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Extremum-Seeking Regulator for a Class of
Nonlinear Systems with Unknown Control Direction

Shimin Wang, Martin Guay, Richard D. Braatz

Abstract—This study proposes a design technique that solves
a robust output regulation problem for a class of nonlinear
systems subject to unknown control direction. Nussbaum func-
tion techniques are commonly used tools to investigate output
regulation problems for various systems subject to unknown
control direction. They often lead to large overshoots when the
initial estimates of the control direction are wrong. In this study,
an extremum-seeking control approach is proposed to overcome
the need for Nussbaum functions. The approach yields control
laws that can handle the robust practical output regulation
problem for a class of nonlinear systems subject to a time-varying
control direction whose sign or value is unknown. The stability
of the design is proven via a Lie bracket averaging technique
where uniform ultimate boundedness of the closed-loop signals
is guaranteed. Finally, the simulation of a chaotic control problem
for the generalized Lorenz system with an unknown time-varying
coefficient is provided to illustrate the validity of the theoretical
results.

Index Terms—Output Regulation, Nonlinear Systems, Un-
known Control Direction, Approximation Method

I. INTRODUCTION

Output regulation control problems have been intensively
investigated in the past decades [1–6]. The objective of output
regulation control is to design a control law that achieves
asymptotic tracking of reference signals while rejecting the
steady-state effect of a class of disturbances. Feedback ([3,
4, 6]) and feedforward ([2]) control approaches are the two
most commonly used frameworks for the solution of output
regulation problems. In particular, it was shown in [2] that
the output regulation of nonlinear systems can be solved by
a feedforward control synthesized from a certain solvable
nonlinear partial differential equation. It was also shown
that both the feedforward control approach and the linear
internal model principle become invalid in the presence of
unknown parameters and nonlinearities as in [4, 7–9]. As a
result, a feedback control framework was proposed in [10]
to globally stabilize the augmented system consisting of the
internal model and the plant while remaining robust in the
presence of plant parameter uncertainties and nonlinearities.
A comprehensive overview of the research on the output
regulation problem can be found in the monographs [3, 4]
and recent survey papers [11, 12].
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Most existing controller design techniques require knowl-
edge of the control direction a priori. However, many prac-
tical situations arise, such as the autopilot design of time-
varying ships in [13], in which the high-frequency gain of
the control system is unknown. Moreover, knowing the signs
of the virtual control gain functions also has an important
role in solving the output tracking of unknown pure feedback
systems with prescribed performance and bounded closed-
loop signals [14]. In addition, some applications, such as the
formation control of multiple high-altitude balloons, are sub-
jected to unknown, time-varying, and unpredictable dynamics
such as stratospheric wind currents [15]. In a recent study,
[16], the requirement for the knowledge of the Hessian sign
information for the design of an extremum-seeking controller
was alleviated using a switching monitoring function-based
scheme. The control direction naturally plays an essential
role in the solution of output regulation problems for both
nonlinear and linear systems, as pointed out in [17]. The
use of controllers based on the wrong control direction can
force the output regulation error of the closed-loop system to
drift away from the desired control goal [18]. Therefore, the
output regulation problem without a known control direction
has become a research problem of interest that has attracted
significant attention from the control community [19, 20]. It
remains a relevant and challenging research topic as outlined
in [21, 22]. Various unknown control direction problems, in-
cluding traditional and cooperative output regulation problems,
have been well addressed in [19] and [23], respectively. In
particular, the global robust output regulation problem with
unknown control direction for nonlinear systems in output
feedback and lower triangular forms have been solved in [19]
and [17], respectively. Recently, the output regulation problem
with unknown high-frequency-gain signs has been generalized
to multi-agent systems in [24, 25].

All existing results are based on the Nussbaum function
technique proposed in [26]. The Nussbaum-type gain uses
oscillation to degrade and reward the closed-loop system
in order to identify the correct control direction adaptively
[19]. For example, the approach proposed in [27] utilized
the Nussbaum function to investigate the robust prescribed
performance control of 𝑛th order cascade nonlinear system
with partial-state feedback. The techniques developed in [28]
have been applied to deal with the output regulation problem
subject to unknown constant control direction in [19, 24, 29].
The application of specific choices of Nussbaum functions
has also been shown to address systems with unknown time-
varying control coefficients [17, 25]. Nevertheless, as pointed
out in [30], existing results based on the Nussbaum function
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can suffer from poor transient performance. They also fail to
achieve exponential stability even in the absence of uncer-
tainties, as observed in [19, 24, 25, 28]. Furthermore, [18]
used a counterexample to show that the existing Nussbaum
functions are not always effective in multivariable and/or time-
varying control coefficients with unknown signs. It should be
noted that probing functions covering the Nussbaum functions
were developed in [31, 32] in the funnel control of a class
of nonlinear controlled systems. This approach constitutes
an interesting and notable improvement of Nussbaum-based
techniques.

Recent results [30, 33] have shown that the extremum-
seeking algorithm can be applied to achieve semiglobal sta-
bilization and tracking problem of unstable and time-varying
systems with unknown time-varying control direction, respec-
tively. Extremum-seeking control has a long history. The
recent comprehensive survey [34] provides a complete account
of the field over the last 100 years. Extremum-seeking control
aims to steer an unknown dynamical system to the optimum
of a partially or completely unknown map [35, 36] and [37].
Particularly, [38, 39] generalized an extremum-seeking control
approach to solving the output regulation of a nonlinear control
system to the unknown optimum of a measured objective
function. It is shown that the resulting extremum-seeking reg-
ulator can achieve practical output regulation of the unknown
optimum.

