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Abstract—Providing an execution time certificate is a pressing
requirement when deploying Model Predictive Control (MPC)
in real-time embedded systems such as microcontrollers. Real-
time MPC requires that its worst-case (maximum) execution
time must be theoretically guaranteed to be smaller than the
sampling time in closed-loop. This technical note considers input-
constrained MPC problems and exploits the structure of the
resulting box-constrained QPs. Then, we propose a cost-free and
data-independent initialization strategy, which enables us, for the
first time, to remove the initialization assumption of feasible full-
Newton interior-point algorithms. We prove that the number of
iterations of our proposed algorithm is only dimension-dependent
(data-independent), simple-calculated, and exact (not worst-case)

with the value

⌈
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ϵ
)

−2 log(
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2n+

√
2−1

)

⌉
+ 1, where n denotes the

problem dimension and ϵ denotes the constant stopping tolerance.
These features enable our algorithm to trivially certify the
execution time of nonlinear MPC (via online linearized schemes)
or adaptive MPC problems. The execution-time-certified capa-
bility of our algorithm is theoretically and numerically validated
through an open-loop unstable AFTI-16 example.

Index Terms—Model predictive control, execution time certifi-
cate, interior-point method, cost-free initialization strategy.

I. INTRODUCTION

Model predictive control (MPC) generally requires solv-
ing an online quadratic programming (QP) problem at each
sampling time in a real-time closed-loop. Deploying real-time
MPC on embedded production platforms such as microcon-
trollers, has to meet a key requirement, called an execution
time certificate, which is that the execution time of the adopted
QP algorithm must be theoretically guaranteed to be less than
the given sampling time.

This execution time certificate has garnered increasing at-
tention within recent years and is still an active research area
[1]–[9]. All these works are based on the assumption that
the adopted computation platform performs a fixed number
of floating-point operations ([flops]) in constant time,

execution time =
total [flops] required by the algorithm
average [flops] processed per second

[s].

where one flop is defined to be one multiplication, subtraction,
addition, or division of two floating-point numbers, then, the
execution time can be derived by analyzing the total worst-
case [flops] which is equivalent to analyzing the worst-case
number of iterations if each iteration takes invariant [flops].
This technical note also follows this assumption to certify
the execution time of input-constrained MPC problems by
analyzing the number of iterations.
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Currently, most MPC algorithms obtain the average and
worst-case execution time by performing thousands of closed-
loop experiments and then statistically analyzing all execution
times. This approach is heuristic and lacks a theoretical
certificate. More importantly, this heuristic approach cannot
build an explicit and exact relationship between the execution
time and the MPC settings such as the length of prediction
horizons. Consequently, choosing the appropriate sampling
time and embedded processor type for a given MPC setting
relies on heavy calibration work [10].

Furthermore, most existing works [11]–[15] use the sta-
tistical average execution time to claim that their proposed
algorithm is fast, but in fact, the worst-case execution time
matters a lot more than average execution time. This is not
only because the certified worst-case execution time (not the
average execution time), is used to choose the sampling time,
but also because only when the worst-case execution time (not
the average execution time) is small, MPC can be applied to
fast dynamic systems.

In MPC applications, online optimization problems have
time-changing problem data (but the problem dimension is
time-invariant) in closed-loop as the feedback state, the set-
point reference signal, or even the model, are all time-
changing (such as in online linearized nonlinear MPC and
adaptive MPC). Simply put, the number of iterations depends
on the convergence speed of an optimization algorithm and
the distance between the initial point and the optimal point,
both of which are dependent on the data of optimization
problems. Therefore, time-changing problem data poses a big
challenge in obtaining the execution time certificate of real-
time MPC. This paper aims to develop an optimization algo-
rithm that has only dimension-dependent (data-independent),
simple-calculated, and exact number of iterations, then en-
abling the certification of the execution time of linear MPC,
nonlinear MPC (via online linearized scheme), and adaptive
MPC problems.

A. Related work

In [1], the input-constrained linear MPC problem, resulting
in a box-constrained QP (Box-QP) problem, is considered
and solved by Nesterov’s fast gradient method. They derived
a conservative iteration complexity bound which is not only
very computationally complicated but also dependent on the
problem data. In [2], [3], the general linear MPC problem with
input and state constraints is considered and then transformed
into the dual problems, which are solved by the accelerated
gradient projection methods. And their worst-case iteration
complexity is also dependent on the problem data like the Hes-
sian matrix of the dual problem. Their data-dependent iteration
complexity result cannot guarantee the time-invariant number
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of iterations in online linearization-based MPC problems, such
as Real-Time Iteration (RTI ) based nonlinear MPC [16]).

