,0]⊤ and no control action and input/output distur-
bances, i.e., 𝑞1 = 𝑞1,ss, 𝑞2 = 0, the ODEs in (84) are solved for 
various sampled parameters {𝑘1, 𝑘2} to obtain an approximate prob-
ability distribution for 𝑐C at 40 s. An initial state vector for the Monte 
Carlo approach is used to solve (84) that holds the same values as 
the zeroth-order PCE coefficient of the expanded initial state vector. 
In comparison, solution of the expanded ODE system produces a time-
varying set of PCE coefficients for 𝑐C which induce an approximate 
probability distribution for 𝑐C under the Legendre polynomial basis. 
The distribution of 𝑐C is then approximated by sampling various values 
of {𝜃1, 𝜃2} and applying the PCE transform in the sense of Theorem  3 
and (37).

The histograms for 𝑐C at 40 s using the Monte Carlo sampling-
simulated distribution and the PCE-approximated distribution are com-
pared in Fig.  4. The histograms show negligible difference in the shapes 
of the probability distribution,  and the relative error between the 
variance of the PCE-approximated distribution and the variance of 
Monte Carlo benchmark is 0.58%. This comparison demonstrates that 
PCE-expanded model has high numerical accuracy when propagating 
uncertainty forward for the CSTR.

6.3. Open-loop analysis problem: Input-output response disturbance-free 
system identification

By numerical time integration of expanded ODE system for the PCE 
coefficients using ode45 in MATLAB version R2023b (The MathWorks 
Inc., 2023), disturbance-free input–output response model identifica-
tion is performed by first applying a unit step-response 𝑢 = 1 L/s to the 
nominal open-loop system (84). The step response for each of the PCE 
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Fig. 5. The first five PCE coefficient values of 𝑐C as they vary in time. All PCE 
coefficients are observed to stabilize after 10 s.

Table 3
Non-random time-invariant parameters used in simulating (89) and (90).
 System 
parameter

Description Nominal 
value

Units 

 𝑘nom Nominal heat transfer coefficient 1 1/s  
 𝛥1 Uncertainty level for 𝑘𝑖𝑗

√

3∕10 –  
 𝛥2 Uncertainty level for 𝜂2

√

3∕10 –  
 𝑑 Average distance between nodes 0.1068 m  
 𝜂1 Loss coefficient for heat exchange with 

the environment
1 1/s  

 𝜂2,nom Nominal actuator gain constant 1 K/s  

coefficients of 𝑐C is then observed to stabilize after approximately 10 s, 
see Fig.  5. The truncation number 𝑁 is set as the total time to stabilize 
divided by the constant output sampling time frequency 𝛥𝑡, as given in 
Table  4. Plots of the output response of the first five PCE coefficients of 
𝑐C are shown in Fig.  5. With output responses measured, the PCE-based 
step-response coefficient matrices PCE𝑖  given by (51) are computed for 
the step-response MIMO LTI system in (58).

6.4. Closed-loop synthesis problem: PCE-based QDMC performance

The MATLAB QDMC package (von Andrian-Werburg, 2024) is used 
to solve the controller formulation 

 PCE ∶=
𝑝
∑

𝑖=1
𝑒PCE(𝑡 + 𝑖|𝑡)⊤PCE

𝑦 𝑒PCE(𝑡 + 𝑖|𝑡)

+
𝑐
∑

𝑖=1
𝛥𝑢(𝑡 + 𝑖 − 1)⊤𝑊𝑢𝛥𝑢(𝑡 + 𝑖 − 1),

(87)

min


 PCE(𝛥𝑢(𝑡), 𝛥𝑢(𝑡 + 1),… , 𝛥𝑢(𝑡 + 𝑐 − 1))

s.t. 𝑦PCEmin ≤ 𝑦̂PCE(𝑡 + 𝑖|𝑡) ≤ 𝑦PCEmax , ∀𝑖 ∈ {1, 2,… , 𝑝},

𝑢min ≤ 𝑢(𝑡 + 𝑖 − 1) ≤ 𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

𝛥𝑢min ≤ 𝛥𝑢(𝑡 + 𝑖 − 1) ≤ 𝛥𝑢max, ∀𝑖 ∈ {1, 2,… , 𝑐},

(88)

at each discrete sampling time 𝑡, where   is defined as in (8). All 
control parameters used for closed-loop numerical simulations, such as 
the prediction horizon 𝑝 and control horizon 𝑐, are provided in Table  4. 
The expressions for the weight matrices PCE and 𝑊 , and the output 
𝑦 𝑢

13 
Fig. 6. Top: Closed-loop responses (red) for 𝑐C for 100 realizations of the random rate 
constants 𝑘1 and 𝑘2. With no input and output disturbances and several step changes 
in the setpoint at times 𝑡sp ∈ {100, 200, 300} s, all trajectories of 𝑐C quickly reach 𝑐C,sp
(blue) with effectively zero offset. Bottom: Corresponding control trajectories.  (For 
interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

constraint vectors 𝑦PCEmin  and 𝑦PCEmax , are relatively large in size and are 
provided in the MATLAB code in the Github repository. The coefficient 
matrices PCE𝑖  identified in the previous subsection are used for the 
predictive model 𝑦̂PCE(𝑡 + 𝑖|𝑡).

In order to evaluate the performance of the PCE-based QDMC 
strategy, closed-loop simulations of the system are performed using a 
performance index for setpoint tracking of the concentration 𝑐C. In the 
closed-loop simulations, the setpoint 𝑐C,sp is stepped up and down every 
100 s, and the goal is to perform setpoint tracking for the desired output 
𝑐C. Fig.  6 plots the output responses for 100 random samples of 𝑘1 and 
𝑘2. The closed-loop responses show that PCE-based QDMC is able to 
perform robust setpoint tracking.

To show that the PCE-based QDMC controller performs well in the 
presence of input and output disturbances, additional two separate 
closed-loop simulations are performed, one with a moderate input 
disturbance of 𝑑𝑢 = ±0.5 L/s and one with a large output disturbance 
of 𝑑𝑦 = ±0.003 mol/L. The results are shown in Fig.  7 for the input 
disturbance, and Fig.  8 for the output disturbance. Critically, insofar as 
the input constraints are not active, the responses shows excellent dis-
turbance rejection. Fig.  8 indicates that, for several samples of {𝜃1, 𝜃2}, 
the output is not offset-free for the second disturbance due to control 
constraints being too tight.  The system response is bounded, which 
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Fig. 7. Top: Closed-loop responses (green) for 𝑐C for 100 realizations of the random 
rate constants 𝑘1 and 𝑘2, and two constant input disturbances (red): the first at 𝑑𝑢 = 0.5
L/s for 𝑡 ∈ [50, 150] s, and the second at 𝑑𝑢 = −0.5 L/s for 𝑡 ∈ [250, 350] s. Under several 
changes in the setpoint at times 𝑡sp ∈ {100, 200, 300} s, all trajectories of 𝑐C quickly reach 
𝑐C,sp (blue) with effectively zero offset. Bottom: Corresponding control trajectories, with 
notable spikes at 𝑡 = 50, 150, 250, and 350 s, which are the junctures where there is 
a discontinuous change in the disturbance 𝑑𝑢.  (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)

is consistent with the closed-loop system being BIBO stable. When the 
input constraints are relaxed, offset-free responses are observed. These 
closed-loop performance outcomes are attributable to the PCE-based 
controller formulation containing an integrator, which in turn ensures 
that the closed-loop rejects plant input and output disturbances during 
setpoint tracking.