In this study, we propose a solution to the robust practical
output regulation problem of a class of nonlinear systems with
unknown control direction without using the Nussbaum-type
gain technique. Using an extremum-seeking control approach
as in [30, 38, 39], we construct control laws that can solve
the robust practical output regulation problem for a class of
nonlinear systems subject to a time-varying control direction
whose sign or value is unknown. The main difference between
this work and [38, 40] is that the latter results apply generally
to time-varying systems. In contrast, the current study develops
controllers for time-invariant systems in output feedback form
but with a focus on the solution of a robust output regulation
problem. The proposed extremum-seeking regulator technique
is based on a Lie bracket averaging technique [41], which
enhances and is different from the results in [19, 24, 29]. This
article extends the result summarized in the conference paper
[42] by using a more relaxed assumption and providing a de-
tailed analysis of the properties of the closed loop not provided
in [42]. We also present an alternative control structure that
further improves the performance of the system.

The rest of this article is organized as follows. In Section
II, we formulate the problem and introduce some standard
assumptions. In Section III, we recall some existing results
from [41, 43] and establish some new lemmas. The main result
is presented in Section IV, followed by a numerical example
in Section V.

Notation: For 𝑋1, . . . , 𝑋𝑁 ∈ R𝑛, let col(𝑋1, . . . , 𝑋𝑁 ) =

[𝑋⊤
1 , . . . , 𝑋

⊤
𝑁
]⊤. For two vector fields, 𝑎𝑖 (𝑥) and 𝑎 𝑗 (𝑥), the

Lie bracket denoted by [𝑎𝑖 (𝑥), 𝑎 𝑗 (𝑥)] is given by[
𝑎𝑖 (𝑥), 𝑎 𝑗 (𝑥)

]
=

𝜕𝑎 𝑗

𝜕𝑥
𝑎𝑖 (𝑥) −

𝜕𝑎𝑖

𝜕𝑥
𝑎 𝑗 (𝑥).

A function 𝛼 : R≥0 → R≥0 is of class K if it is continuous,
positive definite, and strictly increasing. K∞ is the subclass
of unbounded K functions. For functions 𝑓1 (·) and 𝑓2 (·) with
compatible dimensions, their composition 𝑓1 ( 𝑓2 (·)) is denoted
by 𝑓1 ◦ 𝑓2 (·).

II. PROBLEM FORMULATION AND ASSUMPTIONS

Consider the class of output feedback nonlinear systems
with unity relative degree investigated in [44],

¤𝑧 = 𝑓 (𝑧, 𝑦, 𝑣, 𝑤),
¤𝑦 = 𝑔(𝑧, 𝑦, 𝑣, 𝑤) + 𝑏(𝑣, 𝑤)𝑢, (1)
𝑒 = 𝑦 − 𝑦0,

where 𝑧 ∈ R𝑛𝑧 , 𝑦 ∈ R is the output, 𝑢 ∈ R is the control input,
the high frequency gain 𝑏(𝑤, 𝑣) is such that 𝑏 ≥ 𝑏(𝑤, 𝑣)2 ≥
𝑏 > 0 form some positive constants �̄� and 𝑏, 𝑒 ∈ R is the
error output, and 𝑤 ∈ R𝑛𝑤 is an uncertain constant vector.
The exogenous signal 𝑣 ∈ R𝑛𝑣 represents the reference input
to be tracked or disturbance to be rejected and is assumed to
be generated by the exosystem:

¤𝑣 = 𝑆𝑣,

𝑦0 = 𝑞(𝑣, 𝑤), (2)

where 𝑆 ∈ R𝑛𝑣×𝑛𝑣 and 𝑦0 ∈ R is the output of the exosystem.
We assume the functions 𝑓 (𝑧, 𝑦, 𝑣, 𝑤) and 𝑔(𝑧, 𝑦, 𝑣, 𝑤) and
𝑞(𝑣, 𝑤) are sufficiently smooth known functions with uncer-
tainties (i.e., 𝑤) that satisfy 𝑓 (0, 0, 0, 𝑤) = 0, 𝑔(0, 0, 0, 𝑤) = 0,
𝑞(0, 𝑤) = 0, ∀𝑤 ∈ R𝑛𝑤 .

The proposed control law is

𝑢 = k(𝜁, 𝑦),
¤𝜁 = l(𝜁, 𝑦), (3)

where 𝜁 ∈ R𝑙 for some integer 𝑙, and k(·) and l(·) are some
nonlinear functions of their arguments. The specific form of
the functions k(·) and l(·) is defined later.

Problem 1 (Robust practical output regulation problem).
Given system (1), (2), any compact subsets W ∈ R𝑛𝑤 and
V ∈ R𝑛𝑣 withW andV contain the origin point, find a control
law in the form (3) such that, for all initial conditions 𝑣(0) ∈ V
and 𝑤 ∈ W, and any initial states col(𝑧(0), 𝑦(0), 𝜁 (0)) in
some compact set,

1) the solution of the closed-loop system exists and is
bounded for all 𝑡 ≥ 0,

2) lim
𝑡→∞

|𝑒(𝑡) | ≤ 𝜈, for some positive constant 𝜈.