In addition to the above first-order method, another pop-
ular class of optimization methods is the active-set method.
Although active-set methods often run fast in small/medium-
scale problems but could have an exponential number of
iterations in the worst-case [17]. In [4]–[8], they use active-set
methods to solve general linear MPC problems and provide the
certification procedure of the worst-case number of iterations.
However, their certification procedure relies on the computa-
tionally complicated and expensive (thus offline) worst-case
partial enumeration technique. This also happens in the work
[9] which only considers input-constrained MPC problems.
The authors in [9] proposed an N -step algorithm (the worst-
case iteration complexity is the problem dimension N ) if the
modified N-step vector is given. However, the modified N-step
vector is found by solving a linear programming problem.

To summarize, all current execution time certificate works
of MPC are either data-dependent (like the first-order methods
[1]–[3]), or rely on computationally complicated and expensive
techniques (like the active-set methods [4]–[9]), making them
unsuitable for nonlinear MPC (via online linearized schemes)
and adaptive MPC problems. Therefore, to the best of the
authors’ knowledge, no works extend these algorithms [1]–[9]
to certify the execution time of nonlinear MPC problems.

To address the applicability limits of the above first-order
and active-set methods, this paper turns to interior-point meth-
ods (IPM). IPMs have been exploited in MPC applications,
as seen in works such as [18], [19], which primarily focus
on how to improve the average computational efficiency in
practice, but lacks execution time certificate in theory. For
example, the Mehrotra predictor-corrector IPMs [20]) have
been the basis for most interior-point software such as [19] due
to their practical fast convergence speed. However, Mehrotra
predictor-corrector IPMs are heuristic and may diverge on
some examples [21, see page 411], [22], without theoretical
global convergence proof.

IPMs are well-known for their theoretically certified poly-
nomial time complexity [23], but no work has adopted IPM to
certify the execution time of real-time MPC problems because
of the “irony of IPM”, a puzzling gap between practical and
theoretical computational efficiency [24]. In practice, heuris-
tic Mehrotra predictor-corrector IPMs often take less than
< 50 iterations (behaving O(log(n)) iteration complexity).
In theory, the best worst-case iteration complexity of IPMs is
O(
√
n), where n denotes the problem dimension. Specifically,

according to whether the initial point is strictly feasible or not,
IPMs can be divided into infeasible IPMs and feasible IPMs,
and the best worst-case iteration complexity of infeasible IPMs
and feasible IPMs are certified O(n) and O(

√
n) [23], [25],

respectively. Feasible IPMs are preferable to infeasible IPMs
in providing a faster execution time certificate for real-time
MPC problems.

However, feasible IPMs are rarely used in practical ap-
plications, let alone MPC applications because they have an
unrealistic assumption that the initial point is strictly feasible
and located in a narrow-centered neighborhood. For exam-
ple, existing works on feasible IPMs for general LPs [26],

convex QPs [27], [28], and monotone linear complementarity
problems [29] all rely on this assumption. Removing this
assumption, namely finding this specified initial point for
feasible IPMs, requires solving another linear program (LP),
which not only significantly increases the computational cost,
but more importantly introduces another challenge: certifying
the execution time of the LP itself. Therefore, feasible IPMs
are never used to certify the execution time of real-time MPC.

B. Contribution

This technical note for the first time develops a tailored and
practical feasible IPM algorithm to certify the execution time
of input-constrained MPC problems, to enjoy the current best
theoretical O(

√
n) iteration complexity. Our novel contribu-

tions are four-fold:
1) Removes the assumption of previous works that the

initial point is strictly feasible and located in a narrow
neighborhood of the central path. By only considering
input-constrained MPC problems, we then exploit the
structure of the resulting box-constrained QP (Box-QP)
and for the first time innovatively propose a cost-free and
data-independent initialization strategy.

2) Very simple to implement our proposed feasible IPM
algorithm, which adopts full-Newton step thus without
a line search procedure.

3) Only dimension-dependent (data-independent), simple-
calculated, and exact (not worst-case or maximum) num-
ber of iterations, log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1,

is achieved by our proposed algorithm, where n denotes
the problem dimension of Box-QP and ϵ denotes the
constant specifying the stopping accuracy (e.g., 1×10−6).
Thanks to being only dimension-dependent and having ex-
act computational complexity, our optimization algorithm
is direct, in the same manner as direct methods for solving
linear equations Ax = b (Cholesky decomposition or
QR decomposition) which also have only dimension-
dependent (data-independent) and exact computational
complexity. To the best of the author’s knowledge, a
direct optimization algorithm is reported for the first time.

4) A simple-calculated execution-time certificate is provided
by our proposed algorithm.