7. Case study 2: Thermal regulation on the IEEE 118-bus network

To further evaluate the effectiveness of PCE-based QDMC in provid-
ing offset-free regulation, consider the thermal regulation problem on 
the IEEE 118-Bus Network (Zimmerman, Murillo-Sánchez, & Thomas, 
2010), which is a standardized benchmark for evaluating control al-
gorithms on large-scale networked systems where the topology of the 
network graph directly affects the system dynamics. In this study, each 
of the 118 buses is considered a node in an undirected graph, and the 
edges represent a channel for direct heat transfer between nodes, so 
heat transfer can only occur if and only if there is an edge connecting 
the two nodes. Fig.  9 shows the IEEE 118-bus graph network’s topology, 
where the nodes are grouped into different clusters, each represented 
14 
Fig. 8. Top: Closed-loop responses (magenta) for 𝑐C for 100 realizations of the random 
rate constants 𝑘1 and 𝑘2, and two constant output disturbances (red): the first at 𝑑𝑦 =
0.003 mol/L for 𝑡 ∈ [50, 150] s, and the second at 𝑑𝑦 = −0.003 mol/L for 𝑡 ∈ [250, 350] s. 
Under several changes in the setpoint at times 𝑡sp ∈ {100, 200, 300} s, most trajectories 
of 𝑐C quickly reach the setpoint (blue) with effectively zero offset. In some cases, the 
controller constraints are not wide enough and there are no feasible input actions 
to asymptotically remove offset in the system at the second output fault. Additional 
simulations show that relaxing to 𝑢min = −3 and 𝑢max = 3 removes these feasibility 
issues. Bottom: Corresponding control trajectories, with notable actuator saturation at 
𝑢 = 2.5 for some realizations of 𝑘1 and 𝑘2. These control trajectories correspond to 
the output trajectories with non-zero offset and where the input constraints are active. 
(For interpretation of the references to color in this figure legend, the reader is referred 
to the web version of this article.)

by a different color. The graph is simple and does not contain any self-
loops. The dynamics of the system are governed by the Laplacian-like 
ODE: 
d𝑇𝑖
d𝑡

= −
∑

𝑗∈𝑖

𝑘𝑖𝑗 (𝑇𝑖 − 𝑇𝑗 ) − 𝜂1𝑇𝑖 + 𝜂2𝑢𝑖, (89)

where 𝑖 is the set of nodes connected to node 𝑖 by an edge, 𝑇𝑖 is 
the temperature (in deviation variables) of the node 𝑖, 𝑘𝑖𝑗 is thermal 
coupling coefficient between node 𝑖 and 𝑗, and 𝜂1 > 0 is a positive 
constant which governs the rate of local heat loss, and 𝜂2 is a positive 
constant governing heat generation term, and 𝑢𝑖 is the control input at 
node 𝑖. The thermal coupling coefficients 𝑘𝑖𝑗 and the heat generation 
constant 𝜂2 are uncertain parameters defined as 

𝑘𝑖𝑗 ∶= 𝑘nom
𝑑
𝑑𝑖𝑗

(1 + 𝜃1𝛥1), (90a)

𝜂 ∶= 𝜂 (1 + 𝜃 𝛥 ), (90b)
2 2,nom 2 2
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Fig. 9. Graph topology of the IEEE 118-bus network system, with each node assigned 
a color representing its cluster assignment. Enlarged nodes represent nodes where a 
control action was actuated.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

Table 4
Controller parameters used in PCE-based QDMC closed-loop simulations of (84). 
‘‘s.s’’. signifies ‘‘steady state’’. Adapted from von Andrian and Braatz (2020) with 
modifications to 𝛥𝑡, 𝑁 , 𝑝, and input and output constraints. Weight matrices PCE

𝑦
and 𝑊𝑢, and extended output constraint vectors 𝑦PCEmin  and 𝑦PCEmax , are all provided in the 
MATLAB files available at Github.
 Controller 
parameter

Description Nominal 
Value

Units  

 𝛥𝑡 Sampling time step 0.5 s  
 𝑁 Model truncation number 20 –  
 𝑝 Prediction horizon length 20 –  
 𝑐 Control horizon length 5 –  
 𝑢min Minimum inlet 1 flow rate deviation

from s.s.
−2.5 L/s  

 𝑢max Maximum inlet 1 flow rate deviation
from s.s.

2.5 L/s  

 𝛥𝑢min Minimum inlet 1 flow rate decrease −0.1 L/s  
 𝛥𝑢max Maximum inlet 1 flow rate increase 0.1 L/s  
 𝑦min Minimum measurable species C 

concentration
−0.02 mol/L 

 𝑦max Maximum measurable species C 
concentration

0.02 mol/L 

where 𝜃1 and 𝜃2 are uniformly distributed independent variables on the 
interval [−1, 1], 𝑑 is the average length of the edges in the graph, 𝑑𝑖𝑗
is the length of the edge connecting nodes 𝑖 and 𝑗, 𝛥 is a parameter 
representing the degree of uncertainty in the parameters, and 𝑘nom is a 
nominal value for the coupling coefficient. Intuitively, (90a) models the 
fact that, for conductive heat transfer, the effective resistance is directly 
proportional to the thermal conductivity and inversely proportional to 
the distance between the nodes. The constant and 𝛥1 and 𝛥2 represent 
the degree of parametric uncertainty in the model. Table  3 describes 
all non-random, time invariant parameters for the ODE model.

For closed-loop simulations, setpoint tracking is performed for the 
average temperature in each cluster. Heat generation is restricted to 
two nodes per cluster, for a total of 12 input nodes. These nodes are 
specified by the enlarged nodes in Fig.  9, with 𝑢𝑖 = 0 for the rest of the 
nodes.