We now introduce the regulator equations. We can put (1)
and (2) into the compact form:

¤𝑥𝑐 = 𝑓𝑐 (𝑥𝑐, 𝑢, 𝑣, 𝑤),
𝑒 = ℎ(𝑥𝑐, 𝑣, 𝑤), (4)

where 𝑥𝑐 = col(𝑧, 𝑦), and 𝑓𝑐 (·) and ℎ(·) are sufficiently smooth
functions determined by (1). Associated with (4) are the output
regulator equations:

𝜕x(𝑣, 𝑤)
𝜕𝑣

𝑆𝑣 = 𝑓𝑐 (x(𝑣, 𝑤), u(𝑣, 𝑤), 𝑣, 𝑤),
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0 = ℎ(x(𝑣, 𝑤), 𝑣, 𝑤), (5)

where x : R𝑛𝑣 ×R𝑛𝑤 ↦→ R1+𝑛𝑧 and u : R𝑛𝑣 ×R𝑛𝑤 ↦→ R are
two smooth functions vanishing at the origin.

Now, we state the assumptions required for the solution of
the output regulation problem.

Assumption 1. All the eigenvalues of 𝑆 are semi-simple with
zero real part.

Assumption 2. There exist sufficiently smooth functions
z(𝑣, 𝑤) with z(0, 𝑤) = 0 such that, for any 𝑣 ∈ R𝑛𝑣 and
𝑤 ∈W,

𝜕z(𝑣, 𝑤)
𝜕𝑣

𝑆𝑣 = 𝑓 (z(𝑣, 𝑤), 𝑞(𝑣, 𝑤), 𝑣, 𝑤). (6)

Remark 1. Assumption 1 guarantees that the solution of (2)
is bounded for all 𝑡 ≥ 0. Under Assumption 2, let y(𝑣, 𝑤) =
𝑞(𝑣, 𝑤) and

u(𝑣, 𝑤) = 𝑏(𝑣, 𝑤)−1
(
𝜕𝑞(𝑣, 𝑤)

𝜕𝑣
𝑆𝑣 − 𝑔(z, 𝑞, 𝑣, 𝑤)

)
.

We can verify that z(𝑣, 𝑤), y(𝑣, 𝑤), and u(𝑣, 𝑤) are the
solutions of the regulator equations associated with systems
(1) and (2) [4].

Assumption 3. There exists an integer 𝑛, a sufficiently smooth
function 𝜏 : R𝑛𝑣+𝑛𝑤 ↦→ R𝑛 vanishing at the origin, and
matrices Φ ∈ R𝑛×𝑛, Γ ∈ R𝑛×1 such that, for all trajectories
𝑣(𝑡) of the exosystem and all 𝑤 ∈ R𝑛𝑤 ,

𝜕𝜏(𝑣, 𝑤)
𝜕𝑣

𝑆𝑣 = Φ𝜏(𝑣, 𝑤), (7a)

u(𝑣, 𝑤) = Γ𝜏(𝑣, 𝑤). (7b)

Moreover, the pair (Φ, Γ) is observable and all the eigenvalues
of Φ are simple with zero real part.

Assumption 3 is a standard assumption in the global robust
output regulation problem of nonlinear systems subject to a
time-varying control direction whose sign or value is unknown,
and it can be found in [17]. System (7) is identified as the
steady-state generator which could be used to generate the
steady-state input u(𝑣, 𝑤). We consider any given Hurwitz
matrix 𝑀 ∈ R𝑛×𝑛 and vector 𝑁 ∈ R𝑛×1 such that (𝑀, 𝑁)
is controllable. Since the pair (Φ, Γ) is observable and all
the eigenvalues of Φ have zero real parts, it follows that
the Sylvester equation 𝑇Φ − 𝑀𝑇 = 𝑁Γ admits a unique
nonsingular matrix solution 𝑇 . We perform the transformation
𝜃 (𝑣, 𝑤) = 𝑇𝜏(𝑣, 𝑤) and Ψ = Γ𝑇−1 satisfying

¤𝜃 (𝑣, 𝑤) = (𝑀 + 𝑁Ψ)𝜃 (𝑣, 𝑤),
u = Ψ𝜃 (𝑣, 𝑤).

Then, we define a dynamic compensator,

¤𝜂 = 𝑀𝜂 + 𝑁𝑢, (8)

which is called an internal model of system (1) (see [4]). Fol-
lowing the framework in [10], we convert the output regulation
problem of the given plant via the internal model approach to
a stabilization problem of well-defined augmented systems. To
achieve this, we consider the coordinate transformation,

𝑧 = 𝑧 − z(𝑣, 𝑤),

𝜂 = 𝜂 − 𝜃 (𝑣, 𝑤) − 𝑏(𝑣, 𝑤)−1𝑁𝑒,

�̄� = 𝑢 − Ψ𝜂.

This transformation yields the augmented system

¤̄𝑧 = 𝑓 (𝑧, 𝑒, 𝜇), (9a)
¤̄𝜂 = 𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇), (9b)
¤𝑒 = �̄�(𝑧, 𝜂, 𝑒, 𝜇) + 𝑏(𝑣, 𝑤)�̄�, (9c)

where 𝜇 = col(𝑣, 𝑤),

𝑓 (𝑧, 𝑒, 𝜇) = 𝑓 (𝑧 + z(𝑣, 𝑤), 𝑒 + 𝑞(𝑣, 𝑤), 𝑣, 𝑤)
− 𝑓 (z(𝑣, 𝑤), 𝑞(𝑣, 𝑤), 𝑣, 𝑤),

�̄�(𝑧, 𝑒, 𝜇) = 𝑏(𝑣, 𝑤)−1 (𝑀𝑁𝑒 − 𝑁𝜛(𝑧, 𝑒, 𝑣, 𝑤))

− 𝑁
𝜕𝑏(𝑣, 𝑤)−1

𝜕𝑣
𝑆𝑣𝑒,

�̄�(𝑧, 𝜂, 𝑒, 𝜇) = 𝜛(𝑧, 𝑒, 𝜇) + 𝑏Ψ𝜂 + Ψ𝑁𝑒,

𝜛(𝑧, 𝑒, 𝜇) = 𝑔(𝑧 + z(𝑣, 𝑤), 𝑒 + 𝑞(𝑣, 𝑤), 𝑣, 𝑤)
− 𝑔(z(𝑣, 𝑤), 𝑞(𝑣, 𝑤), 𝑣, 𝑤).