C. Notation

Rn denotes the space of n-dimensional real vectors, Rn
++

is the set of all positive vectors of Rn, and N+ is the
set of positive integers. For a vector z ∈ Rn, ∥z∥ =√
z21 + z22 + · · ·+ z2n, ∥z∥1 =

∑n
i=1 |zi|, ∥z∥∞ = maxi |zi|,

diag(z) : Rn → Rn×n maps a vector z to its corresponding
diagonal matrix, and z2 = (z21 , z

2
2 , · · · , z2n)⊤. Given two

vectors z, y ∈ Rn
++, their Hadamard product is zy =

(z1y1, z2y2, · · · , znyn)⊤,
(
z
y

)
=
(
z1
y1
, z2y2

, · · · , znyn

)⊤
,
√
z =(√

z1,
√
z2, · · · ,

√
zn
)⊤

and z−1 = (z−1
1 , z−1

2 , · · · , z−1
n )⊤. The
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vector of all ones is denoted by e = (1, · · · , 1)⊤. ⌈x⌉ maps x
to the least integer greater than or equal to x. For z, y ∈ Rn,
let col(z, y) = [z⊤, y⊤]⊤.

II. INPUT-CONSTRAINED MPC
In a closed-loop input-constrained MPC setting, at each

sampling time t, a parametric Box-QP,

min
y

1

2
y⊤Q(t)y + y⊤d(t)

s.t. l(t) ≤ y ≤ u(t)
(1)

needs to be solved within each sampling interval where
y ∈ Rn denotes the optimization variables. The problem
data, including the symmetric positive definite Q(t) ∈ Rn×n,
the vector d(t) ∈ Rn, and the lower and upper bounds
l(t), u(t) ∈ Rn (bounded and l(t) < u(t)), may be time-
varying.

We assume that the above Box-QP formulation guarantees
the stability of input-constrained MPC by choosing the positive
definite terminal penalty matrix and the horizon length appro-
priately, ensuring the fulfillment of sufficient stability criteria,
as discussed in [1].

Applying the coordinate transformation,

z = 2diag(u(t)− l(t))−1y − 2 diag(u(t)− l(t))−1l − e

results in an equivalent Box-QP with scaled box constraints,

z∗ =argmin
z

1
2z

⊤Hz + z⊤h (2a)

s.t. − e ≤ z ≤ e (2b)

where H = diag(u(t) − l(t))Q(t) diag(u(t) − l(t)) and h =
diag(u(t)−l(t))Q(t)(u(t)−l(t)+2d(t)). The optimal solution
y∗ of the original input-constrained MPC (1) can be recovered
by

y∗ = 1
2 diag(u(t)− l(t))z

∗ + 1
2 (u(t) + l(t)) (3)

In the below sections, the scaled box-QP (2) is used to derive
and analyze the proposed algorithm.

III. FEASIBLE FULL-NEWTON IPM
According to [30, Ch 5], the Karush–Kuhn–Tucker (KKT)

condition of the scaled box-QP (2) is the nonlinear equations,

Hz + h+ γ − θ = 0, (4a)
z + ϕ− e = 0, (4b)
z − ψ + e = 0, (4c)

γϕ = 0, (4d)
θψ = 0, (4e)

(γ, θ, ϕ, ψ) ≥ 0. (4f)

where γ and θ denote the Lagrangian variable of the lower
bound and upper bound, respectively, and ϕ and ψ denote
the slack variable of the lower bound and upper bound,
respectively.

Primal-dual IPMs use Newton’s method to determine the
search direction for solving these nonlinear equations. New-
ton’s method involves linearizing equation (4) around the

current iterate and then solving a system of linear equations
that results from this process. The solution to these equa-
tions provides the search direction (∆z,∆γ,∆θ,∆ϕ,∆ψ). A
full-Newton step often violates the bound (γ, θ, ϕ, ψ) ≥ 0
so the next iterate (z, γ, θ, ϕ, ψ) + α(∆z,∆γ,∆θ,∆ϕ,∆ψ)
with a line search parameter α ∈ (0, 1] is used to ensure
not exceeding the bound. The straightforward application of
Newton’s method frequently results in small steps (α ≪ 1)
before reaching the limit, which hinders significant progress
toward finding a solution.

A popular IPM is the path-following approach. This in-
volves introducing a positive parameter τ to replace (4d) and
(4e) with the equations,

γϕ = τ2e, (5a)

θψ = τ2e. (5b)

It has been shown that there exists one unique solution
(zτ , γτ , θτ , ϕτ , ψτ ) and the path τ → (zτ , γτ , θτ , ϕτ , ψτ )
is called the central path [23]. As τ approaching 0,
(zτ , γτ , θτ , ϕτ , ψτ ) goes to a solution of (4). Simply put,
primal-dual path-following methods apply Newton’s method
to (5) and explicitly restrict the iterates to a neighborhood of
the central path, which is an arc of strictly feasible points.
The primal-dual feasible set F and strictly feasible set F0 are
defined as

F = {(z, γ, θ, ϕ, ψ)|(4a)−(4c), (γ, θ, ϕ, ψ) ≥ 0},
F0 = {(z, γ, θ, ϕ, ψ)|(4a)−(4c), (γ, θ, ϕ, ψ) > 0}.