7.1. Non-random ODE system generation by PCE

The ODE system (89) can be rewritten as the LTI system: 
d𝑥 = 𝐴(𝜃 )𝑥 + 𝐵(𝜃 )𝑢, (91)

d𝑡 1 2

15 
where 𝑥 = [𝑇1, 𝑇2,… , 𝑇118], 𝑢 = [𝑢1, 𝑢2,… , 𝑢118], 𝐴(𝜃1) = 𝐾nom(1+𝜃1𝛥1)−
𝜂1𝐼118, and 𝐵(𝜃2) = 𝐵nom(1 + 𝜃2𝛥2) for some nominal system matrices 
𝐾nom and 𝐵nom. From (90), the entries of 𝐾nom are given by 

(𝐾nom)𝑖𝑗 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑘nom
𝑑
𝑑𝑖𝑗

if 𝑗 ∈ 𝑖,

−
∑

𝑗∈𝑖
𝑘nom

𝑑
𝑑𝑖𝑗

if 𝑖 = 𝑗,

0 otherwise,

(92)

and 𝐵nom = 𝜂2,nom𝐼 .
For 𝜃1, 𝜃2 ∼ 𝑈 ([−1, 1]), similar to the previous case study, Table  1 

indicates that Legendre polynomials are the appropriate PCE basis set 
to use. For this case study, a fourth-order expansion on the two random 
parameters, i.e, 𝑑 = 4 and 𝑛 = 2 in (43), is used to obtain 

𝑥 =
∑

𝑖,𝑗
𝑖+𝑗≤4

𝑥𝑖,𝑗𝛷𝑖(𝜃1)𝛷𝑗 (𝜃2) =
15
∑

𝑘=1
𝑥𝑘𝜙𝑘(𝜃), (93)

where 𝜃 = [𝜃1, 𝜃2]⊤ and the variable 𝑘 have been re-indexed for 
convenience in the stochastic Galerkin projection calculations later.

The expanded non-random ODE system for the PCE coefficients can 
be computed using the stochastic Galerkin projection method explicitly. 
Specifically, using the truncated PCE approximation as described in 
Section 4.1, the time evolution equation for each PCE coefficient is
d𝑥𝑗
d𝑡

=

⟨

𝜙𝑗 (𝜃),
15
∑

𝑘=1
𝐴(𝜃)𝑥𝑘𝜙𝑘(𝜃) + 𝐵(𝜃)𝑢

⟩

=
15
∑

𝑘=1
⟨𝜙𝑗 (𝜃)𝐴(𝜃)𝜙𝑘(𝜃)⟩𝑥𝑘 + ⟨𝐵(𝜃)𝜙𝑗 (𝜃)⟩𝑢 .

Denote  = vec[𝑥1, 𝑥2,… , 𝑥15],  to be the PCE-expanded system 
matrix with block sub-matrices defined by 𝑖,𝑗 ∶= (⟨𝜙𝑗 (𝜃)𝐴(𝜃)𝜙𝑘(𝜃)⟩)𝑗,𝑘, 
and similarly  ∶= [⟨𝐵(𝜃)𝜙1(𝜃)⟩⊤, ⟨𝐵(𝜃)𝜙2(𝜃)⟩⊤,… , ⟨𝐵(𝜃)𝜙15(𝜃)⟩⊤]⊤ to 
be the PCE-expanded input matrix. Then the time evolution of the PCE 
coefficients is described by the deterministic ODE 
d
d𝑡

=  + 𝑢 . (94)

An explicit closed form for the matrices  and  can further be 
obtained by observing that
⟨𝜙𝑗 (𝜃)𝐴(𝜃)𝜙𝑘(𝜃)⟩ = ⟨𝜙𝑗 (𝜃)

(

𝐾nom(1 + 𝜃1𝛥1) − 𝜂1𝐼
)

𝜙𝑘(𝜃)⟩

=
(

⟨𝜙𝑗 (𝜃)𝜙𝑘(𝜃)⟩ + 𝛥1⟨𝜃1𝜙𝑗 (𝜃)𝜙𝑘(𝜃)⟩
)

𝐾nom

− 𝜂1𝛿𝑖𝑗𝐼

= (𝛿𝑖𝑗 + 𝛥1⟨𝜃1𝜙𝑗 (𝜃)𝜙𝑘(𝜃)⟩)𝐾nom − 𝜂1𝛿𝑗𝑘𝐼,

⟨𝐵(𝜃)𝜙𝑗 (𝜃)⟩ = ⟨(1 + 𝛥2𝜃2)𝜙𝑗 (𝜃)⟩𝐵nom,

which gives
 = (𝐼15 + 𝛥1𝑆)⊗𝐾nom − 𝜂1𝐼15 ⊗ 𝐼118 , (95)

 = 𝑣 ⊗ 𝐵nom , (96)

where S𝑗𝑘 ∶= ⟨𝜃1𝜙𝑗 (𝜃)𝜙𝑘(𝜃)⟩ and 𝑣𝑗 = ⟨(1 + 𝛥2𝜃2)𝜙𝑗 (𝜃)⟩.

7.2. Benchmarking forward uncertainty propagation with Monte Carlo sam-
pling

To benchmark the accuracy of the PCE-approximated dynamics as in 
Section 6.2, Monte Carlo simulations are performed by solving the ODE 
system for various sample draws of 𝜃1, 𝜃2 ∼ 𝑈 ([−1, 1]). In each simula-
tion run, the state was initially at the origin, and the control action used 
was 𝑢𝑖 = 1 for all the nodes chosen for heat generation (2 nodes for each 
cluster, see Fig.  9) and 𝑢𝑖 = 0 otherwise. In comparison, the solution of 
the expanded linear ODE system in (94) produces a time-varying set of 
PCE coefficients that induce an approximate probability distribution for 
the average temperatures of each cluster. These distributions can then 
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Fig. 10. Histograms for 100000 random samples of each cluster average temperature 
at the final time 𝑡 = 5 generated by Monte Carlo simulations (orange) and expanded 
PCE coefficient ODE system (blue).  (For interpretation of the references to color in 
this figure legend, the reader is referred to the web version of this article.)

be approximated by sampling various values of {𝜃1, 𝜃2} and applying 
PCEs in the sense of Theorem  3 and (37).

Similar to the previous case study, the histograms for the clus-
ter average temperatures using the Monte Carlo sampling-simulated 
distribution and the PCE-approximated distribution are compared in 
Fig.  10. The histograms show negligible differences in the shapes of 
the probability distribution, and the relative errors between the PCE-
approximated variance and the Monte Carlo benchmarks are less than 
0.13%. This demonstrates that PCE approximations have high numer-
ical accuracy in quantifying output uncertainty, even for large-scale 
MIMO systems such as the IEEE 118-bus example.

7.3. Open-loop analysis problem: Input-output response disturbance-free 
system identification

Similar to the methodology used in Section 6.3, numerical time in-
tegration of the expanded ODE system for the PCE coefficients in (94) is 
performed by applying a unit step response 𝑢 = 1 to each representative 
in Fig.  9, and observing the response of the PCE-expanded model until 
𝑡 = 20. Due to spatial constraints with the large number of control 
actions and nodes, the plots of the step responses are omitted, but 
are provided by the MATLAB scripts associated with this article. With 
the output responses measured, the PCE-based step-response matrices 
PCE𝑖  given by (51) are computed by taking the response at every time 
interval of length 1.

7.4. Closed-loop synthesis problem: PCE-based QDMC performance

Similar to Section 6.4, the control action was computed using the 
formulation in (87) and (88) at each discrete sampling time 𝑡. All 
control parameters are provided in Table  5. The weight matrices and 
the output constraint are relatively large in size and are provided in the 
MATLAB code in the Github repository. The coefficient matrices PCE𝑖
identified in the previous subsection are used for the predictive model 
𝑦̂PCE(𝑡 + 𝑖|𝑡). 

