Automated translation and accelerated solving of differential equations on multiple GPU platforms

Utkarsh Utkarsh a,∗, Valentin Churavy a, Yingbo Ma b, Tim Besard b, Prakitr Srisuma a, Tim Gymnich a, c, Adam R. Gerlach d, Alan Edelman a, George Barbastathis a, Richard D. Braatz a, Christopher Rackauckas a, b, e

a Massachusetts Institute of Technology, Cambridge, MA, USA
b JuliaHub, Cambridge, MA, USA
c Technical University of Munich, Munich, Germany
d United States Air Force Research Laboratory, Wright-Patterson AFB, OH, USA
e Pumas-AI, Dover, DE, USA

ARTICLE INFO

Keywords:
Differential equations
Numerical simulation
GPU
Data-parallelism
Computer kernel
HPC

ABSTRACT

We demonstrate a high-performance vendor-agnostic method for massively parallel solving of ensembles of ordinary differential equations (ODEs) and stochastic differential equations (SDEs) on GPUs. The method is integrated with a widely used differential equation solver library in a high-level language (Julia’s DifferentialEquations.jl) and enables GPU acceleration without requiring code changes by the user. Our approach achieves state-of-the-art performance compared to hand-optimized CUDA-C++ kernels while performing 20–100× faster than the vectorizing map (vmap) approach implemented in JAX and PyTorch. Performance evaluation on NVIDIA, AMD, Intel, and Apple GPUs demonstrates performance portability and vendor-agnosticism. We show composability with MPI to enable distributed multi-GPU workflows. The implemented solvers are fully featured – supporting event handling, automatic differentiation, and incorporation of datasets via the GPU’s texture memory – allowing scientists to take advantage of GPU acceleration on all major current architectures without changing their model code and without loss of performance. We distribute the software as an open-source library, DiffEqGPU.jl.

1. Introduction

Solving ensembles of the same differential equation with different choices of parameters and initial conditions is common in many technical computing scenarios such as solving inverse problems [1], performing uncertainty quantification [2–4], and calculating global sensitivity analysis [3,5]. While such a naturally parallel problem lends itself to being well-suited for acceleration via GPU hardware, the programming requirements have traditionally been a barrier to the adoption of GPU-parallel solvers by scientists and engineers who are less programming savvy. The core difficulty of targeting GPUs with general ODE solver software is that the definition of the ODE is a function given by the user. Thus, high-level ODE solver software has generally consisted of higher-order functions which take as input a function written in a high-level language such as MATLAB [6], Python (SciPy [7]), or Julia (DifferentialEquations.jl [8]) to reduce the barrier to entry for scientists and engineers. In order to target GPUs, previous software such as MPGOS [9] has required users to rewrite their models in a kernel language such as CUDA C++, which has thus traditionally

∗ Corresponding author.
E-mail address: utkarsh5@mit.edu (U. Utkarsh).

https://doi.org/10.1016/j.cma.2023.116591
Received 17 August 2023; Received in revised form 18 October 2023; Accepted 2 November 2023
Available online 16 November 2023
0045-7825/© 2023 Elsevier B.V. All rights reserved.
3.1. Non-stiff ordinary differential equations (ODEs)

ODEs are described by the evolution equation:

$$\frac{du}{dt} = f(u, p, t),$$

(1)

with the initial condition $u(t_0) = u_0$ over the time span (t_0, t_f), where u is the solution, p is the parameter, t is time, t_0 is the initial time, and t_f is the final time. In the subsequent sections of this article, the parameter p is omitted from the formulation to avoid confusion as it is not an important part of our numerical methods and algorithms. There exist many different methods for numerically solving ODEs [28,29], though generally the most performant method is determined by a property known as the stiffness of the ODE, which is related to the pseudo-spectra of the Jacobian [30,31].
One of the most common classes of solvers for ODE software are explicit Runge–Kutta methods [32,33]. These methods are specified by a coefficient tableau \(\{ A, b, c \} \), with \(s \) stages and order \(k \), where \(k \leq s \). It produces the approximation for \(u_n = u(t_0 + nh) \) which is the solution at the current time step \(t_n \), \(h \) is the time step \((t_{n+1} = t_n + h) \), where \(h \) is the time-step, as

\[
\begin{align*}
 k_i &= f \left(u_n + \sum_{j=1}^{s} a_{ij} k_j, t_n + c_i h \right) \\
 u_{n+1} &= u_n + h \sum_{i=1}^{s} b_i k_i
\end{align*}
\]
(2)

\(\eta \) is the solution at the current time step \(n \). The step-size \(h \) is accepted for \(q \leq 1 \); otherwise, \(h \) is reduced and a new step is attempted. The new step-size in Runge–Kutta methods is proposed through proportional-integral control (PI-control) via \(h_{\text{new}} = \eta q_{n-1} h \), where \(\beta_1, \beta_2 \) are tuned parameters [28], \(q_{n-1} \) is the previous proportion error, and \(\eta \) is the safety factor.

3.2. Stiff ordinary differential equations

3.2.1. Rosenbrock methods

There exist various numerical methods for solving stiff ODEs [6,29]. One of the most common algorithms used in various ODE solver packages, e.g., Julia, MATLAB, is known as the Rosenbrock method [6,8,29,36]. The general formulas of an \(s \)-stage Rosenbrock method is given by

\[
\begin{align*}
 k_i &= h f \left(u_n + \sum_{j=1}^{i-1} a_{ij} k_j, t_n + a_i h \right) + \beta_i h^2 \frac{\partial f}{\partial u}(u_n, t_n) + h \frac{\partial^2 f}{\partial u^2}(u_n, t_n) \sum_{j=1}^{i} \beta_{ij} k_j, \\
 u_{n+1} &= u_n + \sum_{j=1}^{s} \delta_j k_j, \\
\end{align*}
\]
(5)

where \(u_n \) is the solution at the current time step \(t_n \), \(u_{n+1} \) is the solution at the next time step \(t_{n+1} \), \(h \) is the time step \((t_{n+1} = t_n + h) \), \(a_{ij}, \beta_{ij}, \delta_j \) are the coefficients, and

\[
\begin{align*}
 a_i &= \sum_{j=1}^{i-1} a_{ij}, \\
 \beta_i &= \sum_{j=1}^{i} \beta_{ij}
\end{align*}
\]
(7)

The Rosenbrock-type methods are ideally suited for GPU compilation because they are devoid of the typical Newton’s method performed per step in stiff ODE integrators [29]. The Newton’s method requires multiple linear solves and is computationally expensive due to repeated Jacobian calculation due to no reuse of previous matrix factorizations. Rosenbrock methods only require one Jacobian evaluation and have a constant number of linear solves per step, where the matrix factorization can be cached to achieve \(O(N^2) \) computational cost of the linear solves, where \(N \) is the dimension of the ODE. Since GPUs are efficient in performing multiple small tasks in parallel, Rosenbrock methods are expected to achieve massive speedups on GPUs in ensemble simulations.

3.2.2. Diagonally implicit Runge–Kutta methods

Another class of algorithms considered in this work is the Diagonally Implicit Runge–Kutta (DIRK) methods. The computation of a single step is given by

\[
\begin{align*}
 k_i &= f \left(u_n + h \sum_{j=1}^{i} a_{ij} k_j, t_n + c_i h \right) \\
 u_{n+1} &= u_n + h \sum_{i=1}^{s} b_i k_i, \\
\end{align*}
\]
(9)

where \(a_{ij}, b_i, \) and \(c_i \) are the scalar constants. The class of DIRK methods considered in our benchmarking is the Explicit Singly Diagonal Implicit Runge–Kutta (ESDIRK) methods. ESDIRK methods are characterized by \(a_{11} = 0 \) and \(a_{ij} = \mu_i \), for some constant \(\mu \). Particularly, we are interested in Kværnø methods, a class of A-L stable stiffly-accurate ESDIRK method [37]. The methods are suitable for benchmarking comparison as these are only available methods in other open-source software such as in Diffrax [24].
3.3. Stochastic differential equations (SDEs)

SDEs are extensions of ODEs which include inherent randomness. SDEs are used as models in many domains such as quantitative finance [38,39], systems biology [40], and simulation of chemical reaction networks [41]. SDEs are formally defined as

\[dX_t = a(X_t, t)dt + b(X_t, t)dW_t, \]

where \(W_t \) is a wiener process and \(dW_t \) is a Gaussian random variable \(W_{t+dt} - W_t \sim \mathcal{N}(0, dt) \), where \(\mathcal{N}(0, dt) \) is the normal distribution with zero mean and variance \(dt \) [42]. The general interest is in ensembles of SDE solutions for the purpose of calculating moments or simple analytical functions of moments, such as the mean and variance of the solution, and thus SDEs are a particularly strong application for ensemble parallelization of the solution process. For this reason, methods which have accelerated convergence for the calculation of the moments, known as high weak order solvers, have gained traction in the literature as a potentially performant method for numerically analyzing such solutions. One such class of methods is the stochastic explicit “s” stage Runge–Kutta methods:

\[
\eta_j = \tilde{X}_i + h \sum_{j=1}^{s} \lambda_{ji} a(\eta_j, t + \mu_j h) + \sum_{k=1}^{m} \Delta W^k_j \sum_{j=1}^{s} \alpha_{ji} b(\eta_j, t + \mu_j h), \quad j = 1, \ldots, s, \\
\tilde{X}_{i+1} = \tilde{X}_i + h \sum_{j=1}^{s} \alpha_{ji} a(\eta_j, t + \mu_j h) + \sum_{k=1}^{m} \Delta W^k_j \sum_{j=1}^{s} \beta_{ji} b(\eta_j, t + \mu_j h) + R,
\]

where \(\lambda_{ji}, \alpha_{ji}, \beta_{ji} \) are the constants that define the particular stochastic Runge–Kutta method and \(R \) is the fit term [42,43]. Adaptive time-stepping techniques using similar rejection sampling and PI-controller approaches to ODEs have been adapted to SDE solver software [44].