Thanks to the structure of the KKT condition (4), we are able
to propose a novel cost-free initialization strategy for feasi-
ble path-following IPM with application to input-constrained
MPC.

A. Strictly feasible initial point

To obtain the best result of theoretical worst-case complex-
ity, a good strictly feasible initial point is necessary.

Remark 1. For h = 0, the optimal solution of Problem 2 is
z∗ = 0. For h ̸= 0, first scale the objective (2a) as

min
z

1
2z

⊤( 2λ
∥h∥∞

H)z + z⊤( 2λ
∥h∥∞

h)

which does not affect the optimal solution and the scalar λ ∈
(0, 1). Denoting H̃ = 1

∥h∥∞
H and h̃ = 1

∥h∥∞
h, we have that

∥h̃∥∞ = 1. Then (4a) is replaced by

2λH̃z + 2λh̃+ γ − θ = 0

the initialization strategy to solve Problem 2 is

z0 = 0, γ0 = 1− λh̃, θ0 = 1 + λh̃, ϕ0 = e, ψ0 = e. (6)

This set of values is in F0.

B. Algorithm description

To simplify the presentation, two vectors v = col(γ, θ) ∈
R2n and s = col(ϕ, ψ) ∈ R2n are introduced. equations (5a)
and (5b) are replaced by

vs = τ2e
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which is then replaced by

φ(vs) = φ(τ2e) (7)

where the function φ : Rn
+ → Rn

+, is differentiable on Rn
++

such that φ(w) > 0 and φ′(w) > 0 for all w > 0.

Remark 2. The classical path-following method is recovered
for φ(w) = w. Here we consider φ(w) =

√
w, then φ′(w) =

1
2
√
w

.

Equation (7) is then linearized as

sφ′(vs)∆v + vφ′(vs)∆s = φ(τ2e)− φ(vs). (8)

Suppose that (z, v, s) ∈ F0 and, according to Remark 2, a
direction (∆z,∆v,∆s) can thus be obtained by solving the
system of linear equations

2λH̃∆z +Ω∆v = 0, (9a)

ΩT∆z +∆s = 0, (9b)√
s

v
∆v +

√
v

s
∆s = 2(τe−

√
vs), (9c)

where Ω = [I,−I] ∈ Rn×2n. By letting

∆γ =
γ

ϕ
∆z + 2

(√
γ

ϕ
τe− γ

)
, (10a)

∆θ = − θ
ψ
∆z + 2

(√
θ

ψ
τe− θ

)
, (10b)

∆ϕ = −∆z, (10c)
∆ψ = ∆z, (10d)

(9) can be reduced into a more compacted system of linear
equations,(

2λH̃+diag
(γ
ϕ

)
+ diag

( θ
ψ

))
∆z

= 2

(√
θ

ψ
τe−

√
γ

ϕ
τe+ γ − θ

)
.

(11)

The proposed feasible full-Newton path-following interior-
point algorithm is summarized on Algorithm 1. In the next
section, we prove that Algorithm 1 converges to the optimal

solution of Problem 2 in N =

⌈
log( 2n

ϵ )

−2 log(
√

2n√
2n+

√
2−1

)

⌉
+ 1

iterations.

C. Convergence and worst-case analysis

For simplify the presentation, introduce

dv :=

√
s

v
∆v, ds :=

√
v

s
∆s,

for which dvds = ∆v∆s and d⊤v ds = ∆v⊤∆s. Equations
(9a) and (9b) imply that

∆v⊤∆s = ∆v⊤(−Ω⊤∆z) = (−Ω∆v)⊤∆z = ∆z⊤(2λH̃)∆z.

The positive definiteness of 2λH̃ implies that
∆z⊤(2λH̃)∆z ≥ 0 for any vector ∆z, thus d⊤v ds ≥ 0.
Then introduce

p := dv + ds, q := dv − ds.

Algorithm 1 A direct optimization algorithm for input-
constrained MPC (1)
if ∥h∥∞ = 0, return y∗ = 1

2 (u(t) + l(t));
otherwise,
Let λ = 1√

n+1
, cache 2λH̃ = 2λ

∥h∥∞
H , h̃ = 1

∥h∥∞
h. and

(z, γ, θ, ϕ, ψ) are initialized from (6), η =
√
2−1√

2n+
√
2−1

and
τ = 1

1−η , and given a stopping tolerance ϵ, thus the required

exact number of iterations N =

⌈
log( 2n

ϵ )

−2 log(
√

2n√
2n+

√
2−1

)

⌉
+ 1.

for k = 1, 2, · · · ,N do
1. τ ← (1− η)τ ;
2. solve (11) for ∆z by using Cholesky decomposition;
3. calculate (∆γ,∆θ,∆ϕ,∆ψ) from (10);
4. z ← z +∆z, γ ← γ +∆γ, θ ← θ +∆θ, ϕ← ϕ+∆ϕ,
ψ ← ψ +∆ψ;

end
return y∗ = 1

2 diag(u(t)− l(t))z +
1
2 (u(t) + l(t)).