The augmented system (9) is composed of the original plant
(1) and the internal model (8). In [10], it was shown that the
output regulation problem of (1) and (2) can be converted to
the stabilization problem of the augmented system (9) under
certain conditions. We list the standard assumptions on the
first equation of (9).

Assumption 4. Given any compact subset Ω ⊂ R𝑛𝑣 ×W,
there exists 𝐶1 function 𝑉�̄� (𝑧) satisfying

𝛼1 (∥𝑧∥) ≤ 𝑉�̄� (𝑧) ≤ 𝛼1 (∥𝑧∥)

for some class K∞ functions 𝛼1 (·) and 𝛼1 (·) such that, for
any 𝜇 ∈ Ω, along the trajectories of the 𝑧 subsystem,

¤𝑉�̄� (𝑧) ≤ −𝛼1 (∥𝑧∥) + 𝛿𝛾(𝑒),

where 𝛿 is some positive number, 𝛼1 (·) is some known class
K∞ function satisfying lim sup

𝑠→0+
(𝛼−1

1 (𝑠2)/𝑠) < +∞, and 𝛾(·) is

some known smooth positive definite function.

III. BACKGROUND AND LEMMAS

A. Lie bracket approximations

Before presenting our main results, we first review some
content related to the Lie bracket averaging approach. Let us
consider a control affine nonlinear system of the form:

¤𝑥 = 𝑓 (𝑥) +
𝑚∑︁
𝑖=1

𝑔𝑖 (𝑥)
√
𝜔𝑢𝑖 (𝜔𝑡), (10)

where 𝑥 ∈ R𝑛, 𝑥(0) ∈ R𝑛, 𝜔 > 0, 𝑡 ∈ [0,∞), and
𝑓 (𝑥) and 𝑔𝑖 (𝑥) are twice continuously differentiable. For
𝑖 = 1, . . . , 𝑚, the input functions 𝑢𝑖 (𝜔𝑡) are assumed to
be uniformly bounded and periodic with period 𝑇 such that∫ 𝑇

0 𝑢𝑖 (𝜔𝜏)𝑑𝜏 = 0.
Following the approach proposed in [41, 45], the Lie bracket

average of a nonlinear system (10) can be calculated in the
form:

¤̃𝑥 = 𝑓 (𝑥)
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+ 1
𝑇

∑︁
𝑖< 𝑗

[𝑔𝑖 , 𝑔 𝑗 ] (𝑥)
∫ 𝑇

0

∫ 𝜃

0
𝑢 𝑗 (𝜔𝜃)𝑢𝑖 (𝜔𝜏)𝑑𝜏𝑑𝜃. (11)

Consider the nonlinear parameterized dynamical system

¤𝑥 𝜖 = 𝐹 𝜖 (𝑡, 𝑥 𝜖 ) (12)

with a small positive parameter 𝜖 . The solution of (12) is
denoted by 𝑥 𝜖 (𝑡) = 𝜙𝜖 (𝑡, 𝑡0, 𝑥0), where 𝜙𝜖 is the flow of the
system for 𝑡 > 0 with initial conditions 𝑡0, 𝑥 𝜖 (𝑡0) = 𝑥 𝜖0 . The
averaged dynamics are defined as

¤𝑥 = 𝐹 (𝑡, 𝑥) (13)

whose solution of (13) is denoted by 𝑥(𝑡) = 𝜙(𝑡, 𝑡0, 𝑥0), where
𝜙 is the flow of the system for 𝑡 > 0 with initial conditions
𝑡0, 𝑥(𝑡0) = 𝑥0. The definition of the convergence property is
listed below.

Definition 1. [46] The systems (12) and (13) are
said to satisfy the convergence property if, for every
𝑇 ∈ (0,∞) and compact set K ∈ R𝑛 satisfying
{(𝑡, 𝑡0, 𝑥0) ∈ R ×R ×R𝑛 : 𝑡 ∈ [𝑡0, 𝑡0 + 𝑇], 𝑥0 ∈ K} ⊂ Dom 𝜙,
for every 𝛿 ∈ (0,∞) there exists 𝜖∗ such that for all 𝑡0 ∈ R,
for all 𝑥0 ∈ K, and for all 𝜖 ∈ (0, 𝜖∗),

∥𝜙𝜖 (𝑡, 𝑡0, 𝑥0) − 𝜙(𝑡, 𝑡0, 𝑥0)∥ < 𝛿, ∀𝑡 ∈ [𝑡0, 𝑡0 + 𝑇] .

Then, we define 𝜖-semiglobal practical uniform asymptotic
stability (𝜖-SPUAS).

Definition 2 (𝜖-SPUAS). An equilibrium point of (12) is
said to be 𝜖-SPUAS if it satisfies uniform stability, uniform
boundedness, and global uniform attractivity.

Lemma 1. [46] If systems (12) and (13) satisfy the converging
trajectories property and if the origin of system (13) is a global
uniform asymptotical stable equilibrium point, then the origin
of system (12) is 𝜖-SPUAS.