4. The GPU ecosystem in Julia and cross-platform GPGPU programming

Using high-level languages to program hardware accelerators traditionally means either using a library approach or a domain-specific-language (DSL) approach. The library approach focuses on providing array abstractions to call optimized high-level operators written and optimized in another language. Prime examples of this approach are ArrayFire [16] and CuNumpy [45]. Often these systems provide some mechanism of user extendability, but often it is in terms of the underlying system language and not the host language. DSL approaches, such as JAX [11], embed a new language into the host language that provides domain-specific concepts and limits expressibility to a subset of operations that are representable by the DSL. This requires the user to rewrite their application in ways that are compatible with the DSL.

Compiling a high-level language directly to hardware accelerators like GPUs is challenging because these languages often rely on accessing the run-time library, managed memory and garbage collection, interpreted execution, and other constructs that are difficult to use on GPUs or are even in conflict with the hardware design. Numba [46] and JuliaGPU [47] retarget a subset of the language for execution on hardware accelerators. In contrast to Numba, which is a reimplementation of Python, JuliaGPU repurposes Julia’s existing CPU-oriented compiler for the purpose of generating code for GPUs.

Over time this has allowed the subset of the language that is directly executable on the GPU to grow and provide the basis for an effective, performant, and highly accessible programming model for GPUs. This model spans from low-level GPU kernel programming with direct access to advanced hardware features to the high-level array abstractions [48] provided by Julia.

4.1. Supporting multiple GPU platforms

Originally JuliaGPU only supported hardware accelerators by NVIDIA (CUDA). As hypothesized [47], the same approach could be extended to target other hardware platforms. Instead of re-implementing a full-fledged compiler for each new platform, the common infrastructure pieces were abstracted into a single unified compiler interface GPUCompiler.jl [49] and a unified array interface GPUP_arrays.jl [50]. Despite its name, GPUCompiler.jl is not limited to only GPU platforms and is also used to target non-GPU accelerators and specific CPU platforms.

With GPUCompiler.jl offering reusable functionality to configure the Julia compiler and LLVM providing the ability to generate high-quality machine code, Julia is well-positioned to target different accelerator platforms. Most major GPU platforms are supported: CUDA.jl [47] for NVIDIA GPUs using the CUDA toolkit, AmdGPU.jl [51] for AMD GPUs through ROCm, oneAPI.jl [52] for Intel GPUs with oneAPI, and Metal.jl [53] for Apple M-series GPUs with the Metal libraries. These backends are relatively simple and can be developed and maintained by small teams. Meanwhile, other languages and frameworks often struggle to provide native support for all the most popular platforms. In the case of Python, for example, adding a Numba backend involves significant effort, and as such, Apple GPUs are not yet supported.1 Similarly, as of May 2023, JAX does not support AMD2 or Apple GPUs3 because it requires special support in the Accelerated Linear Algebra (XLA) compiler. Unless there is sizable traction, scientific

3 https://github.com/google/jax/issues/8074.
computing with these languages is not able to leverage different GPU vendors where that could have been beneficial for, e.g., HPC and AI/ML workloads [54,55].

To facilitate working with multiple GPU platforms, Julia offers a powerful array abstraction that makes it possible to write generic code. The abstractions are implemented by each backend, either using native kernels or by reusing existing functionality. For performance reasons, common operations such as matrix multiplication are implemented by dispatching to vendor-specific libraries such as CUBLAS for NVIDIA GPUs and Metal’s Performance Shaders for Apple GPUs. Higher-order operations such as map, broadcast, and reduce are implemented using native kernels. This makes it possible to compose them with user code, often obviating the need for custom kernels. Work by Besard et al. [48] has shown that this makes it possible to quickly prototype code for multiple platforms while achieving good performance. To achieve maximum performance, important operations can still be specialized using custom kernels that are optimized for the platform at hand and include application-specific knowledge.

4.2. Abstractions for kernel programming

Even though Julia supports multiple GPU platforms, it can quickly become cumbersome to write compatible kernels for each one. For example, kernels need to adhere to specific device APIs that are offered by the platform. With a variety of device backends available, a programmer’s dream is to write one kernel that can be instantiated and launched for any device backend without modifications of the higher-level code, all without sacrificing performance. In Julia, this is possible with the KernelAbstractions.jl [56] package, which provides a macro-based dialect that hides the intricacies of vendor-specific GPU programming. Kernels can then be instantiated for different hardware accelerators, including CPUs and GPUs. For GPUs, full support is provided for NVIDIA (CUDA), AMD (ROCm), Intel (oneAPI), and Apple (Metal). For the GPU ODE solvers presented in this article, KernelAbstractions.jl is used to target these different backends, essentially from the same high-level kernel code.

The development of the GPU ecosystem was not a separate effort rather, DiffEqGPU.jl has been one of the driving projects of the Julia GPU ecosystem since the inception of the new approaches (GPUCompiler.jl and KernelAbstractions.jl) in 2019. As such, the developers of those tools are co-authors of this work, as this is the first application that displays the full vendor-agnostic feature set that the tooling aims to provide.

5. Massively data-parallel GPU solving of independent ODE systems

This article considers two approaches for parallelizing ensemble problems on GPUs, both of them automatically translating and compiling the differential equation. The first approach is easily extensible, compatible with any existing solver, and relies on GPU vectorization. This approach is similar to the other high-level software we described in the introduction, and we will show that this approach is not performance optimal and has significant overheads. The second strategy reduces this overhead by generating custom GPU kernels, requiring numerical methods to be programmed within it. A brief overview of the automation is depicted in Fig. 1. Both of the programs are composable with Julia’s SciML [8] ecosystem, where users can write models compatible with standard SciML tools such as DifferentialEquations.jl, and DiffEqGPU.jl will automatically generate the functions which can be invoked from within a GPU kernel. Moreover, SciML is composed of polyglot tools allowing use of its libraries from other languages such as R, allowing even the use of our GPU-accelerated solvers from other programming languages.

5.1. EnsembleGPUArray: Accelerating ensemble ODEs with GPU array parallelism

5.1.1. Identifying parallelism and problem construction

For an ODE with \(n \) states, \(m \) parameters, and \(N \) required simulations with different parameters, there exist \(n \times N \) states to keep track of. This problem can be formulated as solving one ODE

\[
\frac{dU}{dt} = F(U, P, t)
\]

where

\[
U = \begin{bmatrix}
u_{11} & u_{12} & \cdots & u_{1N} \\
u_{21} & u_{22} & \cdots & u_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
u_{n1} & u_{n2} & \cdots & u_{nN}
\end{bmatrix}_{n \times N},
\]

\[
P = \begin{bmatrix}
p_{11} & p_{12} & \cdots & p_{1N} \\
p_{21} & p_{22} & \cdots & p_{2N} \\
\vdots & \vdots & \ddots & \vdots \\
p_{m1} & p_{m2} & \cdots & p_{mN}
\end{bmatrix}_{m \times N},
\]

\[
F = \left[f(u, p_{1:1, t}) \cdots f(u, p_{1:m, N, t}) \right]_{1 \times N}.
\]

4 https://cran.r-project.org/web/packages/diffeqr/vignettes/gpu.html
Fig. 1. Overview of the automated translating and solving of differential equations for GPUs for massively data-parallel problems. The solid lines indicate the code flow, whereas the dashed lines indicate the extension interactions.

and $p_{l:m,j}$ denotes the jth column of the P matrix. In this form, we can parallelize the computation over GPU threads, where each thread only accesses and updates the column of U in parallel. This allows the computation of the quantities which depend on U to happen in parallel. When solving ODEs, these quantities are generally the right-hand side (RHS) of ODE f, the Jacobian J, and even the event handling (callbacks). We perform these array-based computations by calling the functions within custom-written GPU kernels, updating each column of the U asynchronously.