Then (p2 − q2)/4 = dvds and (∥p∥2 − ∥q∥2)/4 = d⊤v ds ≥ 0,
and

∥q∥ ≤ ∥p∥. (12)

Now introduce β :=
√
vs; then (9c) implies that

p = 2(τe−
√
vs) = 2(τe− β). (13)

With the definition of the proximity measure

ξ(β, τ) = ∥τe−β∥
τ = ∥p∥

2τ , (14)

next we prove that, for small enough proximity measure the
full-Newton step will not violate the bound (4f). That is, the
full-Newton step is strictly feasible.

Lemma 1. Let ξ := ξ(β, τ) < 1. Then the full-Newton step is
strictly feasible, that is, v+ = v+∆v > 0 and s+ = s+∆s >
0.

Proof. For each 0 ≤ α ≤ 1, let v+(α) = v + α∆v and
s+(α) = s+ α∆s. Then

v+(α)s+(α) = vs+ α(v∆s+ s∆v) + α2∆v∆s

= vs+ αβ(dv + ds) + α2dvds

= β2 + αβp+ α2
(
p2

4 −
q2

4

)
= (1− α)β2 + α(β2 + βp) + α2

(
p2

4 −
q2

4

)
From (13) we have β + p

2 = τe, and β2 + βp = τ2e − p2

4 ;
then

v+(α)s+(α) = (1−α)β2 +α
(
τ2e− p2

4 +α(p
2

4 −
q2

4 )
)

(15)

Thus, the inequality v+(α)s+(α) > 0 holds if∥∥∥(1− α)p2

4 + α q2

4

∥∥∥
∞
< τ2.

Using (12) and (14), if ξ < 1, then∥∥∥(1− α)p2

4 + α q2

4

∥∥∥
∞
≤ (1− α)

∥∥∥p2

4

∥∥∥
∞

+ α
∥∥∥ q2

4

∥∥∥
∞

≤ (1− α)∥p∥
2

4 + α ∥q∥2

4 ≤ ∥p∥2

4

= ξ2τ2 < τ2.
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Hence, for any 0 ≤ α ≤ 1, we have v+(α)s+(α) > 0. As
a result, the linear functions of α, v+(α) and s+(α), do not
change sign on the interval [0, 1]. For α = 0, we have v+(0) =
v > 0 and s+(0) = s > 0 thus v(1) > 0 and s(1) > 0. This
completes the lemma.

Next is to prove there exists an upper bound for the duality
gap after a full-Newton step.

Lemma 2. After a full-Newton step, let v+ = v + ∆v and
s+ = s+∆s, then the duality gap satisfies

v⊤+s+ ≤ (2n)τ2.

Proof. Suppose ξ < 1 so from Lemma 1 we obtain that v+ >
0 and s+ > 0. Now substituting α = 1 into (15) gives

v+s+ = β2
+ = τ2e− q2

4

so we have

v⊤+s+ = e⊤(v+s+) = (2n)τ2 − e⊤(q2)
4

= (2n)τ2 − ∥q∥2

4 ≤ (2n)τ2.
(16)

This completes the lemma.

Thus, the duality gap will converge to the given stopping
criteria if (2n)τ2 converges to the given stopping criteria. In
the below lemma, we investigate how the proximity measure
ξ(β+, τ+) changes after a full-Newton step and an update of
τ .

Lemma 3. Suppose that ξ = ξ(β, τ) < 1 and τ+ = (1− η)τ
where 0 < η < 1. Then

ξ+ = ξ(β+, τ+) ≤ ξ2

1+
√

1−ξ2
+ η

√
2n

1−η .

Furthermore, if ξ ≤ 1√
2

and η =
√
2−1√

2n+
√
2−1

then ξ+ ≤ 1√
2

.

Proof. Let τ+ = (1− η)τ , then

ξ+ = ξ(β+, τ+) =
∥τ+e− β+∥

τ+

=
∥(1− η)τe− (1− η)β+ − ηβ+∥

(1− η)τ

≤ ∥τe− β+∥
τ

+
η

1− η
∥β+∥
τ

(17)

Equation (16)) implies that

∥β+∥
τ
≤
√
2n

and
min(β2

+) = min (τ2e− q2

4 ) = τ2 − ∥q2∥∞
4

≥ τ2 − ∥q∥2

4 ≥ τ2 − ∥p∥2

4

= τ2(1− ξ2)

which yields
min(β+) ≥ τ

√
1− ξ2. (18)

Furthermore, from (12), (16), (18) and the Cauchy–Schwarz
inequality,

∥τe− β+∥
τ

=
1

τ

∥∥∥∥τ2e− β2
+

τe+ β+

∥∥∥∥ ≤ 1

τ

∥τ2e− β2
+∥

min(τe+ β+)