Then, the systems (10) and (11) satisfy the below lemma.

Lemma 2. [38] If a compact set S ∈ R𝑛 is locally (globally)
uniformly asymptotically stable for system (11), then it is
locally (semi-globally) practically uniformly asymptotically
stable for (10).

IV. MAIN RESULTS

A. Extremum-seeking control design

In this section, we propose the use of an extremum-seeking
control approach to handle the unknown control direction.

Motivated by the extremum-seeking control approach pro-
posed in [30, 38–40], we propose the control laws (14) and
(21) to solve the robust practical output regulation problem for
a class of nonlinear systems subject to a time-varying control
direction whose sign or value is unknown. It is noted that the
oscillatory part of the proposed controllers (14) and (21) uses
the bounded ES expressions utilized in [30, 40]. In contrast to
[30, 40], the controllers (14) and (21) modify the amplitude
and phase by introducing an output-dependent function 𝜌(𝑒).

Theorem 1. Under Assumptions 1–4, for sufficiently large
enough smooth positive functions 𝜌2 (·) ≥ 1 and some suffi-
ciently large enough positive constants 𝑘 and 𝛼, the dynamic
output feedback controller

𝑢 =
√
𝛼𝜔 cos(𝜔𝑡 + 𝑘𝑒2)𝜌(𝑒) + Ψ𝜂, (14a)

¤𝜂 = 𝑀𝜂 + 𝑁𝑢, (14b)

solves the robust practical output regulation problem 1 for the
closed-loop system composed of (9) and (14).

Proof. The error dynamics (9) with the extremum-seeking
control (14) are given by

¤̄𝑧 = 𝑓 (𝑧, 𝑒, 𝜇), (15a)
¤̄𝜂 = 𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇), (15b)

¤𝑒 = �̄�(𝑧, 𝜂, 𝑒, 𝜇) + 𝑏(𝑤, 𝑣)
√
𝛼𝜔 cos(𝜔𝑡 + 𝑘𝑒2)𝜌(𝑒). (15c)

Let 𝑋 = col(𝑧, 𝜂, 𝑒) and

𝑃(𝑋, 𝜇) =


𝑓 (𝑧, 𝑒, 𝜇)
𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇)
�̄�(𝑧, 𝜂, 𝑒, 𝜇)

 .
The closed-loop system (15) can be expanded as

¤𝑋 = 𝑃(𝑋, 𝜇) +

©«
[

02×1
𝑏(𝑤, 𝑣)

√
𝛼𝜔 cos(𝑘𝑒2)𝜌(𝑒)

]
︸                                ︷︷                                ︸

𝑎1 (𝑋)

cos(𝜔𝑡)

−
[

02×1
𝑏(𝑤, 𝑣)

√
𝛼𝜔 sin(𝑘𝑒2)𝜌(𝑒)

]
︸                                  ︷︷                                  ︸

𝑎2 (𝑋)

sin(𝜔𝑡)

ª®®®®®®¬
.

Then, the corresponding Lie-bracket averaged system can be
calculated as

¤̃𝑋 = 𝑃( �̃�, 𝜇)

+ 1
𝑇
[𝑎1 ( �̃�), 𝑎2 ( �̃�)]

∫ 𝑇

0

∫ 𝜃

0
cos(𝜔𝜃) sin(𝜔𝜏)𝑑𝜏𝑑𝜃.

where [
𝑎1 ( �̃�), 𝑎2 ( �̃�)

]
= 2𝜔

[
02×1

𝑘𝑏(𝑤, 𝑣)2𝜌(𝑒)2𝑒𝛼

]
,

1
𝑇

∫ 𝑇

0

∫ 𝜃

0
cos(𝜔𝜃) sin(𝜔𝜏)𝑑𝜏𝑑𝜃 = − 1

2𝜔
.

Then we have the averaged system

¤̃𝑧 = 𝑓 (𝑧, 𝑒, 𝜇), (16a)
¤̃𝜂 = 𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇), (16b)
¤̃𝑒 = �̄�(𝑧, 𝜂, 𝑒, 𝜇) − 𝑘𝛼𝑏(𝑤, 𝑣)2𝜌(𝑒)2𝑒. (16c)

Given any initial condition col(𝑣0, 𝑤) ∈ R𝑛𝑣 × W, under
Assumption 1, the signal generated by the system (2) is
bounded for all 𝑡 > 0. Then, we can always find a compact
subset Ω ⊆ R𝑛𝑣 ×W containing 𝜇 for all 𝑡 ≥ 0. Define the
Lyapunov function candidate 𝑉�̃� (𝜂) = 𝜂⊤𝑃𝜂, where 𝑃 satisfies
𝑃𝑀 + 𝑀⊤𝑃 = −2𝐼. Let 𝜆𝑝 and 𝜆𝑃 be the minimum and
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maximum eigenvalues of 𝑃. The time derivative of 𝑉�̃� (𝜂) long
(16b) can be evaluated as

¤𝑉�̃� (𝜂) ≤ − ∥𝜂∥2 + ∥𝑃�̄�(𝑧, 𝑒, 𝜇)∥2.

Since �̄�(0, 0, 𝜇) = 0, for all 𝜇 ∈ Σ, by Lemma 7.8 in [4],

∥𝑃�̄�
(
𝑧, 𝑒, 𝜇

)
∥2 ≤ 𝜋1 (𝑧)∥𝑧∥2 + 𝜙1 (𝑒)𝑒2

for some known smooth functions 𝜋1 (·) ≥ 1 and 𝜙1 (·) ≥ 1.
Then we have

¤𝑉�̃� (𝜂) ≤ − ∥𝜂∥2 + 𝜋1 (𝑧)∥𝑧∥2 + 𝜙1 (𝑒)𝑒2.