5.1.2. Translating ODE solves over GPU using KernelAbstractions.jl

In order to fully leverage the GPU ecosystem in Julia, several changes were made to it to allow DiffEqGPU.jl to have seamless performance and composable. Changes such as the generalization of SciML kernels from CUDA-specific to backend-agnostic, launch parameters tuning, and delivering usability of newer backends such as Apple metal are some of the initiatives to make this work a reality, which in turn is helping the broader community. Hence, our work provides a roadmap for how others can achieve true vendor agnosticism and the reality of the work necessary.

The GPU kernels are written using KernelAbstractions.jl [56], which allows for the instantiation of the GPU kernels for multiple backends. KernelAbstractions.jl performs a limited form of auto-tuning by optimizing the launch parameters for occupancy. Since these kernels have a high residency, preferring a launch across many blocks has been shown to be beneficial. We instantiate the kernels with the problem defined as normal Julia functions that the kernel is specialized upon. Using a Just-In-Time (JIT) compilation approach, we thus generate a new kernel where the solver and the problem definition are co-optimized.

After calculating the dependents on U is completed, synchronization is required to calculate the next step of the integration. EnsembleGPUArray essentially parallels the operation involving the state U within the single time step of the ODE integration. This simple approach allows composable and easy integration with the vast collection of numerical integration solvers in DifferentialEquations.jl [8]. An option to simultaneously offload a subset of the solutions to the CPUs provides additional flexibility to the user to leverage the CPU cores. Moreover, users can take advantage of the multiple GPUs over clusters to perform the simulations of the ensemble problems via this tutorial.⁵ Fig. 2 is an overview of the process.

5.1.3. Batched LU: Accelerating ensemble of stiff ODEs

Stiff ODE solvers require repeatedly solving the linear system $W^{-1}b$ where $W = -\gamma I + J$, γ is a constant real number, and J is the Jacobian matrix of the RHS of the ODE. The W matrix of the batched ODE problem in Section 5.1.1 has a block diagonal structure:

\[
W = \begin{bmatrix}
-\gamma I + J_1 \\
-\gamma I + J_2 \\
& \ddots \\
& & -\gamma I + J_N
\end{bmatrix},
\]

(16)

⁵ https://docs.sciml.ai/DiffEqGPU/dev/tutorials/multigpu/.
where $J_{ij} = \frac{\partial f_i}{\partial u_j}$. The block diagonal system can be efficiently solved by computing the LU factorization, and forward, and backward substitutions of each block of W in the GPU kernel.

5.1.4. Drawbacks of the array ensemble approach

The main drawback of this approach is that each array operation inside of the ODE solver requires a separate GPU kernel launch. However, in explicit Runge–Kutta methods as described in Sections 3.1 and 3.3, most of the operations are linear combinations and column-wise parallel applications of the ODE model f, and are thus $O(N)$ operations. Array-based GPU DSLs are typically designed to be used with $O(N^3)$ operations which are common in neural network applications (such as matrix multiplication) in order to more easily saturate the kernels to overcome the overhead of kernel launch. While the ODE solvers are written in a form that automatically fuses the linear combinations to reduce the total number of kernel calls, thus reducing the overall cost [57], we will see in the later benchmarks (Section 6.2) that each of the array-ensemble GPU ODE solvers has a high fixed cost due to the total overhead of kernel launching.

In addition, the parallel array computations of each step of the solver method need to be completed before proceeding to the next time step of the integration. Adaptive time-stepping in ODEs allows variable time steps according to the local variation in the ODE integration, allowing optimal time-stepping. Trivially, the ODE can have different time-stepping behavior for other parameters, as they form part of the “forcing” function $f(u, p, t)$. The implicit synchronization of the parallel computations necessitates the same time-stepping for all the trajectories by virtue of solving all trajectories as a single ODE.

5.2. EnsembleGPUKernel: Accelerating ensemble of ODEs with specialized kernel generation for entire ODE integration

The EnsembleGPUArray requires multiple kernel launches within a time step, which causes large overheads due to the numerous load and storage operations to global memory. In order to completely eliminate the overhead of kernel launches, a separate implementation denoted EnsembleGPUKernel generates a single model-specific kernel for the full ODE integration. For stiff ODEs, the Jacobian can be calculated with Automatic Differentiation (AD) invoked within the kernels. Each thread accesses the data-augmented ODE to analyze, and the solving of all the ODEs is completely asynchronous. The process is briefly outlined in Fig. 3 and an example is given in Listing 1.

```julia
@kernel function tsit5_kernel(@Const(probs), _us, _ts, dt)
    # Get the thread index
    i = @index(Global, Linear)
    # get the problem for this thread
    prob = @inbounds probs[i]
    # get the input/output arrays for this thread
    ts = @inbounds view(_ts, :, i)
    us = @inbounds view(_us, :, i)
    # Setting up initial conditions and integrator
    integrator = init(...) # Perform ODE integration until completion
```

Fig. 2. The EnsembleGPUArray flowchart.
5.2.1. Kernel-specialized ODE solvers

The ODE solvers that are currently available with EnsembleGPUKernel are:

- GPURodas5P: A custom GPU-kernelized implementation of a fifth-order A-stable stiffly stable Rosenbrock method \[36,60\]. Is suitable for problems at medium tolerances. Employs a fourth-order stiff-aware interpolation which has better stability in the adaptive time-stepping embedding.
- GPURosenbrock23: A custom GPU-kernelized implementation of an order 2/3 L-Stable Rosenbrock-W method \[6,29,36\]. Is good for very stiff equations with oscillations at high tolerances. Employs a second-order stiff-aware interpolation. Also supports Differential Algebraic Equations (DAEs) in mass-matrix form, i.e., \(M \frac{du}{dt} = f(u, p, t) \), where \(M \) is the mass matrix.
- GPUDerivatives: A custom GPU-kernelized implementation of a Runge–Kutta 4th(3) order method \[30\]. Is suitable for medium to high tolerances. Performs well for medium to high tolerances. More efficient and precise than the popular Dormand-Price 5(4) \[28\] Runge–Kutta pair, which is a common default solver choice in packages such as MATLAB \[6\] and torchdiffeq \[25\]. Has free 4th-order interpolation support.
- GPULSODA: A custom GPU-kernelized implementation of the adaptive time-stepping embedding.
- GPUPRKN4: A custom GPU-kernelized implementation of a Runge–Kutta 4th(3) order method \[58\]. Is suitable for problems at medium tolerances. Employs a fourth-order stiff-aware interpolation. Also supports differential equation solvers in mass-matrix form, i.e., \(M \frac{du}{dt} = f(u, p, t) \), where \(M \) is the mass matrix.

These choices are based on the SciMLBenchmarks, which has extensive comparisons between ODE solvers.\(^6\) For stiff ODEs, the Rosenbrock-type methods are ideally suited for GPU compilation because they are devoid of the typical Newton’s method performed per step in stiff ODE integrators \[29\]. On GPU, implicit ODE solvers achieve top performance by using the property that the inverted Jacobian of Newton’s method does not need to be exact, and thus efficient integrators such as CVODE \[61\] and those in DifferentialEquations.jl adaptively reuse the same Jacobian factorization from multiple time steps. For sufficiently large equations, this trades the \(O(N^3) \) factorization operation for more iterations of Newton’s method with the same inverse factor and thus \(O(N^2) \) linear solves. However, these properties do not transfer well to the GPU setting since (a) branching within a GPU warp is resolved such that every concurrent solve requires the same number of iterations, thus leading to more linear solves than necessary for most of the systems at each step and (b) the systems are sufficiently small so that the factorization is not the dominating factor in the compute cost.

Rosenbrock methods only require one Jacobian evaluation and have a constant number of linear solves per step, where the matrix factorization can be cached to a single factorization per time step. This more static integration procedure is also compensated by higher stage order (i.e., convergence rate on highly stiff ODEs and DAEs) and smaller leading truncation error coefficients, effectively leading to less steps being required to reach the same error. For this reason, Rosenbrock methods are the most efficient solver on GPU for sufficiently small ODEs (approximately less than 20), competitive until the LU-factorization cost becomes dominant (around 100 ODEs). Some prior research has shown results with ODE extrapolation methods where the LU factorization does not have the dominating cost and hence no suitable gains from its parallelization other than parallelizing multiple computations of LU \[62\].

Integration of automatic differentiation: Automatic differentiation is a way to compute exact derivatives of mathematical computer programs \[63\]. With the change to high-order Rosenbrock methods, having accurate Jacobians (non-finite difference) is a necessary requirement for Rosenbrock methods to achieve high-order convergence \[29\]. Thus, while previous LSODA approaches could get away with finite difference approximations through the relaxation in nonlinear solver steps, our approach, which would be

\(^6\) https://docs.sciml.ai/SciMLBenchmarksOutput/stable/
more GPU performant due to the greatly reduced branching, requires mixing this automatic differentiation to achieve full accuracy and performance. Integration of solvers is done with forward-mode automatic differentiation within a GPU kernel. In particular, we extended the LU factorization in the nonlinear solve step to statically compile seamlessly for arbitrary size of the ODE.