In order to evaluate the performance of the PCE-based QDMC 
strategy on this MIMO system, closed-loop simulations of the system 
are performed using a performance index for setpoint tracking of 
the various cluster average temperatures. Similar to Section 6.4, the 
setpoint is stepped up and down every 100 s, and the goal is to perform 
setpoint tracking for the desired cluster average temperatures. Fig.  11 
plots the output responses for 100 random samples of 𝜃  and 𝜃 . The 
1 2

16 
Table 5
Controller parameters used in PCE-based QDMC closed-loop simulations for Section 7. 
Weight matrices PCE

𝑦  and 𝑊𝑢, and extended output constraint vectors 𝑦PCEmin  and 𝑦PCEmax , 
are all provided in the MATLAB files available at Github.
 Controller 
parameter

Description Nominal 
value

Units 

 𝛥𝑡 Sampling time step 1 s  
 𝑁 Model truncation number 20 –  
 𝑝 Prediction horizon length 20 –  
 𝑐 Control horizon length 5 –  
 𝑢min Minimum control action value −100 –  
 𝑢max Maximum control action value 100 –  
 𝛥𝑢min Minimum control action decrease −25 –  
 𝛥𝑢max Maximum control action increase 25 –  
 𝑦min Minimum cluster average temperature −2 –  
 𝑦max Maximum cluster average temperature 2 –  

closed-loop responses show that PCE-based QDMC is able to perform 
robust setpoint tracking for MIMO systems, even though the underlying 
state space is much larger for this case study.

To show that the PCE-based QDMC controller performs well in 
the presence of input and output disturbances for MIMO systems, an 
additional two separate closed-loop simulations are performed, one 
with moderate input disturbances of 𝑑𝑢 = ±10 and one with moderate 
output disturbances of 𝑑𝑦 = ±0.5. The results are shown in Fig.  12 
for the input disturbances, and Fig.  13 for the output disturbances. 
Similar to the previous CSTR case study, the closed-loop trajectories all 
show that the PCE-based QDMC controller has good setpoint tracking 
properties for various realizations of the uncertain parameters, even in 
the presence of output and input disturbances.

8. Benchmarking various QDMC approaches

This section benchmarks the various QDMC approaches proposed 
in Section 5.2 and compares the quality of their output responses for 
both numerical case studies. We also include the controller formulation 
in Paulson et al. (2014) that is not offset-free.8 This section adopts the 
nomenclature:

• Strategy 1: PCE-based QDMC with Output Measurement Variance 
of Zero;

• Strategy 2: Stochastic QDMC approach from Paulson et al. 
(2014);

• Strategy 3: PCE-based QDMC with Zero-variance Weight;
• Strategy 4: PCE-based QDMC with Variance Prediction Reset to 
Zero.

To avoid visual clutter, only the output trajectories are presented in the 
main discussion, while the control trajectories are given in Appendix. 
To quantitatively assess the performance and robustness of the various 
QDMC strategies, we report the average integral absolute error (IAE) 
and the width of the trajectory envelope for various realizations of para-
metric uncertainties. For the envelope width, the difference between 
the maximum output value and the minimum output value at the final 
time for various trajectories is used as a surrogate for how well the 
strategy responds to setpoint changes and input or output disturbances.

8.1. Comparison of closed-loop performance for case study 1

Fig.  14 compares the output trajectories for various realizations 
of parametric uncertainties 𝑘1 and 𝑘2 across the three disturbance 
scenarios: no disturbances (ND), input disturbances (ID), and output 
disturbances (OD). The control trajectories are shown in Fig.  17 in 
Appendix  A.4. The strategies are quantitatively evaluated using the IAE 

8 That formulation is not offset-free, specifically because the output 
measurement and setpoint reference exclude higher order PCE coefficients.
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Table 6
Closed-loop performance metrics for Case Study 1. The IAE and envelope width metrics are computed for three categories of disturbed systems, 
where ‘‘ND’’ stands for ‘‘no disturbance’’, ‘‘ID’’ stands for ‘‘input disturbance’’, and ‘‘OD’’ stands for ‘‘output disturbance’’. Metrics are averaged 
over multiple uncertainty realizations.
 Strategy IAE (ND) Envelope width (ND) IAE (ID) Envelope width (ID) IAE (OD) Envelope width (OD) 
 1 0.129 8.44 × 10−9 0.201 1.16 × 10−6 0.278 3.37 × 10−6  
 2 0.508 8.19 × 10−4 0.551 8.19 × 10−4 0.632 8.17 × 10−4  
 3 0.0925 4.03 × 10−11 0.125 4.36 × 10−11 0.192 4.86 × 10−11  
 4 0.0961 7.26 × 10−12 0.137 1.837 × 10−10 0.200 2.94 × 10−10  
Fig. 11. Top three rows: Closed-loop output responses (red) for the cluster average 
temperatures for 100 realizations of the random parameters 𝜃1 and 𝜃2. All trajectories 
quickly reach the setpoint (blue) with effectively zero offset. Bottom three rows: Control 
trajectories for 100 realizations of the random parameters 𝜃1 and 𝜃2 for the two 
representative nodes from each cluster. Mean trajectories are shown by the solid red 
and blue lines.  (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.)

and envelope width at the final time, where the metrics are averaged 
over all output trajectories and reported in Table  6.

In Case Study 1, Strategy 3 shows the best performance, with the 
lowest IAE and envelope width across various trajectories. Strategy 
1, which is the strategy used in Sections 6 and 7, follows closely 
behind Strategy 3. Both of these strategies exhibit narrow closed-loop 
trajectory envelopes and fast setpoint tracking. Where the controller 
is not saturated, i.e., the ND and ID cases, the closed-loop responses 
eliminate offset for various realizations of the parametrically uncertain 
17 
Fig. 12. Top three rows: Closed-loop responses (green) for the cluster average temper-
atures for 100 realizations of the random parameters 𝜃1 and 𝜃2, and two constant input 
disturbances (red): the first at 𝑑𝑢 = 0.5 for 𝑡 ∈ [50, 150] s, and the second at 𝑑𝑢 = −0.5
for 𝑡 ∈ [250, 350] s. Under several changes in the setpoint at times 𝑡sp ∈ {100, 200, 300}
s, all trajectories quickly reach the setpoint (blue) with effectively zero offset. Bottom 
three rows: Control trajectories for 100 realizations of the random parameters 𝜃1 and 
𝜃2 for the two representative nodes from each cluster. Mean trajectories are shown by 
the solid red and blue lines.  (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

system. This is consistent with the fact that Strategies 1 and 3 are 
designed with integral action.