=
1

τ

∥τ2e− β2
+∥

τ +min(β+)
≤

∥τ2e− β2
+∥

τ2(1 +
√
1− ξ2)

=
∥q2∥

4τ2(1 +
√
1− ξ2)

≤ ∥q∥2

4τ2(1 +
√
1− ξ2)

≤ ∥p∥2

4τ2(1 +
√
1− ξ2)

=
ξ2

1 +
√

1− ξ2

thus, based on (17), we have

ξ+ = ξ(β+, τ+) ≤
ξ2

1 +
√
1− ξ2

+
η
√
2n

1− η
This proves the first part of the lemma. Now let η =√

2−1√
2n+

√
2−1

, and if ξ ≤ 1√
2

, we deduce ξ2

1+
√

1−ξ2
≤ 2−

√
2

2 .

Thus,

ξ+ ≤
2−
√
2

2
+

√
2−1√

2n+
√
2−1

1−
√
2−1√

2n+
√
2−1

√
2n =

1√
2
.

The proof of the lemma is complete.

Lemma 4. The value of ξ(β, τ) before the first iteration is
denoted as ξ0 = ξ(β0, (1−η)τ0). If (1−η)τ0 = 1, λ = 1√

n+1
,

then ξ0 ≤ 1√
2

and ξ(β,w) ≤ 1√
2

is always satisfied.

Proof. The equality (1− η)τ0 = 1 implies that

ξ0 =
∥(1− η)τ0e− β0∥

(1− η)τ0
= ∥e− β0∥

=

√√√√ n∑
i=1

(
1−

√
1− λh̃i

)2
+

(
1−

√
1 + λh̃i

)2

=

√√√√2n+ 2n− 2

n∑
i=1

√
1− λh̃i +

√
1 + λh̃i

Denote mi =
√

1− λh̃i +
√
1 + λh̃i; then

m2
i = 1− λh̃i + 1 + λh̃i + 2

√
1− λ2h̃2i = 2 + 2

√
1− λ2h̃2i

Since ∥h̃∥∞ = 1, m2
i ≥ 2 + 2

√
1− λ2, that is, mi ≥√

2 + 2
√
1− λ2. Also implied is

ξ0 =

√√√√4n− 2

n∑
i=1

mi ≤

√
4n− 2n

√
2 + 2

√
1− λ2

thus the inequality ξ0 ≤ 1√
2

holds if

4n− 2n

√
2 + 2

√
1− λ2 ≤ 1

2

⇆ 2− 1
4n ≤

√
2 + 2

√
1− λ2

⇆ 2 + 2
√
1− λ2 ≥

(
2− 1

4n

)2
⇆

√
1− λ2 ≥ 1− 1

2n + 1
32n2

⇆ λ2 ≤ 1−
(
1− 1

2n + 1
32n2

)2
= 1

n −
5

16n2 + 1
32n3 − 1

1024n4
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For λ = 1√
n+1

; this inequality holds if

1
n+1 ≤

1
n −

5
16n2 + 1

32n3 − 1
1024n4 , ∀n ∈ N+

⇆ 1
n

(
1

n+1 −
5

16n + 1
32n2 − 1

1024n3

)
≥ 0, ∀n ∈ N+

⇆ n3

n+1 ≥
5
16n

2 − 1
32n+ 1

1024 , ∀n ∈ N+

⇆ n3 ≥
(

5
16n

2 − 1
32n+ 1

1024

)
(n+ 1) , ∀n ∈ N+

⇆ n3 ≥ 5
16n

3 + 9
32n

2 − 31
1024n+ 1

1024 , ∀n ∈ N+

⇆ 11
16n

3 − 9
32n

2 + 31
1024n−

1
1024 ≥ 0, ∀n ∈ N+

⇆ n2

32 (22n− 9) + 1
1024 (31n− 1) ≥ 0, ∀n ∈ N+

Obviously, the last inequality holds, thus the first part of the
lemma is proved.

From Lemma 3 if ξ0 ≤ 1√
2

is satisfied then ξ(β, τ) ≤ 1√
2

is
always satisfied through the iterations. The proof of the lemma
is complete.

Remark 3. From Lemma 4, the assumption of Lemmas 1 and
3, namely ξ(β, τ) < 1, is satisfied.

Lemma 5. Given v0 = col(γ0, θ0) and s0 = col(ϕ0, ψ0) from
(6), they are strictly feasible. Let vk, sk be the kth iterates of
v, s, then the inequalities v⊤k sk ≤ ϵ is satisfied for

k ≥

⌈
log( 2n(τ

0)2

ϵ )

−2 log(1− η)

⌉
. (19)

Proof. Let τk be the kth iterate of τ , so τk = (1 − η)kτ0.
Applying Lemma 2 gives that

v⊤k s
k ≤ 2nτ2k = 2n(1− η)2k(τ0)2.