Given the extra advantages of the GPU and the fact that the embarrassingly parallel context is limited to this size of systems, we will see that Rosenbrock methods are outperformed by the Newton-based stiff ODE solvers quite handily.

5.2.2. Kernel-specialized SDE solvers

Currently, DiffEqGPU.jl only supports fixed time-stepping in SDEs with EnsembleGPUKernel.

- GPUEM: A custom GPU-kernelized fixed time-step implementation of Euler–Maruyama method [42]. Supports diagonal and non-diagonal noise.
- GPUSIEA: A custom GPU-kernelized fixed time-step implementation of weak order 2.0 [64], stochastic generalization of midpoint method. Supports only diagonal noise.

6. Benchmarks and case studies

6.1. Setup

To compare different available open-source programs with GPU-accelerated ODE solvers, we benchmark them with several NVIDIA GPUs: one being a typical compute node GPU, Tesla V100, and the other being a high-end desktop GPU, Quadro RTX 5000. Performance comparison of the kernel-based ODE solvers with different GPU vendors is also carried out. Except for Apple having an integrated GPU, we use dedicated desktop GPUs. For NVIDIA, we benchmark on Quadro RTX 5000 (11.15 TFLOPS), Vega 64 for AMD (10.54 TFLOPS), A770 (19.66 TFLOPS) for Intel, and M1 Max (10.4 TFLOPS) for Apple. The DE problems involve single precision (Float32) on GPUs. The CPU benchmarks are executed using double precision (Float64), and are timed on an Intel Xeon Gold 6248 CPU @ 2.50 GHz with 16 enabled threads. Using double precision on CPUs is faster than the single precision for our use-case and processor.

To facilitate the seamless transition from CPU to GPU without requiring any modifications to the original code, EnsembleGPUKernel was developed to mimic the SciML ensemble interface. Nevertheless, this GPU-aspect-hiding approach always passes the problem to the GPU and returns the result to the CPU, reducing overall performance. To avoid conversion overheads and for a fair comparison among other software, we developed a lower-level API that closely resembles other APIs. The timings for each software only report time spent solving the ensemble ODE. The benchmarking literature discusses the topic of reporting times for benchmarking and uses the minimum as an approximation of the ideal value, the least noisy measurement. Hence, the timings for the programs written in Julia are measured using BenchmarkTools.jl, taking the best timing. The Julia-based benchmarks were tested on DiffEqGPU.jl 1.26, CUDA.jl 4.0, oneAPI.jl 1.0, and Metal.jl 0.2.0, all using Julia 1.8. The test with AMD GPUs was done with AMDGPU.jl 0.4.8, using Julia 1.9-beta3.

The timings script for MPGOS has been borrowed from their available open-source codes. They have been tested with CUDA toolkit 11.6 and C++ 11. The programs are run at least ten times for JAX and PyTorch. The JAX-based programs are run on 0.4.1

https://docs.sciml.ai/DiffEqGPU/dev/tutorials/lower_level_api/.
https://github.com/nnagyd/ode_solver_tests.
Fig. 4. A comparison of time for an ODE solve for CPU vs. GPU. The EnsembleGPUKernel performs the best with up to 100× acceleration and a lower cutoff to take advantage of parallelism.

Table 1
Summary of mean slowdowns of ODE integrators, benchmarking on stiff problems with different hardware (lower the better).

<table>
<thead>
<tr>
<th>Time-stepping</th>
<th>GPU (Kernel)</th>
<th>GPU (Array)</th>
<th>CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adaptive (Nonstiff)</td>
<td>1.0×</td>
<td>48.2×</td>
<td>22.2×</td>
</tr>
<tr>
<td>Fixed (Nonstiff)</td>
<td>1.0×</td>
<td>377.6×</td>
<td>110.3×</td>
</tr>
<tr>
<td>Adaptive (Stiff)</td>
<td>1.0×</td>
<td>180.0×</td>
<td>132.3×</td>
</tr>
</tbody>
</table>

with Diffrax 0.2.2. Programs based on PyTorch are tested with PyTorch nightly 2.0.0.dev20230202, and a custom installation of torchdiffeq to extend support to vmap is used. Both programs are tested on Python 3.9. The complete benchmark suite can be found at https://github.com/utkarsh530/GPUODEBenchmarks.

6.2. Establishing efficiency of solving ODE ensembles with GPU over CPU

Prior researches [9,23] demonstrate that solving low-dimensional ODEs over parameters and initial conditions (massively parallel) exposes superior parallelism in GPUs over CPUs. The benchmarking is performed on GPUs with single precision and CPU multithreading with double precision to take advantage of respective optimized floating point math. Indeed, the EnsembleGPUKernel supports our claim of lower overhead compared to EnsembleGPUArray and being up to 100× faster. For the benchmarking problem GPU parallelism becomes superior to CPU parallelism at approximately 100–1000 trajectories (Fig. 4). The solver used to benchmark the Lorenz Attractor [65] is Tsitouras’ 5(4) Runge–Kutta method [58], both with adaptive and fixed time-stepping. Similarly, we also perform the benchmarking of stiff ODE integrators with the Robertson equation [66], using the Rosenbrock23 methods [36]. Fig. 5 showcases the performance of the solvers. Table 1 lists the relative slowdowns of both non-stiff and stiff ODE integrators obtained using EnsembleGPUKernel.

GPU performance at <1000 trajectories: Massive parallel simulations are needed to utilize GPU cores and amortize overhead costs fully. Fig. 4 shows that overheads are essentially constant regardless of thread count. In this range, the computations are not latency hiding; one essentially measures the kernel launch time. Hence, one would not expect superior GPU parallelism in comparison to CPU at lower trajectories because CPUs are usually free of these overheads.

6.3. Solving billions of ODEs together: Scaling EnsembleGPUKernel with MPI

The Message Passing Interface (MPI) [67,68] can be directly used with Julia using MPI.jl [69]. Additionally, there exists support for CUDA by using a CUDA-aware MPI backend. As a testimonial of scalability, 2,147,483,648 (~2 billion) ODE solutions on the Lorenz problem were calculated using eight V100 GPU cluster nodes, in which seven GPUs amounting to 35,840 CUDA cores explicitly performed the computation of approximately 306 million ODEs. The wall-clock time of this simulation was approximately

11

6.4. Comparison with other GPU-accelerated ODE programs

Selecting the problem for fair benchmarking on different implementations of GPU-based solvers is a task in itself, owing to the different use cases, motivations, and optimizations of these libraries. Choosing systems with low-dimensional ODEs, such as the Lorenz equation, is a suitable candidate owing to the simplicity of its definition, which alludes to any optimizations in calculating \(f(u, p, t) \). The right-hand side solely involves additions/subtractions and multiplications, in which each floating-point operation will be interpreted as a complete FMA (Fused Multiply Accumulate) instruction. For our benchmarking purposes, \(\sigma = 10.0 \), \(\gamma = 8.3 \), and \(\rho \) in the Lorenz equation \[65\] is uniformly varied from \((0.0, 21.0)\) generating \(N \) instances of independent, parallel ODE solves, which is also the number of trajectories in DiffEqGPU.jl API.

The results for fixed and adaptive time-stepping are shown in separate Figs. 6 and 7 for equitable comparison. There is not any common ODE solver between these packages, so we use methods belonging to the class of 4th, 5th order Runge–Kutta methods, which perform similarly in the benchmarks \[8\]. “Tsit5” was used in both Julia and JAX, “Cash-Karp” for MPGOS, and “Dopri5” for PyTorch. Fixed time-stepping implicitly assures a constant work/thread, which is ideal for GPUs. However, adaptive time-stepping within ODE integrators adjusts time steps to ensure stability and error control. This generally results in faster ODE integration times than fixed time-stepping, but may cause thread divergence as effectively different time-stepping across threads, eventually amounting to contrasting work per thread. The slowdown of different packages with respect to our implementation with different NVIDIA GPUs is listed in Tables 2 and 3. While our solvers are able to reach and sometimes outperform speed of light measure (C++), MPGOS, we observe a greater acceleration of approximately 20–100× in comparison to JAX and 100–200× for PyTorch, both of which rely on vectorized map style of parallelism. The authors were not able to compile adaptive time-stepping results for PyTorch, as vmap currently does not support all the internal operations required by the PyTorch code base. Notably, the array abstraction parallelism approach of PyTorch and JAX performs similarly to the demonstrated efficiency of EnsembleGPUArray, providing clear evidence that the performance difference is due to the fundamental approach itself and not due to efficiencies or inefficiencies in the implementation of the approach.