Define the Lyapunov function 𝑈�̃� (𝑧) =
∫ 𝑉�̃� ( �̃�)

0 𝜅(𝑠)𝑑𝑠, where
the positive function 𝜅(·) will be specified later. Under As-
sumption 4, the time derivative of 𝑈�̃� (𝑧) along (16) can be
evaluated as

¤𝑈�̃� (𝑧) ≤ − 𝜅 ◦𝑉�̃� (𝑧) [𝛼1 (∥𝑧∥) − 𝛿𝛾(𝑒)] .

By the changing supply rate technique [47], under Assumption
4, we have that

¤𝑈�̃� (𝑧) ≤ − 1
2
𝜅 ◦ 𝛼1 (∥𝑧∥)𝛼1 (∥𝑧∥) + 𝜅 ◦ 𝜃 (𝑒)𝛿𝛾(𝑒), (17)

where 𝜃 ∈ K∞ is defined as 𝜃 := �̄�1 ◦ 𝛼−1
1 ◦ (2𝛿𝛾). Under

Assumption 4, 𝛼1 (·) is some known class K∞ function satis-
fying lim sup

𝑠→0+
(𝛼−1

1 (𝑠2)/𝑠) < +∞. Then, there exists a smooth

function 𝛼0 (∥𝑧∥) such that

𝛼0 (∥𝑧∥)𝛼1 (∥𝑧∥) ≥ ∥𝑧∥2.

As lim sup
𝑠→0+

(𝛼−1
1 (𝑠2)/𝑠) < +∞, and there exists constant 𝑙1 ≥ 1

such that 𝛼1 (∥𝑧∥) ≥ ∥𝑧∥2/𝑙21 for all ∥𝑧∥ ≤ 1. Besides, 𝛼1 (∥𝑧∥)
is of class K∞, there exists a constant 𝑙2 > 0 such that
𝛼1 (∥𝑧∥) ≥ 𝑙2 for all 𝑠 ≥ 1. Hence, we have that

𝛼0 (∥𝑧∥)𝛼1 (∥𝑧∥) ≥ ∥𝑧∥2

for any 𝛼0 (∥𝑧∥) ≥ 𝑙21+𝑙2∥𝑧∥
2. We can choose a positive smooth

nondecreasing function 𝜅(·) such that

1
2
𝜅 ◦ 𝛼1 (∥𝑧∥) ≥ 𝛼0 (∥𝑧∥) × (𝜋1 (𝑧) + 1).

Let �̃� = col(𝑧, 𝜂) and consider the �̃�-subsystem of (16). Define
the Lyapunov function candidate 𝑉1 (�̃�) = 𝑈�̃� (𝑧) +𝑉�̃� (𝜂). The
time derivative of 𝑉1 (�̃�) along (16) can be evaluated as

¤𝑉1 (�̃�) ≤ − 1
2
𝜅 ◦ 𝛼1 (∥𝑧∥)𝛼1 (∥𝑧∥) + 𝜅 ◦ 𝜃 (𝑒)𝛿𝛾(𝑒)

− ∥𝜂∥2 + 𝜋1 (𝑧)∥𝑧∥2 + 𝜙1 (𝑒)𝑒2

≤ − ∥ �̃� ∥2 + �̄�(𝑒), (18)

where �̄�(𝑒) = 𝜅 ◦ 𝜃 (𝑒)𝛿𝛾(𝑒) + 𝜙1 (𝑒)𝑒2. Using Lemma 11.3 in
[43], we can choose the class K∞ functions 𝛽

1
(·) and 𝛽1 (·)

such that

𝛽
1
(∥ �̃� ∥) ≤

∫ 𝛼1 ( ∥ �̃� ∥ )

0
𝜅(𝑠)𝑑𝑠 + 𝜆𝑝 ∥𝜂∥2,

𝛽1 (∥ �̃� ∥) ≥
∫ 𝛼1 ( ∥ �̃� ∥ )

0
𝜅(𝑠)𝑑𝑠 + 𝜆𝑃 ∥𝜂∥2.

From (18), with the same development and by using the
changing supply rate technique [47] again, given any smooth
function Θ(�̃�) > 0, there exists a 𝐶1 function 𝑉2 (�̃�) satisfying

𝛼2
(�̃�2) ≤ 𝑉2

(
�̃�
)
≤ 𝛼2

(�̃�2)
for some class K∞ functions 𝛼2 (·) and 𝛼2 (·), such that, for
all 𝜇 ∈ Σ, along the trajectory of the 𝑍 subsystem,

¤𝑉2 ≤ −Θ(�̃�)
�̃�2 + 𝛿�̂�(𝑒)𝑒2,

where 𝛿 is some known positive numbers and �̂�(·) ≥ 1 is some
known smooth positive function. Next, consider the augmented
system (16). Since �̄�(0, 0, 𝜇) = 0, for all 𝜇 ∈ Σ, by Lemma
7.8 in [4],

∥�̄�
(
�̃� , 𝑒, 𝜇

)
∥2 ≤ 𝑐0

(
𝜋(�̃�)∥ �̃� ∥2 + 𝜙(𝑒)𝑒2)

for some known positive constant 𝑐0 and some known smooth
functions 𝜋(·) ≥ 1 and 𝜙(·) ≥ 1. Then, considering the
Lyapunov function

𝑉 (�̃� , 𝑒) = 𝑉2 (�̃�) +
1
2
𝑒2. (19)