Hence v⊤k sk ≤ ϵ holds if

2n(1− η)2k(τ0)2 ≤ ϵ.

Taking logarithms gives that

2k log(1− η) + log(2n(τ0)2) ≤ log ϵ, (20)

which holds if

k ≥

⌈
log( 2n(τ

0)2

ϵ )

−2 log(1− η)

⌉
.

The proof is complete.

Theorem 1. Let η =
√
2−1√

2n+
√
2−1

and τ0 = 1
1−η , Algorithm 1

requires at most

Nmax =

 log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1 (21)

iterations, which gives that v⊤s ≤ ϵ.

Proof. By Lemmas 2–5, let η =
√
2−1√

2n+
√
2−1

, and τ0 = 1
1−η

to satisfy (1− η)τ0 = 1. Thus Algorithm 1 requires at most

Nmax =

⌈
log( 2nϵ )

−2 log(1− η)
+

2 log(τ0)

−2 log(1− η)

⌉
=

⌈
log( 2nϵ )

−2 log(1− η)

⌉
+ 1

=

 log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1

iterations. The proof is complete.

Unlike other methods whose iteration complexity analysis is
conservative (its actual number of iterations is smaller than the
maximum number of iterations, resulting in oversized control
computing estimates), the worst-case computation analysis of
our proposed Algorithm 1 is exact and deterministic.

D. Worst-case analysis is deterministic

The worst-case iteration complexity analysis is based on
the relationship between the duality gap v⊤s and (2n)τ2,
as shown in (16). In fact, the two are nearly equal to each
other in the proposed algorithm framework, which indicates
that the worst-case iteration analysis is deterministic with no
conservativeness.

Theorem 2. Let η =
√
2−1√

2n+
√
2−1

and τ0 = 1
1−η , Algorithm 1

exactly requires

N =

 log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1 (22)

iterations, the resulting vectors have v⊤s ≤ ϵ.

Proof. Equations (14) and (16)) and ξ ≤ 1√
2

give that

0 ≤ ∥q∥2

4 ≤ ∥p∥2

4 = ξ2τ2 = ξ2

2n (2nτ
2) ≤ 1

4n (2nτ
2),

that is,
(1− 1

4n )2nτ
2
k ≤ v⊤k sk ≤ 2nτ2k .

The larger the value of n, the tighter the bounds on v⊤k sk.
The duality gap v⊤k sk has nearly equal decreasing behavior
with τk; the number of iterations would be exact instead of
worst-case. To prove it, consider the (k − 1)th iteration,

(1− 1
4n )2nτ

2
k−1 ≤ v⊤k−1sk−1 ≤ 2nτ2k−1.

If 2nτ2k ≤
(
1− 1

4n

)
2nτ2k−1, then the duality gap will reach

the convergence criterion no earlier than and no later than
2nτ2k . That is, we need to prove that

(1− η)2 ≤ 1− 1
4n , ∀n = 1, 2, · · ·

Substituting η =
√
2−1√

2n+
√
2−1

into the above, we need to prove
that

(
√
2−1)2

(
√
2n+

√
2−1)2

− 2(
√
2−1)√

2n+
√
2−1

+ 1
4n ≤ 0, ∀n = 1, 2, · · ·

which is equal to

−(4− 2
√
2)
√
n(n− 1)− (8

√
2− 10)n(

√
n− 1)

−(3− 2
√
2)(n3/2 − 1)− (19− 12

√
2)n3/2 ≤ 0

which obviously always holds for n = 1, 2, · · · .
From (20), let η =

√
2−1√

2n+
√
2−1

and τ0 = 1
1−η ; the required

exact number of iterations is

N =

 log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1

The proof is complete.
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E. Execution-time certificate

Since our proposed Algorithm 1 is a full-Newton IPM algo-
rithm without a line search procedure, each step of Algorithm
1 involves a clear and countable number of floating-point
operations ([flops]). Our proposed Algorithm 1 has an exact
number of iterations which is only dimension-dependent (data-
independent), thus we can summarize the total [flops] required
by Algorithm 1 as follows.

Theorem 3. In Algorithm 1, the initialization requires (n) +
(3)+(1+n2)+(n)+(5n)+(5)+(2) [flops], Step 1 requires
2 [flops], Step 2 requires ( 13n

3 + 1
2n

2 + 1
6n) + 2n2 + 11n

[flops], Step 3 requires 6n [flops], Step 4 requires 5n [flops].
Thus, Algorithm 1 totally requires n2 + 7n+ 11 +N ( 13n

3 +
5
2n

2 + 133
6 n+ 2) [flops].

Then, based on the assumption that the adopted computation
platform performs a fixed [flops] in constant time,

execution time =
total [flops] required by the algorithm
average [flops] processed per second

[s].

Thus, by Theorem 3, Algorithm 1 can provide an execution-
time certificate, which is only dimension-dependent (data-
independent) making it competent for the execution-time cer-
tification of time-varying MPC problems (with possible time-
varying costs or dynamics, such as RTI-based nonlinear MPC
[16]).