Similarly, we benchmark the solvers with stiff ODEs. A usual test case for stiff ODEs is the Robertson equation \[66\], which models a chemical reaction between three species. The rate of the reactions varies at drastically different time scales, which subsequently gives rise to the stiffness characteristic of the problem. We also additionally benchmark with an other massively parallel stiff

[^10]: These latencies could be reduced by using a GPU with larger memory or a multi-GPU per node, which was not done in our demonstration due to hardware availability.
Fig. 6. A comparison of the time for an ODE solve with other programs with fixed time-stepping. EnsembleGPUKernel is able to reach and sometimes outperform speed of light measure (MPGOS) and is approximately faster by 20–100× in comparison to JAX and 100–200× for PyTorch.

Fig. 7. A comparison of the time for an ODE solve for with other programs with adaptive time-stepping. EnsembleGPUKernel is able to reach and sometimes outperform speed of light measure (MPGOS) and approximately faster by 20–100× in comparison to JAX.

ODE solver, ginSODA [70], which uses Python as a front-end for their CUDA-C++ kernels. Fig. 8 summarizes the benchmarks when compared with JAX, Julia’s EnsembleGPUArray, and ginSODA. The performance trend remains congruent with non-stiff ODE problems, indicating an average speed-up of 76–130× for JAX, 129–280× for Julia’s EnsembleGPUArray, and 170–409× for ginSODA (see Table 4). According to the author’s knowledge, the stiff ODE solvers are the first most extensive and the state-of-the-art massively parallel kernel-based solvers available for GPU acceleration.

6.5. Vendor agnosticism with performance: Comparison with several GPU platforms

With vendor-agnostic GPU kernel generation, researchers can choose major GPU backends with ease. Our benchmarks in Fig. 9 and Fig. 10 demonstrate that overhead is minimal in our ODE solvers and users can expect performance one-to-one with mentioned Floating Point Operations per Second (FLOPS) in GPUs mentioned in Section 6.1. To elude other performance impacts such as thread divergence and equitable selection of the dimension of the ODE, we simulate the Lorenz problem with fixed time-stepping. We run
Fig. 8. A comparison of the time for a stiff ODE solve with other programs with adaptive time-stepping. EnsembleGPUKernel is faster than JAX and EnsembleGPUArray by approximately 76–130×.

Table 2
A summary of the range of slowdowns of the benchmarks in Figs. 6 and 7 (lower is better), with results compiled on a desktop GPU. The slowdowns are computed by varying the number of trajectories. The Julia-based solvers achieve the best acceleration on average.

<table>
<thead>
<tr>
<th>Software</th>
<th>Time-stepping</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed</td>
<td>Adaptive</td>
</tr>
<tr>
<td>DiffEqGPU.jl (Julia)</td>
<td>1.0x</td>
<td>1.0x</td>
</tr>
<tr>
<td>MPGOS (C++)</td>
<td>2.2–5.3x</td>
<td>0.5–2.3x</td>
</tr>
<tr>
<td>Diffrax (JAX)</td>
<td>88.9–274.0x</td>
<td>28.0–124.0x</td>
</tr>
<tr>
<td>torchdiffeq (PyTorch)</td>
<td>196.4–3617.7x</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 3
A summary of the range of slowdowns of the benchmarks in Figs. 6 and 7 (lower the better), with results compiled on a server GPU. The slowdowns are computed by varying the number of trajectories. The Julia-based solvers achieve the best acceleration on average.

<table>
<thead>
<tr>
<th>Software</th>
<th>Time-stepping</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fixed</td>
<td>Adaptive</td>
</tr>
<tr>
<td>DiffEqGPU.jl (Julia)</td>
<td>1.0x</td>
<td>1.0x</td>
</tr>
<tr>
<td>MPGOS (C++)</td>
<td>0.6–1.0x</td>
<td>0.6–6.9x</td>
</tr>
<tr>
<td>Diffrax (JAX)</td>
<td>57.4–322.3x</td>
<td>30.2–46.8x</td>
</tr>
<tr>
<td>torchdiffeq (PyTorch)</td>
<td>98.8–3693.9x</td>
<td>–</td>
</tr>
</tbody>
</table>

Table 4
A summary of the range of slowdowns of the benchmarks in Fig. 8 (lower the better), with results compiled on a server GPU for stiff ODEs. The slowdowns are computed by varying the number of trajectories. The Julia-based solvers achieve the best acceleration on average.

<table>
<thead>
<tr>
<th>Software</th>
<th>Time-stepping</th>
</tr>
</thead>
<tbody>
<tr>
<td>EnsembleGPUKernel (RodasSP)</td>
<td>1.0x</td>
</tr>
<tr>
<td>EnsembleGPUKernel (Kvaerno5)</td>
<td>0.85–1.0x</td>
</tr>
<tr>
<td>EnsembleGPUKernel (Rosenbrock23)</td>
<td>1.2–1.6x</td>
</tr>
<tr>
<td>EnsembleGPUArray (Kvaerno5)</td>
<td>129.1–279.9x</td>
</tr>
<tr>
<td>Diffrax (Kvaerno5)</td>
<td>76.6–130.0x</td>
</tr>
<tr>
<td>ginSODA (LSODA)</td>
<td>170.4–409.4x</td>
</tr>
</tbody>
</table>
U. Utkarsh et al.

Fig. 9. A comparison of the time for an ODE solve for fixed time-stepping, measured on different GPU platforms. The non-stiff ODE solver GPUTsit5 is used here. We measure the time (lower the better) versus the number of parallel solves. Here, the NVIDIA GPUs perform the best owing to the most-optimized library and matured ecosystem with JuliaGPU.

Fig. 10. A comparison of the time for an ODE solve for adaptive time-stepping, measured on different GPU platforms. The stiff ODE solver GPURosenbrock23 is used here. We measure the time (lower the better) versus the number of parallel solves. Here, the NVIDIA GPUs perform the best owing to the most-optimized library and matured ecosystem with JuliaGPU.

the benchmarks on major vendors: NVIDIA, AMD, Intel, and Apple. The peak flops are listed in Section 6.1. To our knowledge, this is the first showcase of GPU-parallel software for solving DEs that supports more than NVIDIA GPUs.

6.6. Event handling and automatic differentiation

Software for simulating dynamical systems allows for injecting discontinuous events and termination of integration with a specified criterion causing discontinuities within the integration. Event handling in differential equations is used to produce non-differentiable points in continuous dynamical systems. Mathematically, an event within an ODE can be specified as a tuple of functions, g, h ("condition" and "affect"), where satisfying the "condition" $g(u, p, t) = 0$ triggers the "affect" $h(u, p, t)$, changing u, t or terminating the integration. As a demonstration of event capabilities with EnsembleGPUArray and EnsembleGPUKernel, we demonstrate the famous surface-ball collision (bouncing ball) dynamics simulated on GPUs in Fig. 11.
Additionaly, the GPU kernels are automatic differentiation (AD) compatible, both with forward with reverse mode, allowing for GPU-parallel forward and adjoint sensitivity analysis. Tutorials in the library demonstrate the usage of AD for parameter estimation with minibatching.\footnote{https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/#Minibatching-Across-GPUs-with-DiffEqGPU.}

6.7. Texture memory interpolation

As the mathematical model used to simulate a dynamical system is oftentimes a low-fidelity approximation of the true physical phenomena, practitioners often account for non-modeled behavior via lookup tables and interpolation of datasets. These datasets may be derived from real-world experimentation and/or higher-fidelity simulation. For cases where the interpolant is a function of the system state, interpolation is required at each time step for each system in the ensemble. A simple example of this is the above bouncing ball problem, extended to include drag forces imparted on the ball via the interpolation of a spatially varying wind field. Furthermore, a user may need to interpolate digital terrain elevation data for ground collision event handling, in which the textured memory defined in Listing 2 can be used.

```cpp
// Building textured memory of the dataset
texture = CuTexture(CuTextureArray(dataset))
// Passing the textured memory as parameter of the problem
prob = ODEProblem(f_rhs, u0, tspan, (p, texture))
// Performing the solve, with 0 CPU offloading.
sol = solve(prob, alg, EnsembleGPUKernel(0), ...)
```

Listing 2: An outline of using texture memory with DifferentialEquations.jl

In addition to exploiting parallelism for time-stepping as described above, GPU texture memory can be leveraged when interpolation is required with multiple benefits. In particular, for NVIDIA GPUs, texture memory provides interpolation, nearest-neighbor search, and automatic boundary handling for the cost of a single memory read. Benchmarking with texture memory results in 2× faster simulation, when we replace a compute-bound operation such as interpolation on GPU with texture-memory. Furthermore, texture memory is advantageous for situations where the memory access pattern is not known a priori, which is often the case for state-dependent interpolation. Texture memory, however, requires uniformly spaced data.