Then 𝑉 is globally positive definite and radially unbounded,
and the derivative of 𝑉 along the trajectory of the system (16)
under the controller (14) satisfies

¤𝑉 = ¤𝑉2 + 𝑒⊤ ¤̃𝑒
= ¤𝑉2 + 𝑒⊤�̄�(�̃� , 𝑒, 𝜇) − 𝑘𝛼𝑏(𝑤, 𝑣)2𝑒2𝜌(𝑒)2

≤ − (Θ(�̃�) − 𝜋(�̃�))
�̃�2

− (𝑏(𝑤, 𝑣)2𝑘𝛼𝜌(𝑒)2 − 𝛿�̂�
(
𝑒
)
− 𝑐0

4
𝑒2 − 𝜙(𝑒))𝑒2. (20)

Let the smooth functions Θ(·), 𝜌(·), and the positive number
𝑘 be such that Θ(�̃�) ≥ 𝜋(�̃�) + 1 and 𝜌(𝑒)2 ≥ {�̂�(𝑒), 𝜙(𝑒), 1},
and 𝑘𝛼 ≥ 4𝛿+𝑐0

4𝑏 (𝑤,𝑣)2 , the equation (20) gives

¤𝑉 ≤ −
�̃�2 − 𝑒2.

Therefore, system (16) is globally uniformly asymptotically
stable for all col(𝑣, 𝑤) ∈ V × W. From the convergence
property, Lemma 1, and Lemma 2, we have that system (15)
is 1

𝜔
-semi-globally uniformly asymptotically stable, which

further implies that there exists a constant 𝜈( 1
𝜔
) and a 𝜔∗

such that, for all initial conditions col(𝑧(0), 𝑦(0), 𝜂(0)) in
some compact set and 𝑣(0) ∈ V and 𝜔 > 𝜔∗, the nominal
trajectories are such that ∥col(�̄� , 𝑒) − col(�̃� , 𝑒)∥ < 𝜈( 1

𝜔
). This

completes the proof. □

Remark 2. The controller (14) does not require a dynamic
gain as needed by the Nussbaum function-based technique
[19, 24, 29]. Moreover, one of the improvements of the control
law in (14) is to allow the function 𝜌(·) to be negative. As
a result, 1

𝜔
-semi-global uniform asymptotic convergence can

be guaranteed, and the poor transients resulting from the
wrong initial sign estimate can be removed. The nonlinear
part in the controller (14) may lead to large inputs outside the
input range of the actuator, resulting in high-gain feedback.
In the following, we propose a more suitable controller that
exploits the characteristics of the trigonometric functions.
The proposed controller removes the need for dynamic gain,
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reduces the onset of high-gain impact, and provides a bounded
control action.

Theorem 2. Under Assumptions 1–4, for sufficiently large
enough smooth positive functions 𝜌(·) ≥ 1 and some suffi-
ciently large enough positive constants 𝑘 and 𝛼, the dynamic
output feedback controller

𝑢 =
√
𝛼𝜔 cos

(
𝜔𝑡 + 𝑘

∫ 𝑒2

0
𝜌(𝑠)𝑑𝑠

)
+ Ψ𝜂, (21a)

¤𝜂 = 𝑀𝜂 + 𝑁𝑢, (21b)

solves the robust practical out regulation problem 1 for the
closed-loop system composed of (9) and (21).

Proof. The error dynamics with the extremum-seeking control
(21) are given by

¤̄𝑧 = 𝑓 (𝑧, 𝑒, 𝜇), (22a)
¤̄𝜂 = 𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇), (22b)
¤𝑒 = �̄�(𝑧, 𝜂, 𝑒, 𝜇)

+ 𝑏(𝑤, 𝑣)
√
𝛼𝜔 cos

(
𝜔𝑡 + 𝑘

∫ 𝑒2

0
𝜌(𝑠)𝑑𝑠

)
. (22c)

Let 𝑋 = col(𝑧, 𝜂, 𝑒) and

𝑃(𝑋, 𝜇) =


𝑓 (𝑧, 𝑒, 𝜇)
𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇)
�̄�(𝑧, 𝜂, 𝑒, 𝜇)

 .
The closed-loop system (22) can be expanded as

¤𝑋 = 𝑃(𝑋, 𝜇) +

©«
[

02×1

𝑏(𝑤, 𝑣)
√
𝛼𝜔 cos(𝑘

∫ 𝑒2

0 𝜌(𝑠)𝑑𝑠)

]
︸                                      ︷︷                                      ︸

𝑏1 (𝑋)

cos(𝜔𝑡)

−
[

02×1

𝑏(𝑤, 𝑣)
√
𝛼𝜔 sin(𝑘

∫ 𝑒2

0 𝜌(𝑠)𝑑𝑠)

]
︸                                         ︷︷                                         ︸

𝑏2 (𝑋)

sin(𝜔𝑡)

ª®®®®®®®¬
.

Then, the corresponding Lie-bracket averaged system can be
calculated as

¤̃𝑋 = 𝑃( �̃�, 𝜇)

+ 1
𝑇
[𝑏1 ( �̃�), 𝑏2 ( �̃�)]

∫ 𝑇

0

∫ 𝜃

0
cos(𝜔𝜃) sin(𝜔𝜏)𝑑𝜏𝑑𝜃.

where [
𝑏1 ( �̃�), 𝑏2 ( �̃�)

]
= 2𝜔

[
02×1

𝑘𝑏(𝑤, 𝑣)2𝜌(𝑒2)𝑒𝛼

]
,

1
𝑇

∫ 𝑇

0

∫ 𝜃

0
cos(𝜔𝜃) sin(𝜔𝜏)𝑑𝜏𝑑𝜃 = − 1

2𝜔
.