IV. NUMERICAL EXAMPLE

In this section, Algorithm 1 is implemented in MAT-
LAB2023a via a C-mex interface, and the closed-loop sim-
ulation is performed on a contemporary MacBook Pro with
2.7 GHz 4-core Intel Core i7 processors and 16GB RAM.
We test Algorithm 1 on an open-loop unstable AFTI-16
aircraft application. The aim is to validate whether the prac-
tical number of iterations is the same with the theoretical⌈

log( 2n
ϵ )

−2 log(
√

2n√
2n+

√
2−1

)

⌉
+ 1, and whether the certified execution-

time is smaller than the adopted sampling time. The open-loop
unstable linearized AFTI-16 aircraft model reported in [31] is

ẋ =

 −0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

x
+

 −2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

u
y =
[

0 1 0 0
0 0 0 1

]
x

We choose the sampling time as ∆t = 0.05 s, then the model
is sampled using zero-order hold every ∆t = 0.05 s. The input
constraints are |ui| ≤ 25◦, i = 1, 2. The control goal is to make
the pitch angle y2 track a reference signal r2. The cost matrices
Wy = diag([10,10]), Wu = 0, and W∆u = diag([0.1, 0.1])
are used in the MPC design. We investigate our proposed
Algorithm 1 among different prediction horizon settings, T =
5, 10, 15, 20, which results in different problem dimensions
n = 10, 20, 30, 40 as the dimension of control inputs is 2.
We adopt the stopping convergence criteria ϵ = 10−6. By

Theorem 2, the derived theoretical number of iterations is⌈
log( 2n

ϵ )

−2 log(
√

2n√
2n+

√
2−1

)

⌉
+ 1, that is, [96, 139, 173, 202] for

different prediction horizon settings. By Theorem 3, before
closed-loop simulations, we can exactly calculate the total
[flops] of different prediction horizon settings, see Table I.

In Table I, the derived execution time in theory that can
be regarded as an execution-time certificate, is assumed to
perform on 1 Gflop/s computing processor, and the execution
time in practice is obtained from a contemporary MacBook
Pro with 2.7 GHz 4-core Intel Core i7 processors and 16GB
RAM. Since 2.7 GHz 4-core Intel Core i7 processor cannot
put all its computing power for this calculation (occupied by
other PC’s tasks), its execution time is still faster than a 1
Gflop/s computing processor from Table I. The execution time
in theory (on 1 Gflop/s computing processor) among different
prediction horizon settings are all smaller than the sampling
time ∆t = 50 ms, which are execution-time certificates.

TABLE I
THEORETICAL AND PRACTICAL COMPUTATION PERFORMANCE OF
DIFFERENT PREDICTION HORIZON (T = 5, 10, 15, 20) SETTINGS

Problem Number of iterations Total Execution time (ms)
dimension theory practice [flops]×106 theory* practice

n = 10 96 96 0.0777 0.0777 0.061
n = 20 139 139 0.5721 0.5721 0.450
n = 30 173 173 2.0628 2.0628 1.650
n = 40 202 202 5.9287 5.9287 4.210

* The theoretical execution time is obtained by assuming running on 1
flop/s computing processor.

All closed-loop simulation results among different pre-
diction horizon settings share almost the same closed-loop
performance, as shown in Fig. 1. The outputs y1 and y2 track
the reference well while the inputs u1 and u2 never go beyond
[−25, 25].

0 1 2 3 4 5 6 7 8 9 10
0

5

10

y
2

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

y
1

0 1 2 3 4 5 6 7 8 9 10
-25

0

25

u
1

0 1 2 3 4 5 6 7 8 9 10

time

-25

0

25

u
2

Fig. 1. Closed-loop performance of input-constrained MPC for AFTI-16
among different prediction horizons (T = 5, 10, 15, 20).
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V. CONCLUSION

This technical note presents a direct optimization algorithm
with only dimension-dependent (data-independent), simple-
calculated and exact log( 2nϵ )

−2 log(
√
2n√

2n+
√
2−1

)

+ 1

number of iterations for certifying the execution time of input-
constrained linear MPC problems in real-time closed-loop. The
computation complexity of our direct optimization algorithm
is only dimension-dependent and simple-calculated features,
making it trivially certifying the execution time of nonlinear
MPC problems via Koopman operator or RTI scheme, see our
recent paper [32] and [33], respectively. This capability sets
our algorithm apart from previous algorithms. One may argue
that our algorithm is of very limited use since it targets input-
constrained MPC problems. To dispel this concern, our recent
paper [34] extends our algorithm to encompass general MPC
problems with input and state constraints.

Future endeavors will focus on speeding up our execution-
time-certified algorithm (with smaller certified execution-time)
and exploring practical applications in fast dynamical systems,
such as robotics and electronics.
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