6.8. Accelerating stochastic processes with GPUs

The expectation of SDE solutions is a key metric in many model analyses due to the randomness of the simulation process. Such a calculation is generally done through Monte Carlo estimation via generating many trajectories of SDE solution, typically requiring
6.8.1. Asset price model in quantitative finance

As a rudimentary example, we examine the ensemble simulation of a linear SDE, popularly known as Geometric Brownian Motion (GBM), which is the common Black–Scholes model used in asset pricing in quantitative finance [38,39]. The benchmarks in Fig. 12 demonstrate that simulations on GPU are faster than CPU on average by 8×. GPU parallelism dominates CPU parallelism over approximately 1000 trajectories. We note that the decreased performance difference from the ODE case is likely due to the less optimized implementation of the kernel PRNG implementations.

6.8.2. Stochastic chemical reaction networks

Additionally, we benchmark the SDE solvers over a real case study of Chemical Reaction Networks (CRN) generated when microorganisms such as bacteria respond to stimuli, which causes a change in its gene expression through sigma factors [71]. These biological processes are inherently noisy in nature, and it is simulated by transforming the CRN to an SDE via the Chemical Langevin Equation (CLE) [41]. The non-dimensionalized model has notably 4 states, 8 Wiener noise variables, and 6 parameters, making it suitable for our case study as our GPU DE solvers are suited for problems with low-dimensional states. The simulation of the process on the GPU in shown in Fig. 13. The benchmark investigates the generation of trajectories of solutions for different parameters akin to parameter sweeps, which are widely used in parameter estimation and uncertainty quantification. Each of the parameters is uniformly sampled and the set of the Cartesian products of parameters is simulated, generating approximately >1,000,000 unique trajectories. The benchmarks shown in Fig. 14 quantitatively shows that our GPU implementation for SDEs is 4.5× faster than multithreading over a CPU, averaged over different trajectories.

7. Discussion

We have demonstrated that many programs written for standard CPU usage of DifferentialEquations.jl can be retargeted to GPUs via DiffEqGPU.jl and achieve state-of-the-art (SOA) performance without requiring changes to user code. This solution democratizes the SOA by not requiring scientists and engineers to learn CUDA C++ in order to achieve top performance. One key result of the paper is that we demonstrate that all approaches which used array abstraction GPU parallelism, PyTorch, JAX, and EnsembleGPUArray, achieve similar performance and are orders of magnitude less efficient than the kernel generation approach of EnsembleGPUKernel and MPGOS. This suggests that the performance difference is due to a limitation of the array abstraction parallelization formulation, and demonstrates a concrete application where kernel generation is required for achieving SOA. It has previously been noted that “machine learning systems are stuck in a rut” where many deep learning architectures are designed to only use the kernels included by current machine learning libraries (PyTorch and JAX) [72]. Our results further this thesis by
Fig. 13. An example simulation plot of the system vs. time. The model is written with Catalyst.jl and automatically works with GPU solvers, showcasing the ability to simulate complex models seamlessly on GPU.

Fig. 14. The parameter parallel simulation time (lower the better) of the SDE simulation of Fig. 13. Overall, the comparison showcases the scalability of speedups of using GPUs instead of CPUs, having suitable gains for trajectories as small as 1000.

demonstrating that orders of magnitude performance improvements can only be achieved by leaving the constrained array-based DSL of pre-defined kernels imposed by such deep learning frameworks.

Despite being the performant alternative of EnsembleGPUArray, there are opportunities for improvements with EnsembleGPUKernel. For example, while using stack-allocated arrays provides a workaround to using arrays inside GPU kernels, they are not suitable for higher-dimensional problems due to the limited memory of static allocations. The model might compile, but there might not be any realizable speedups. Flexibility in terms of supporting mutation within the ODE function can be extended as well. This could be achieved by using mutable static arrays, which require special tricks to compile them with the GPU kernels. The user is also limited in terms of using features such as broadcast and calls to BLAS. Support for other differential equation problems such as differential algebraic equations (DAEs) and stiff SDEs remains an area of contribution. Experimental support exists for event
handling, however, some callbacks can generate GPU-incompatible code due to limitations in the Julia compiler. Improvements to the compiler’s escape analysis and effects modeling are currently being implemented, and are expected to resolve this issue.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: Adam R. Gerlach reports financial support was provided by Air Force Office of Scientific Research. Chris Rackauckas reports financial support was provided by JuliaHub. Yingbo Ma reports financial support was provided by JuliaHub. Tim Besard reports financial support was provided by JuliaHub.

Data availability

The link is in the manuscript.

Acknowledgments

We thank Mosè Giordano for developing an extension of our work to allow for using DiffEqGPU.jl on Graphcore Intelligence Processing Unit (IPU) architectures. This work is omitted from our manuscript as it is a different development effort and has an alternative front-end, making it difficult to compare to the GPU architectures. However, his work allows for using the same DiffEqGPU.jl solver kernels recompiled to IPU targets, demonstrating similar good performance. We additionally thank Torkel Loman for his help with stochastic differential equation models.

The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing HPC resources that have contributed to the research results reported within this paper. This material is based upon work supported by the National Science Foundation, United States under grant no. OAC-1835443, grant no. SII-2029670, grant no. ECCS-2029670, grant no. OAC-2103804, and grant no. PHY-2021825. We also gratefully acknowledge the U.S. Agency for International Development through Penn State for grant no. S002283-USAID. The information, data, or work presented herein was funded in part by the Advanced Research Projects Agency-Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0001211 and DE-AR0001222. We also gratefully acknowledge the U.S. Agency for International Development through Penn State for grant no. S002283-USAID. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. This material was supported in part by The Research Council of Norway and Equinor ASA through the Research Council project “308817 - Digital wells for optimal production and drainage”. The research was sponsored by the U.S. Air Force Research Laboratory and Air Force Office of Scientific Research Lab Task #21RQCOR083 in addition to the United States Air Force Artificial Intelligence Accelerator accomplished under Cooperative Agreement Number FA8750-19-2-1000. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Air Force or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation herein.

Appendix A. Artifact identification

The manuscript aims to explore the parallel solving of the ensembles of ordinary differential equations (ODEs) and stochastic differential equations (SDEs) with GPUs. The methods automate the process by generating optimized GPU kernels without requiring any model changes by the user. The methods outperform the vectorized map approach adopted by JAX and PyTorch and even handwritten CUDA C++ kernels, becoming state-of-the-art for solving ensemble ODEs/SDEs. The solution is high-performant with vendor-agnosticism, working with NVIDIA, AMD, Intel, and Apple GPUs.

The paper evaluates the performance of the ODE and SDE solvers with benchmarking with CPU multithreading using Intel Xeon Gold 6248 CPU @ 2.50 GHz with 16 enabled threads. The composability of the methods with Julia’s SciML ecosystem is also demonstrated by simulating a stochastic process based on a chemical reaction network model, written in a Julia-based Domain Specific Language (DSL) Catalyst.jl.

Further, we also benchmark against GPU-accelerated programs performed with ODE solvers. The GPUs used are Tesla V100 and RTX 500. Our case study used the software:

- EnsembleGPUArray (Julia’s DifferentialEquations.jl)
- MPGOS (CUDA C++)
- JAX (Python)
- PyTorch (Python)

The EnsembleGPUArray based code is written in Julia and is a part of DiffEqGPU.jl, the MPGOS program is written in C++, and the benchmarking scripts for JAX and PyTorch are written in Python. A standard workflow to integrate the polyglot software for benchmarking is done via bash scripts, which invoke the benchmarking scripts and store the execution times in a “.txt” file. Finally, the plotting scripts for these benchmarks are written in Julia to visualize the numbers obtained through benchmarking.

The description of the models used in benchmarking is provided in the next section.
A.1. Models: Ordinary differential equations

A.1.1. Lorenz problem

The first test problem is the Lorenz attractor:

\[
\begin{align*}
\frac{dy_1}{dt} &= \sigma(y_2 - y_1), \\
\frac{dy_2}{dt} &= \rho y_1 - y_2 - y_1 y_3, \\
\frac{dy_3}{dt} &= y_1 y_2 - \gamma y_3,
\end{align*}
\]

which contains three parameters: \(\sigma = 10\), \(\gamma = 8/3\), and \(\rho = 21\). The integration is performed for \(t \in [0, 1]\) with time-step \(dt = 0.001\), essentially generating 1000 fixed time-steps. The initial conditions are \(y = [1, 0, 0]\).

A.1.2. Bouncing-ball problem

The problem simulated in the callbacks example is the bouncing ball problem which has the kinetics:

\[
\begin{align*}
\frac{dx}{dt} &= v, \\
\frac{dv}{dt} &= -g,
\end{align*}
\]

```latex
function affect!(integrator)
    # Flips the sign of velocity
    # by coefficient of restitution
end

function condition(u, t, integrator)
    # returns true when the distance
    # to the ground is evaluated as zero
    u[1] # == 0
end
```

Listing 3: Implementation of callbacks

with \(g = 9.8 \text{ m/s}^2\) and \(e\) is the coefficient of restitution, which varies across the simulation. The problem is simulated for time interval \([0, 15]\). Completing the problem requires specification of how the object behaves when the ball hits the ground, which is done via event handling as described in Listing 3.