Strategy 4 also shows relatively good performance in the IAE and 
envelope width metrics, but there is much more overshoot, i.e., the con-
troller action is more aggressive. Overshoot indicates underestimation 
of the variance terms, since all higher order PCE coefficients in the free 
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Table 7
Closed-loop performance metrics for Case Study 2. The IAE and envelope width metrics are computed for three categories of disturbed systems, 
where ‘‘ND’’ stands for ‘‘no disturbance’’, ‘‘ID’’ stands for ‘‘input disturbance’’, and ‘‘OD’’ stands for ‘‘output disturbance’’. Metrics are averaged 
over all clusters and multiple uncertainty realizations.
 Strategy IAE (ND) Envelope width (ND) IAE (ID) Envelope width (ID) IAE (OD) Envelope width (OD) 
 1 25.55 2.29 × 10−5 46.48 7.71 × 10−4 34.94 8.55 × 10−4  
 2 56.54 4.72 × 10−2 74.85 4.76 × 10−2 61.86 4.76 × 10−2  
 3 102.80 5.40 × 10−2 144.85 5.99 × 10−2 119.76 7.75 × 10−2  
 4 24.05 6.24 × 10−5 43.61 2.18 × 10−3 32.83 1.54 × 10−3  
Fig. 13. Top three rows: Closed-loop responses (magenta) for the cluster average 
temperatures for 100 realizations of the random parameters 𝜃1 and 𝜃2, and two 
constant output disturbances (red): the first at 𝑑𝑦 = 0.5 for 𝑡 ∈ [50, 150] s, and the 
second at 𝑑𝑦 = −0.5 for 𝑡 ∈ [250, 350] s. Under several changes in the setpoint at 
times 𝑡sp ∈ {100, 200, 300} s, all trajectories quickly reach the setpoint (blue) with 
effectively zero offset. Bottom three rows: Control trajectories for 100 realizations of 
the random parameters 𝜃1 and 𝜃2 for the two representative nodes from each cluster. 
Mean trajectories are shown by the solid red and blue lines.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

response are set to zero. Despite the overshoot, Strategy 4 eliminates 
offset by design and is distributionally similar to Strategies 1 and 3. 

In stark contrast, Strategy 2 shows the worst performance among 
the four strategies, with noticeable offset for all three disturbance 
cases and a distributionally wide spread for various parametric un-
certainty realizations. In the ID and OD cases, the offset is visually 
18 
larger than in the other strategies, which is made more obvious when 
quantified as a two- to five-fold increase in the IAE for all three 
disturbed cases in Table  6. These results are consistent with the lack 
of integral action in the design of Strategy 2. The simpler Case Study 1 
strategy comparisons clearly illustrate and quantify the efficacy of our 
proposed PCE-QDMC approaches in eliminating offset in the presence 
of parametric uncertainties.

8.2. Comparison of closed-loop performance for case study 2

For the higher dimensional Case Study 2, we again compare the 
output trajectories for various realizations of parametric uncertainties 
in 𝜃1 and 𝜃2 across the same three disturbance scenarios (ND, ID, and 
OD). The results for Strategies 1 and 2 are given in Fig.  15, and for 
Strategies 3 and 4, the results are given in Fig.  16. The control trajec-
tories are given in Appendix  A.4, with Strategies 1 and 2 appearing 
in Fig.  18 and Strategies 3 and 4 appearing in Fig.  19. Due to the 
inherently slower dynamics of the process, the differences between the 
output trajectories across the various strategies become significantly 
more pronounced than in Case Study 1. The IAE and envelope width 
results are reported in Table  7.

When averaging over all output responses at the six clusters, Strate-
gies 1 and 4 now outperform the other two control strategies in terms of 
having both low IAEs and low envelope widths across all three distur-
bance scenarios. Strategy 4 performs best in the IAE metric, whereas 
Strategy 1 performs best in the envelope width metric. Similarly to 
the previous case study, Strategy 2 shows a noticeable offset in all 
disturbance scenarios, with the offset becoming more pronounced in 
the presence of input disturbances and output disturbances.

In contrast to the previous case study, the output trajectory envelope 
for Strategy 3 visually performs much worse in setpoint tracking than 
for Strategy 1. This observation is confirmed by the three- to four-fold 
increases in the IAE metric across all disturbance scenarios. 100- to 
1000-fold increases in the envelope width metric are also observed. 
Although Strategy 3 is designed with integral action, the settling time 
for the output response is much longer, especially for clusters 1 and 6. 
We attribute this sluggishness of the controller response to the slower 
dynamics of the process in Case Study 2 relative to Case Study 1. With 
Strategy 3, the penalty on the variance terms is completely neglected, 
which results in wider output response envelopes. This design choice 
reduces the robustness of the control strategy because it does not elim-
inate offset for all parametric uncertainty realizations. This robustness 
loss is not as apparent in the CSTR process with faster dynamics.

Furthermore, the output trajectory envelope for Strategy 4 exhibits 
larger and higher frequency overshoots for all three disturbance sce-
narios in contrast to Case Study 1. We attribute this aggressive control 
action to the slower dynamics of the process and the underestimation 
of the variance terms in Strategy 4. Despite this, steady-state offset is 
still rapidly eliminated and regulated, which overall demonstrates that 
Strategy 4 is a more performant and robust SMPC strategy in Case Study 
2 compared to Strategies 2 and 3.
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8.3. Summary of closed-loop strategies

Across both case studies, Strategy 1 emerges as the most con-
sistent performer, achieving both low IAEs and envelope widths. It 
provides a good trade-off between settling time, robustness to para-
metric uncertainty, and offset regulation, which are key attributes in 
SMPC formulations. Strategy 2 performs the worst in both case studies, 
exhibiting persistent offset, large ensemble spread, and significantly 
higher IAE measures across all disturbance scenarios. The improvement 
with Strategy 1 from Strategy 2 highlights the importance of offset 
regulation in the control of parametrically uncertain systems. Strategy 
3, which is also an offset-free formulation, performs comparably well 
in the CSTR case study where the dynamics are much faster and 
uncertainties are relatively small. However, when parametric uncer-
tainties compound with slower process dynamics to produce higher 
output variances, the performance of the overly conservative Strategy 3 
degrades as shown in the IEEE-118 bus case study. Strategy 4 is similar 
to Strategy 1 in its ability to eliminate steady-state offset, but care must 
be taken to manage the overshoot that arises from the more aggressive 
controller action.

9. Practical benefits, limitations, and guidelines

The preceding case studies show that our SMPC formulation using 
PCE-based QDMC removes steady-state offsets even in the presence 
of parametric uncertainty in the model. This section formalizes the 
practical implications and benefits of these findings, and also remarks 
on the limitations of our SMPC formulation. We also provide some 
guidelines for implementation that are important for efficient dynamic 
optimization in the SMPC controller.

9.1. Practical benefits

Offset-free tracking: As demonstrated in the preceding sections 
and the numerical case studies, our formulation enables the removal of 
steady-state offset even in the presence of parametric uncertainty. Our 
proposed method is particularly useful in applications where models 
inherently carry large parametric uncertainties, such as chemical reac-
tor networks or biological systems. In these applications, the variance 
of the kinetic rate constants is often on the same order as the rate 
constant nominal values. The proposed method is further useful when 
the application is safety-critical and growing output variations cannot 
be tolerated, e.g., in the operation of a bioreactor to deliver a biother-
apeutic product meeting a tight purity specification. In these settings, 
due to the size of the uncertainty, traditional robust control methods 
may not be able to synthesize a controller that is robustly stable for 
the entire uncertainty set. Our SMPC formulation enables direct control 
of higher-order PCE coefficients as outputs, which achieves robust 
performance without the need for excessive conservatism.