Then, we have the averaged system

¤̃𝑧 = 𝑓 (𝑧, 𝑒, 𝜇), (23a)
¤̃𝜂 = 𝑀𝜂 + �̄�(𝑧, 𝑒, 𝜇), (23b)

¤̃𝑒 = �̄�(𝑧, 𝜂, 𝑒, 𝜇) − 𝑘𝛼𝑏(𝑤, 𝑣)2𝜌(𝑒2)𝑒. (23c)

The rest of the proof follows the same development as the
proof of Theorem 1. □

Remark 3. Motivated by the techniques proposed in [30, 40],
we apply an extremum-seeking control approach to solving
robust practical output regulation problems with unknown
control directions. This work uses different techniques and
considers a different problem than [30, 40]. The techniques in
[30, 40] solve stabilization and tracking problems for a class
of unknown and time-varying nonlinear systems in the full-
state feedback form. In contrast, the current study investigates
the output regulation problem for a class of nonlinear systems
where 𝑓 (·), 𝑔(·) are known with some uncertainties for systems
in the output feedback form.

V. NUMERICAL EXAMPLE
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Figure 1. 3D plot of the controlled Lorenz system’s trajectory col(𝑥, 𝑦)

This example considers a generalized Lorenz system taken
from [44],

¤𝑥 =

[
−𝑎1 0
𝑧 −𝑎2

]
𝑥 +

[
𝑎1𝑧
0

]
,

¤𝑧 = [1, 0] 𝑥(𝑎3 − [0, 1] 𝑥) − 𝑧 + 𝑏(𝑣, 𝑤)𝑢,
𝑦 = 𝑧, (24)

where 𝑥 = col(𝑥1, 𝑥2) and 𝑧 are the state, 𝑎 = col(𝑎1, 𝑎2, 𝑎3) is
a constant parameter vector that satisfies 𝑎1 > 0, 𝑎3 < 0 and
𝑏(𝑣, 𝑤) is nonzero with an unknown sign. For convenience,
let 𝑎 = �̄� + 𝑤, where �̄� = col(�̄�1, 𝑎2, �̄�3) is the true value of
𝑎 and 𝑤 = col(𝑤1, 𝑤2, 𝑤3) is the uncertain parameter of 𝑎.
We assume that the uncertainty 𝑤 ∈W ⊆ R3. The signal 𝑣 is
produced by the ecosystem:

¤𝑣 =

[
0 𝜎

−𝜎 0

]
𝑣.

The regulated error is defined as 𝑒 = 𝑦 − 𝑣1. Assume �̄� =

col(10, 28,− 8
3 ), 𝑏 = −1, and 𝜎 = 2. It has been verified that
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Figure 2. Tracking error over different frequency subject to the controller
(14)
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Figure 3. Trajectories of the controller (14) over different frequencies

the system satisfies all the assumptions in [44]. The controller
(14) is designed with

𝑀 =


0 1 0 0
0 0 1 0
0 0 0 1
−4 −12 −13 −6

 , 𝑁 =


0
0
0
1

 ,
Ψ𝜎
𝑖 =

[
4 − 9𝜎4 12 13 − 10𝜎2 6

]
.

The numerical simulations are conducted for initial states
of 𝑣 and col(𝑥1, 𝑥2, 𝑦) randomly chosen in (0, 2) and all
initial conditions in the controller set to zero. The uncertain
parameter 𝑤 = col(−5, 0.15,−3).

The parameters 𝑘 and 𝛼 in (14) are chosen as 𝑘 = 20
and 𝛼 = 4. Figure 1 shows the trajectory of 𝑦 over different
frequencies with 𝜌(𝑠) = (𝑠2 + 1)2. Figure 2 shows the
trajectories of 𝑒 = 𝑦 − 𝑣1 over different frequencies subject to
the controller (14). Figure 3 shows trajectories of the controller
(14) over different frequencies. The parameters 𝑘 and 𝛼 in
(21) are chosen as 𝑘 = 10 and 𝛼 = 10. Figure 4 shows the
trajectories of 𝑒 = 𝑦 − 𝑣1 over different frequencies subject
to the controller (21) with 𝜌(𝑠) = 1 + 3𝑠2. Figure 5 shows
trajectories of the controller (21) over different frequencies.
For the proposed control structure, it is possible to offset the
impact of a larger frequency on the control action by reducing
the value of 𝛼.
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Figure 4. Tracking error over different frequency subject to the controller
(21)

0 5 10 15 20 25 30 35 40

Time (seconds)

-300

-200

-100

0

100

200

300

Figure 5. Trajectories of the controller (21) over different frequencies

VI. CONCLUSION

This article studies the robust practical output regulation
problem for a class of nonlinear systems in the absence of
knowledge of the control direction. Based on a Lie bracket av-
eraging technique, the proposed extremum-seeking controller
ensures that all signals in the closed-loop system are bounded
and converge to a compact set. The large overshoots resulting
from the wrong initial sign estimate in Nussbaum-type gain
techniques can be mitigated by implementing an extremum-
seeking controller, and 1

𝜔
-semi-global uniform asymptotic

convergence can be guaranteed, thus enhancing the results in
[19, 24, 29]. In contrast to existing works [19, 24, 29], the
proposed method is the first design method that can solve
output regulation problems with unknown control direction
without the need for Nussbaum-type gain techniques.
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