A.1.3. Robertson equation

The test problem used for stiff ODEs is the Robertson Equation:

\[
\begin{align*}
\frac{dy_1}{dt} &= -0.04y_1 + 10^4 y_2 y_3, \\
\frac{dy_2}{dt} &= 0.04y_1 - 10^4 y_2 y_3 - 3 \times 10^7 y_2^2, \\
\frac{dy_3}{dt} &= 3 \times 10^7 y_2^2.
\end{align*}
\]

The integration is performed for \(t \in [0.0, 10^5]\) with the initial time-step of \(h = 0.0001\). The initial conditions are \(y = [1, 0, 0]\).

A.2.1. Linear SDE

The asset-price model is simply expressed as

\[
\frac{dX_t}{X_t} = rX_t dt + V X_t dW_t
\]

where \(X_t\) is the state to be simulated with initial condition \(X_{t_0} = [0.1, 0.1, 0.1]\), \(r = 1.5\) is the risk-free rate of interest, and \(V = 0.01\) is the volatility.
B.1.2. HIRES

The initial conditions are

\[
y(t) = [1, 2, 3] \quad \text{and initial condition} \quad y(0) = [1, 2, 3].
\]

The second test problem is HIRES [75]:

\[
\begin{align*}
\frac{dy_1}{dt} &= -1.71y_1 + 0.43y_2 + 8.32y_3 + 0.0007, \\
\frac{dy_2}{dt} &= 1.71y_1 - 8.75y_2, \\
\frac{dy_3}{dt} &= -10.03y_3 + 0.43y_4 + 0.035y_5,
\end{align*}
\]

A.2.2. Biological Chemical Reaction Network (CRN) simulating generalized stress response model of bacterial sSigma factors

The biological CRN models the regulation of sigma factors via sigma factor circuits, which critically regulate gene expression during the bacterial stress response. These phenomena are stochastic in nature. The resulting process can be expressed as the SDE:

\[
d[\sigma] = \left(\frac{v_0}{(S[\sigma])^\alpha + (D[A3])^\alpha + 1} - [\sigma] \right) dt + \sqrt{\frac{v_0}{(S[\sigma])^\alpha + (D[A3])^\alpha + 1}} dW_1 - \eta \sqrt{[\sigma]} dW_2, \\
d[A_1] = \frac{[\sigma] - [A_1]}{\tau} dt + \sqrt{\frac{[\sigma]}{\tau}} dW_3 - \eta \sqrt{\frac{[A_1]}{\tau}} dW_4, \\
d[A_2] = \frac{[A_1] - [A_2]}{\tau} dt + \sqrt{\frac{[A_1]}{\tau}} dW_5 - \eta \sqrt{\frac{[A_2]}{\tau}} dW_6, \\
d[A_3] = \frac{[A_2] - [A_3]}{\tau} dt + \sqrt{\frac{[A_2]}{\tau}} dW_6 - \eta \sqrt{\frac{[A_3]}{\tau}} dW_5,
\]

which is generated through the Chemical Langevin Equation (CRE). The parameters are the set \((S, D, \tau, v_0, n, \eta)\). The range of parameters is specified in Table A.5. The simulation is performed for the time-span \([0, 1000]\) with \(dt = 0.1\) and initial condition \([\sigma, A_1, A_2, A_3] = \{v_0, v_0, v_0, v_0\}\).

The benchmarking measures the execution time of the methods in seconds. The timings are compared against the number of parallel solves (trajectories). Apart from benchmarks, we also present compatibility of the methods with standard scientific computing methodologies such as event-handling, automatic differentiation, HPC cluster scaling with MPI, and incorporation of the use of scientific datasets via textured memory. The methods are free to use via the open-source library, DiffEqGPU.jl, hosted on GitHub. The specific examples of the case studies and benchmarks are available on the complete benchmark suite: https://github.com/utkarsh530/GPUODEBenchmarks.

Together, these evaluations allow the paper to convey the SOA performance of the methods, scalability with distributed and multiple GPU vendors, reusability by retargeting existing CPU-targeted user’s code to GPUs, and composability with other tools of the high-level programming language.

Appendix B. Auxiliary model testing and benchmarks

This section addresses the generalizability of the results of the GPU solvers with different differential equation models.

B.1. Model description

B.1.1. OREGO

The first test problem is the Oregonator (Oregon) [73,74].

\[
\begin{align*}
\frac{dy_1}{dt} &= -k_1(y_2 + y_1(1 - k_2y_1 - y_2)), \\
\frac{dy_2}{dt} &= \frac{y_3 - (1 + y_1)y_2}{k_1}, \\
\frac{dy_3}{dt} &= k_3(y_1 - y_3).
\end{align*}
\]

The initial conditions are \(y = [1, 2, 3]\) and \(k = (77.27, 8.375 \times 10^{-6}, 0.161)\). The time span for integration is \(t \in [0, 30]\) s.

B.1.2. HIRES

The second test problem is HIRES [75]:

\[
\begin{align*}
\frac{dy_1}{dt} &= -1.71y_1 + 0.43y_2 + 8.32y_3 + 0.0007, \\
\frac{dy_2}{dt} &= 1.71y_1 - 8.75y_2, \\
\frac{dy_3}{dt} &= -10.03y_3 + 0.43y_4 + 0.035y_5,
\end{align*}
\]

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S)</td>
<td>(0.1 \leq S \leq 100.0)</td>
</tr>
<tr>
<td>(D)</td>
<td>(0.1 \leq D \leq 100.0)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>(0.1 \leq \tau \leq 100.0)</td>
</tr>
<tr>
<td>(v_0)</td>
<td>(0.01 \leq v_0 \leq 0.2)</td>
</tr>
<tr>
<td>(n)</td>
<td>(2 \leq n \leq 4)</td>
</tr>
<tr>
<td>(\eta)</td>
<td>(0.001 \leq \eta \leq 0.1)</td>
</tr>
</tbody>
</table>

Table A.5

Range of parameters used in parameter-parallel SDE solutions.
The time span for integration is \(t \in [0.0, 321.8122] \).
Fig. B.15. A comparison of the time for an ODE solve (lower the better) with different stiff ODE problems having different sizes. The average speedup over CPU parallelism at 8192 trajectories is approximately 10×.

\[y = [0.0, 0.0, 0.04, 0.0, 0.0, 0.0, 0.1, 0.3, 0.017, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.007, 0.0, 0.0, 0.0]. \]

(B.36)

The time span for integration is \(t \in [0.0, 60.0] \) s.

B.2. Preserving performance with different ODE models

In this section, we benchmark the ODE solvers on different stiff problems, each having varying dynamics and sizes of the model. We benchmark our solvers with three problems Appendices B.1.2, B.1.1, B.1.3. To allow GPU parallelism to sufficiently parallelize computations so as to overcome overheads such as kernel launch times, 8192 trajectories of the solution are computed. Fig. B.15 showcases the average speedup of approximately 10× on all problems in comparison to the CPU parallelism. The benchmark demonstrates the scalability of the solvers with different ODE problems.

B.3. Benchmarking different GPU solvers with AMD GPUs

Section 6.4 covers benchmarking with different software with NVIDIA GPUs. Here, we present our results for AMD GPUs, which are currently fully supported by PyTorch and Julia’s DiffEqGPU.jl. Fig. B.16 shows the comparison of the Lorenz problem, achieving at least 100× speedup. This demonstrates that the performance is independent of the GPU vendor and does not employ any specialized techniques such as CUDA GEMM kernels, allowing scientists to employ a variety of GPUs for their computation.

Appendix C. Reproducibility of experiments

The methods are written in Julia, and are part of the repository, https://github.com/SciML/DiffEqGPU.jl. The benchmark suite also consists of the raw data, such as simulation times and plots mentioned in the paper. The supported OS for the benchmark suite is Linux.

C.1. Installing Julia

The first step is to install Julia. The user can download the binaries from the official JuliaLang website https://julialang.org/downloads/. or alternatively use the convenience of a Julia version multiplexer, https://github.com/JuliaLang/juliaup. The recommended OS for installation is Linux. The recommended Julia installation version is v1.8. To use AMD GPUs, please install v1.9. The Julia installation should also be added to the user’s path.
C.2. Setting up DiffEqGPU.jl

C.2.1. Installing backends

The user must install the GPU backend library for testing DiffEqGPU.jl-related code.

```julia
julia> using Pkg
julia> #Run either of them
julia> Pkg.add("CUDA") # NVIDIA GPUs
julia> Pkg.add("AMDGPU") # AMD GPUs
julia> Pkg.add("oneAPI") # Intel GPUs
julia> Pkg.add("Metal") # Apple M series GPUs
```

C.2.2. Testing DiffEqGPU.jl

DiffEqGPU.jl is a test suite that regularly checks functionality by testing features such as multiple backend support, event handling, and automatic differentiation. To test the functionality, one can follow the below instructions. The user needs to specify the "backend" for example "CUDA" for NVIDIA, "AMDGPU" for AMD, "oneAPI" for Intel, and "Metal" for Apple GPUs. The estimated time of completion is 20 min.

```julia
$ julia --project=.
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.precompile()
```

Finally test the package by this command

```julia
$ backend="CUDA"
$ julia --project=. test_DiffEqGPU.jl $backend
```

Additionally, the GitHub discussion https://github.com/SciML/DiffEqGPU.jl/issues/224#issuecomment-1453769679 highlights the use of textured memory with ODE solvers, accelerated the code by 2× over CPU.