Spectrally accurate representation of uncertainty: In many cases,
the PCE truncation error decays sub-exponentially with the PCE order, 
which enables a spectrally accurate representation of the variance in 
the model outputs. When the model parameters are analytic functions 
(e.g., linear functions) of the uncertain parameter, this sub-exponential 
rate of decay is provable and the potential impact of the higher order 
terms on the variance has been rigorously quantified (see, e.g., The-
orem 8.1 of Field and Grigoriu (2004) and Trefethen (2019) for a 
detailed treatment). In our numerical case studies, we observe that 
modest expansion orders of 𝑑 = 3 or 𝑑 = 4 are sufficient to cap-
ture the variance in the output uncertainty with negligible error, as 
shown by the histograms in Figs.  4 and 10 where we compare open-
loop responses of the PCE-expanded model with high-fidelity Monte 
Carlo simulations. The difference in output distributions is negligible, 
with a relative variance error of about 0.6% and 0.13%, respectively. 
This explains why, in practice, the truncated higher order PCE terms 
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contribute minimally to the performance of PCE-based SMPC con-
trollers. With smaller expansion orders, the PCE-based QDMC methods 
become more computationally tractable than sampling-based methods 
are on industrial controller microprocessors, where compute hardware 
resources are very limited.

Straightforward integration with existing software: The PCE-
expanded models are deterministic models that can extend from mod-
ern off-the-shelf MPC tools without reformulation. For example, the 
SMPC dynamic optimization problem in (88) is a quadratic program 
that can be implemented with any conventional optimization pack-
age such as Gurobi and IPOPT. This avoids (i) the computational 
complexity arising from sampling-based methods, and (ii) intricate 
reformulations of existing MPC tools that are required for other SMPC 
formulations, e.g., the stochastic error tube approach (Arcari et al., 
2023).

9.2. Limitations

Curse of Dimensionality: Most industrial applications employ pro-
cess models with more than 𝑛 = 2 uncertain parameters and very large 
input, state, and output dimensions (all larger than what was explored 
in this work), leading to computational intractability on industrial 
microprocessor controllers. As seen in (43), for a given expansion 
order 𝑑, the number of expansion terms needed is (𝑛𝑑 ), which grows 
combinatorially with the number of parameters. In practice, however, 
sub-exponential decay of the PCE coefficients for analytic models im-
plies that the expansion order 𝑑 required to reach a desired PCE 
coefficient accuracy is usually not large. Further dimensionality reduc-
tion is possible via sparse PCE methods, which removes PCE terms 
that do not contribute significantly to the PCE-based variance in the 
output distributions (see, e.g., Fagiano and Khammash (2012)). By 
using smaller expansion orders and sparse PCE methods, the impact 
from the curse of dimensionality on the application is lessened, with 
PCE-based methods continuing to outperform sampling-based methods 
for the same systems.

Time-varying parametric uncertainty: Our proposed SMPC for-
mulation only deals with time-invariant parametric uncertainties. For 
time-varying parametric uncertainties such as multiplicative white 
noise, in principle, Karhunen–Loève expansions can be applied to 
describe the time-varying nature of these uncertainties (Kim & Braatz, 
2013). Unfortunately, we observed in these cases that the required 
expansion order is very high because the uncertainty is drawn from 
an infinite-dimensional random field rather than a vector space. This 
leads to greater computational complexity in open-loop simulations of 
the PCE-expanded model and in the closed-loop dynamic optimization 
problem. Fortunately, parametric uncertainties in most manufacturing 
systems are time invariant or have time variations that are much 
slower than the closed-loop dynamics. For the latter, the uncertain 
parameters will be practically indistinguishable from time invariant 
during the response of the control system to a setpoint change or a 
sudden disturbance. As such, most process models would remain just 
as useful and computationally tractable with PCE-based QDMC by not 
modeling time variations in the model parameters.

9.3. Technical guidelines

PCE order: The PCE expansion order 𝑑 is one of the most impor-
tant design choices for our formulation. For systems where the model 
parameters are linear functions of the uncertainty, we observed that 
a modest expansion order of 2–3 is sufficient to reproduce output 
distributions; whereas for nonlinear dependencies, a higher expansion 
order of 3–4 may be required, as evidenced by the case studies shown 
above. A practical workflow would be to gradually increment the 
expansion order, benchmark the open-loop output distribution from the 
PCE-expanded model against a high-fidelity Monte-Carlo simulation, 
and then choose the minimal expansion order that achieves the desired 
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Fig. 14. Closed-loop output trajectories for Strategies 1–4 (rows) applied to Case Study 1, for the three disturbance cases as described in Section 6: no disturbances (left column; 
red), input disturbances (middle column; green), and output disturbances (right column; magenta). Each subplot shows responses for various parametric uncertainty realizations in 
tracking the setpoint (blue). The red shaded regions indicate periods when input or output disturbances are active, as detailed in the captions of Figs.  7 and 8. The corresponding 
input trajectories for these output trajectories are shown in Fig.  17.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version 
of this article.)
model accuracy. As seen in Figs.  4 and 10, when the output distribu-
tions are well-aligned, the PCE-expanded model can then be adopted 
for closed-loop controller formulation.

Warm-starting the optimizer: Because our SMPC controller formu-
lation solves a quadratic program at every time step that could be large 
depending on the expansion order, a good initial guess for the optimal 
control trajectory in the control horizon is beneficial to reduce the 
computation time. The control actions in the previous optimal control 
profile can be index-shifted forward by one step and used to warm-
start the optimizer for the problem at the current time. This strategy is 
also often used in deterministic MPC formulations (e.g., Rawlings et al. 
(2017)).

Sparse PCE: The computational cost can be greatly reduced for 
models in which the number of uncertain parameters is high by us-
ing sparse PCE (Lüthen, Marelli, & Sudret, 2021). Sparse PCE adap-
tively and optimally chooses the polynomial basis functions in (37) 
using specific metrics, such as degree adaptability (Blatman & Sudret, 
2010). For large-scale systems with high-dimensional uncertainty, these 
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sparse PCE methods can greatly reduce the dimensionality of the 
PCE-expanded model. We intend to explore sparse PCEs for SMPC 
formulations in future work.

Undersized Actuators: A large proportion of practical control prob-
lems have constraints that are only active transiently during large 
disturbances or setpoint changes. In such control problems, once the 
constraints are no longer active, the closed-loop system operates as an 
unconstrained system. Integral action is included in the control system 
so that the steady-state error approaches zero when the constraints are 
no longer active. This work considers this practically important use 
case.