C.2.3. Continuous integration and development

DiffEqGPU.jl is a fully featured library with regression testing, semver versioning, and version control. The tests are performed on cloud machines having a multitude of different GPUs, https://buildkite.com/julialang/diffeqgpu-dot-jl/builds/705. These tests approximately complete in 30 min. The publicly visible testing framework serves as a testimonial of compatibility with multiple platforms and said features in the paper.
C.3. Testing GPU-accelerated ODE benchmarks with other programs

C.3.1. Benchmarking Julia (DiffEqGPU.jl) methods
CUDA.jl needs to be installed for benchmarking as it is the only backend compatible with the ODE solvers in JAX, PyTorch, and MPGOS. To do so, enter

```
$ julia
julia> using Pkg
julia> Pkg.add("CUDA")
```
in the Julia Terminal.

Clone the benchmark suite repository to start benchmarking;

```
$ git clone https://github.com/utkarsh530/GPUODEBenchmarks.git
```

We will instantiate and pre-compile all the packages beforehand to avoid the wait times during benchmarking. The folder ./GPU_ODE_Julia contains all the related scripts for the GPU solvers,

```
$ cd ./GPUODEBenchmarks
$ julia --project=./GPU_ODE_Julia --threads=auto
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.precompile()
julia> exit()
```

It may take a few minutes to complete (< 10 min). After this, we can generate the timings of ODE solvers written in Julia. There is a script to benchmark ODE solvers for the different number of trajectories to demonstrate scalability and performance. The script invocation and timings can be generated through

```
$ bash ./run_benchmark.sh -l julia -d gpu -m ode
```

which might take about 20 min to finish. The flag `-n N` can be used to specify the upper bound of the trajectories to benchmark. By default $N = 2^{24}$, where the simulation runs for $n \in 8 \leq n < N$, with the multiples of 4.

The data will be generated in the `data/Julia` directory, with two files for fixed and adaptive time-stepping simulations. The first column in the `.txt` file will be the number of trajectories, and the section column will contain the time in milliseconds.

Additionally, to benchmark ODE solvers for other backends:

```
$ N = $(2**24)
Benchmark
$ backend = "Metal"
$ ./runner_scripts/gpu/run_ode_mult_device.sh $N $backend
```

C.3.2. Benchmarking C++ (MPGOS) ODE solvers
Benchmarking MPGOS ODE solvers requires the CUDA C++ compiler to be installed correctly. The recommended CUDA Toolkit version is ≥ 11. The installation can be checked through

```
$ nvcc
```

If the installation exists, it will return something like this:
```
nvcc fatal : No input files specified;
use option --help for more information
```

If `nvcc` is not found, the user needs to install CUDA Toolkit. The NVIDIA website lists out the resource https://developer.nvidia.com/cuda-downloads for installation.

The MPGOS scripts are in the `GPU_ODE_MPGOS` folder. The main executed code is the file `GPU_ODE_MPGOS/Lorenz.cu`. However, the MPGOS programs can be run with the same bash script by changing the arguments as

```
$ bash ./run_benchmark.sh -l cpp -d gpu -m ode
```

which will generate the data files in `data/cpp` folder.
C.3.3. Benchmarking JAX (Diffrax) ODE solvers

Benchmarking JAX-based ODE solvers require installing Python 3.9 and conda. First, install all the Python packages for benchmarking:

```
$ conda env create -f environment.yml
$ conda activate venv_jax
```

which should install the correct version of JAX with CUDA enabled and the Diffrax library. The GitHub https://github.com/google/jax#installation is a guide to follow if the installation fails.

For our purposes, the solvers can be benchmarked by

```
$ bash ./run_benchmark.sh -l jax -d gpu -m ode
```

C.3.4. Benchmarking PyTorch (torchdiffeq) ODE solvers

Benchmarking PyTorch-based ODE solvers is a similar process as for JAX:

```
$ conda env create -f environment.yml
$ conda activate venv_torch
```

torchdiffeq does not fully support vectorized maps with ODE solvers. To circumvent this, we extended the functionality by rewriting some library parts. To download the revision:

```
(venv_torch)$ pip uninstall torchdiffeq
(venv_torch)$ pip uninstall torchdiffeq
(venv_torch)$ pip install git+https://github.com/utkarsh530/torchdiffeq.git@u/vmap
```

Then run the benchmarks by

```
$ bash ./run_benchmark.sh -l pytorch -d gpu -m ode
```

C.4. Comparing GPU acceleration of ODEs with CPUs

The benchmark suite can also be used to test the GPU acceleration of ODE solvers in comparison with CPUs. The process for generating simulation times for GPUs can be done by following Appendix C.3.1. CPU simulation times for ODEs can be generated by the bash script:

```
$ bash ./run_benchmark.sh -l julia -d cpu -m ode
```

The simulation times will be generated in data/CPU. Each of the workflows takes about 20 min to finish.

C.5. Benchmarking GPU acceleration of SDEs with CPUs

The SDE solvers in Julia are benchmarked by comparison to the CPU-accelerated simulation. Generate simulation times for GPU by using

```
$ bash ./run_benchmark.sh -l julia -d gpu -m sde
```

Generate the simulation times for CPU-accelerated codes through

```
$ bash ./run_benchmark.sh -p julia -d cpu -m sde
```

The results will be generated in data/SDE and data/CPU/SDE, taking about 10 min to complete.
C.6. Composability with MPI

Julia supports Message Passing Interface (MPI) to allow Single Program Multiple Data (SPMD)-type parallel programming. The composability of the GPU ODE solvers enables seamless integration with MPI, enabling scaling the ODE solvers to clusters on multiple nodes:

```
$ julia --project=./GPU_ODE_Julia
julia> using Pkg
julia> Pkg.add("MPI")
```

An example script solving the Lorenz problem for approximately 1 billion parameters is available in the MPI folder. A SLURM-based script is

```
#!/bin/bash
# Slurm Sbatch Options
# Reqeust no. of GPUs/node
#SBATCH --gres=gpu:volta:1
# 1 process per node
#SBATCH --n 5 --N 5
#SBATCH --output="./mpi_scatter_test.log-%j"
# Loading the required module
# MPI.jl requires memory pool disabled
export JULIA_CUDA_MEMORY_POOL=none
export JULIA_MPI_BINARY=system
# Use local CUDA toolkit installation
export JULIA_CUDA_USE_BINARYBUILDER=false
source $HOME/.bashrc
module load cuda mpi
srun hostname > hostfile
time mpiexec julia --project=./GPU_ODE_Julia ./MPI/gpu_ode_mpi.jl
```

C.7. Plotting results

The plotting scripts to visualize the simulation times are located in the runner_scripts/plot folder. These scripts replicate the benchmark figures in the paper. The benchmark suite contains the simulation data generated by authors, which can be used to verify the plots. Various benchmarks can be plotted, which are described in the different sections. The plotting scripts are based on Julia. As a preliminary step:

```
$ cd GPUODEBenchmarks
$ julia project=.
julia> using Pkg
julia> Pkg.instantiate()
julia> Pkg.precompile()
```

The plot comparison between Julia, C++, JAX, and PyTorch mentioned in the paper can be generated by using the command:

```
$ julia --project= ./runner_scripts/plot/plot_ode_comp.jl
```

The plot will be saved in plots folder.

Similarly, the other plots in the paper can be generated by running the different scripts in the folder runner_scripts/plot.

- plot performance of GPU ODE solvers with multiple backends
  ```
  $ julia --project= ./runner_scripts/plot/plot_mult_gpu.jl
  ```
- plot GPU ODE solvers comparison with CPUs
  ```
  $ julia --project= ./runner_scripts/plot/plot_ode_comp.jl
  ```
- plot GPU SDE solvers comparison with CPUs
  ```
  $ julia --project= ./runner_scripts/plot/plot_sde_comp.jl
  ```
- plot CRN Network sim comparison with CPUs
  ```
  $ julia --project= ./runner_scripts/plot/plot_sde_crn.jl
  ```

To plot data generated by running the scripts, specify the location of the data as the argument to the mentioned command:

```
$ julia --project= ./runner_scripts/plot/plot_mult_gpu.jl /path/to/data/
```
References