For systems in which the actuators are undersized, it is not possible 
for the desired setpoint to be achieved for unconstrained values for the 
actuators under steady-state operations (see, e.g., Fig.  8). For such sys-
tems with undersized actuators, there is no reason to carry out analysis 
of whether there is zero steady-state error under those conditions, as it 
is not possible to achieve zero steady-state error for such systems.
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Fig. 15. Closed-loop output trajectories for Strategies 1 (left two columns) and 2 (right two columns) applied to Case Study 2, for the three disturbance cases as described 
in Section 7: no disturbances (top three rows; red), input disturbances (middle three rows; green), and output disturbances (bottom three rows; magenta). Each subplot shows 
responses for various parametric uncertainty realizations in tracking the setpoint (blue). The red shaded regions indicate periods when input or output disturbances are active, 
as detailed in the captions of Figs.  12 and 13. The corresponding input trajectories for these cluster average output trajectories are shown in Fig.  18.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
The proofs in this work show that a suite of PCE-based QDMC 
formulations have zero offset for operations in which the actuators 
are not required to be active at steady-state conditions. In the case 
studies, the optimal control actions obtained from QDMC were within 
the constraint limits at steady-state operations, so offset-free control 
was achieved except in Fig.  8.

10. Conclusion

This article describes PCE-based QDMC formulations for MIMO LTI 
process models that handle step changes in setpoints. Under mild as-
sumptions, these controllers are proved to have single, full column-rank 
21 
integrators which provide offset-free control for multiple performance 
indices simultaneously during step changes in the setpoints. The PCE-
based controllers are applied to the control of the continuous synthesis 
of a high-value product in a nonlinear series–parallel reaction network. 
The PCE-based QDMC performs rapid and robust setpoint tracking—
even in the presence of both (multiplicative) parametric uncertainty, 
and (additive) input and output disturbances. These QDMC formula-
tions fulfill the offset-free performance objectives of continuously op-
erated processes where the dynamics are approximated well as MIMO 
LTI responses with BIBO stability, and the setpoint changes are steps.
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Fig. 16. Closed-loop output trajectories for Strategies 3 (left two columns) and 4 (right two columns) applied to Case Study 2, for the three disturbance cases as described 
in Section 7: no disturbances (top three rows; red), input disturbances (middle three rows; green), and output disturbances (bottom three rows; magenta). Each subplot shows 
responses for various parametric uncertainty realizations in tracking the setpoint (blue). The red shaded regions indicate periods when input or output disturbances are active, 
as detailed in the captions of Figs.  12 and 13. The corresponding input trajectories for these cluster average output trajectories are shown in Fig.  19.  (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 17. Control trajectories for Strategies 1–4 (rows) applied to Case Study 1, for the three disturbance cases as described in Section 6: no disturbances (left column), input 
disturbances (middle column), and output disturbances (right column). Each subplot shows output responses for various parametric uncertainty realizations. The red shaded regions 
indicate periods when input or output disturbances are active, as detailed in the captions of Figs.  7 and 8. The corresponding output trajectories for these input trajectories are 
shown in Fig.  14.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 18. Control trajectories for Strategies 1 (left two columns) and 2 (right two columns) applied to Case Study 2, for the three disturbance cases as described in Section 7: 
no disturbances (top three rows), input disturbances (middle three rows), and output disturbances (bottom three rows). Each subplot shows the mean trajectories for various 
parametric uncertainty realizations for the two representative nodes from each cluster (solid red and blue lines). The corresponding cluster average output trajectories for these 
input trajectories are shown in Fig.  15.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 19. Control trajectories for Strategies 3 (left two columns) and 4 (right two columns) applied to Case Study 2, for the three disturbance cases as described in Section 7: 
no disturbances (top three rows), input disturbances (middle three rows), and output disturbances (bottom three rows). Each subplot shows the mean trajectories for various 
parametric uncertainty realizations for the two representative nodes from each cluster (solid red and blue lines). The corresponding cluster average output trajectories for these 
input trajectories are shown in Fig.  16.  (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix

The following proofs and additional references are provided to 
help formalize the context and significance of integrator action in the 
controller syntheses described in this work. The proofs are matched to 
their labeled lemma statements provided in Section 2.4 of the main 
text.

A.1. BIBO stability

Proof.  Since all poles of 𝐺(𝑧) lie within the unit circle, 𝐺(𝑧) can be 
written in the form 

𝐺(𝑧) =
∑

𝑖,𝑗

1
(𝑧 − 𝑧𝑖)𝑗

𝐴𝑖,𝑗 + 𝑃 (𝑧), (97)

where, for each ordered pair (𝑖, 𝑗), the 𝑧𝑖 pole has |𝑧𝑖| < 1 and falls 
into a multiplicity class of size 𝑗; 𝐴𝑖,𝑗 ∈ C𝑚×𝑛 is a constant matrix; 
and 𝑃 (𝑧) ∈ C𝑚×𝑛 is a matrix with polynomial entries. −1(𝑃 (𝑧)𝑈 (𝑧))
is a bounded sequence, since it consists of linear combinations of time 
shifts of 𝑢(𝑡). Since 𝐴𝑖,𝑗 is a constant matrix, it suffices to show that 
−1((𝑧 − 𝑧𝑖)−𝑗𝑈 (𝑧)

) is bounded. For 𝑧𝑖 ≠ 0, this boundedness can be 
seen from 

−1
(

1
(𝑧 − 𝑧𝑖)𝑗

)

= 𝑝𝑗 (𝑡)1{𝑡≥1}𝑧
−𝑗+𝑡
𝑖 =∶ ℎ𝑖,𝑗 (𝑡), (98)

where 𝑝𝑗 is a polynomial of degree 𝑗 and 1{𝑡≥1} is the indicator function 
for the set {𝑡 ∣ 𝑡 ≥ 1}. For 𝑧𝑖 = 0, then −1((𝑧 − 𝑧𝑖)−𝑗𝑈 (𝑧)

)

=
−1((𝑧)−𝑗𝑈 (𝑧)

) is a shift of the original sequence 𝑈 (𝑧), which is
bounded. Therefore, we see that |ℎ𝑖,𝑗 (𝑡)| ≤ 𝐶𝑖,𝑗 (|𝑧𝑖| + 𝜖)𝑡 for some 𝜖 > 0
small enough and 𝐶𝑖,𝑗 > 0 depending on 𝜖. Since multiplication in the 
Z-transform space is equivalent to convolution in the time domain, 
assuming that 𝑢(𝑡) ≤ 𝑀 where 𝑀 ∈ R𝑛 for all 𝑡, application of the 
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Cauchy–Schwartz inequality implies that 
‖

‖

‖

‖

‖

−1
(

(𝑧 − 𝑧𝑖)−𝑗𝑈 (𝑧)
)

(𝑡)
‖

‖

‖

‖

‖

=
‖

‖

‖

‖

‖

‖

𝑡
∑

𝑘=1
ℎ𝑖,𝑗 (𝑘)𝑢(𝑡 − 𝑘)

‖

‖

‖

‖

‖

‖

≤ 𝑀
𝑡

∑

𝑘=0
|ℎ𝑖,𝑗 (𝑘)|

≤ 𝑀
𝑡

∑

𝑘=0
𝐶𝑖,𝑗 (|𝑧𝑖| + 𝜖)𝑘

≤ 𝑀𝐶𝑖,𝑗 (1 − |𝑧𝑖| − 𝜖)−1.

(99)

This statement shows that −1((𝑧− 𝑧𝑖)−𝑗𝑈 (𝑧)
) is a bounded function of 

𝑡. Since the sum of finitely many bounded sequences is bounded, 𝑦(𝑡) =
−1(𝐺(𝑠)𝑈 (𝑠)) is also bounded. The inequality for 𝑔(𝑡) in the second part 
of the lemma readily follows from the inequality |ℎ𝑖,𝑗 (𝑡)| ≤ 𝐶𝑖,𝑗 (|𝑧𝑖|+ 𝜖)𝑡
and by taking the maximum value of all such |ℎ𝑖,𝑗 (𝑡)|. □

For additional proofs of BIBO stability for general input–output sys-
tems, the reader is referred to, e.g., Desoer and Vidyasagar (1975). For 
a more practical treatment, the reader is referred to, e.g., Ogunnaike 
and Ray (1994).

A.2. Integrator action

Proof.  As motivated by Lemma  1, express 𝐾(𝑧) using partial fractions 
to show that 
𝐾(𝑧) = 1

𝑧 − 1
𝐾I + 𝐾̃ = 1

𝑧 − 1
𝐾I +

∑

𝑖,𝑗

1
(𝑧 − 𝑧𝑖)𝑗

𝐴𝑖,𝑗 + 𝑃 (𝑧). (100)

Further, 𝑑(𝑡) ∶= −1(𝐾̃(𝑧)𝐸(𝑧)) is a bounded sequence by Lemma  1, so 
it suffices to show that 

−1(𝐾I(𝑧 − 1)−1𝑈 (𝑧)
)

= 𝐾I

𝑡
∑

𝑖=0
𝑒(𝑖), (101)

which can be shown by directly calculating the inverse transform of 
(𝑧 − 1)−1 and then using the fact that convolution in the time domain 
is equivalent to multiplication in the Z-transform space. □

Rigorous proofs for both continuous- and discrete-time system inte-
grators may be found in, e.g., Morari and Zafiriou (1989). Extensive 
discussion on the design and application of single and double inte-
grators in sampled-data systems may be found in, e.g., Åström and 
Wittenmark (1984).

A.3. Multiple performance index closed-loop integrator action is offset-free

Proof.  Define 𝑑(𝑡) ∶= 𝑦sp(𝑡) − 𝑐, which implies that lim𝑡→∞ 𝑑(𝑡) = 0. 
Taking the Z-transform of the setpoint and performing partial fraction 
decomposition results in 
𝐷(𝑧) = 𝑌sp(𝑧) −

𝑐
1 − 𝑧−1

= 𝑌sp(𝑧) −
(

𝑐 + 𝑐
𝑧 − 1

)

. (102)

The conditions and the statements proving Lemma  1 imply that the 
plant transfer function is 

𝐺(𝑧) = (𝑧 − 1)𝑘𝐺̃(𝑧) = (𝑧 − 1)𝑘
(

∑

𝑖,𝑗

1
(𝑧 − 𝑧𝑖)𝑗

𝐴𝑖,𝑗 + 𝑃 (𝑧)

)

, (103)

where 
𝐺̃(𝑧) ∶=

∑

𝑖,𝑗

1
(𝑧 − 𝑧𝑖)𝑗

𝐴𝑖,𝑗 + 𝑃 (𝑧). (104)

By substitution of (102) and (103), the output error 𝐸(𝑧) may be 
expressed as 
𝐸(𝑧) = 𝐺(𝑧)𝑌sp(𝑧)

=

(

∑

𝑖,𝑗

1
(𝑧 − 𝑧𝑖)𝑗

𝐴𝑖,𝑗 + 𝑃 (𝑧)

)

(

𝑐(𝑧 − 1)𝑘 + 𝑐(𝑧 − 1)𝑘−1

+ (𝑧 − 1)𝑘𝐷(𝑧)
)

.

(105)
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We next show that, for any sequence 𝑥(𝑡) such that lim𝑡→∞ 𝑥(𝑡) = 0, 
ℎ(𝑡) ∶= −1(𝐺̃(𝑧)𝑋(𝑧)) satisfies lim𝑡→∞ ℎ(𝑡) = 0. Then, since the inverse 
Z-transform of each of the three terms 𝑐(𝑧−1)𝑘, 𝑐(𝑧−1)𝑘−1, (𝑧−1)𝑘𝐷(𝑧)
converges to zero as 𝑡 → ∞ (i.e., these terms are linear combinations of 
time-shifted sequences that converge to zero as 𝑡 → ∞), the error vector 
𝑒(𝑡) = −1(𝐺(𝑧)𝑌sp(𝑧)) also converges to the zero vector as 𝑡 → ∞.

Inequality (99) in Lemma  1 gives that ‖𝑔̃(𝑡)‖2 ≤ 𝐶𝑔
(

(max𝑖 |𝑧𝑖| + 𝜖)𝑡
)

for every 𝜖 > 0 and some 𝐶𝑔 > 0 depending on 𝜖. Let 𝜖 > 0 be 
an arbitrary positive real number and define 𝑟 ∶= max𝑖 |𝑧𝑖| + 𝜖 < 1. 
We choose 𝑡0 large enough such that ‖𝑔̃(𝑡)‖2 < 𝜖 and 𝑥(𝑡) ≤ 𝜖 for all 
𝑡 ≥ ⌊𝑡0∕2⌋. Then, assuming ‖‖

‖

𝑦sp(𝑡)
‖

‖

‖

< 𝑀 and 𝑡 ≥ 𝑡0,

‖ℎ(𝑡)‖ =
‖

‖

‖

‖

‖

‖

𝑡
∑

𝑞=0
𝑔̃(𝑞)𝑥(𝑡 − 𝑞)

‖

‖

‖

‖

‖

‖

≤
‖

‖

‖

‖

‖

‖

⌊𝑡∕2⌋
∑

𝑞=0
𝑔̃(𝑞)𝑥(𝑡 − 𝑞)

‖

‖

‖

‖

‖

‖

+
‖

‖

‖

‖

‖

‖

𝑡
∑

𝑞=⌊𝑡∕2⌋
𝑔̃(𝑞)𝑥(𝑡 − 𝑞)

‖

‖

‖

‖

‖

‖

≤ 𝜖
1 − 𝑟

+ 𝑀𝜖𝑟⌊𝑡∕2⌋

1 − 𝑟
.

Since 𝜖 is an arbitrary positive real number, the proof is complete. □

We again make reference to Morari and Zafiriou (1989) for proofs 
and discussion on offset-free integrator action in MIMO systems.

A.4. Control trajectories for Section 8

Control trajectories for Case Study 1 are shown in Fig.  17, and 
control trajectories for Case Study 2 are shown in Figs.  18 and 19.
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