

A Time-certified Predictor-corrector IPM Algorithm for Box-QP

Liang Wu^{a,b}, Yunhong Che^b, Richard D. Braatz^b, Jan Drgona^a

Abstract— **Minimizing both the worst-case and average execution times of optimization algorithms is equally critical in real-time optimization-based control applications such as model predictive control (MPC). Most MPC solvers have to trade off between certified worst-case and practical average execution times. For example, our previous work [1] proposed a full-Newton path-following interior-point method (IPM) with data-independent, simple-calculated, and exact $O(\sqrt{n})$ iteration complexity, but not as efficient as the heuristic Mehrotra's predictor-corrector IPM algorithm (which sacrifices global convergence). This letter proposes a new predictor-corrector IPM algorithm that preserves the same certified $O(\sqrt{n})$ iteration complexity while achieving a $5\times$ speedup over [1]. Numerical experiments and codes that validate these results are provided.**

Index Terms— **Box-constrained quadratic program, iteration complexity, interior-point method, model predictive control.**

I. INTRODUCTION

THIS paper considers a scaled box-constrained quadratic program (Box-QP) with time-varying data $(H(t), h(t))$ as follows,

$$\begin{aligned} \min_{z \in \mathbb{R}^n} \quad & \frac{1}{2} z^\top H(t) z + z^\top h(t) \\ \text{s.t.} \quad & -\mathbf{1}_n \leq z \leq \mathbf{1}_n, \end{aligned} \quad (1)$$

where $H(t) \in \mathbb{R}^{n \times n}$ is symmetric positive semi-definite. Without loss of generality, we assume that the box constraints are scaled to $[-\mathbf{1}_n, \mathbf{1}_n]$.

Time-varying Box-QP (1) often arises from real-time model predictive control (MPC) problems. For example, input-constrained MPC [1], ℓ_1 -penalty soft-constrained MPC [2], and model-penalized MPC [3] can be formulated as a Box-QP (1). While a shorter average computation time for MPC is desirable, the most critical factor is determining the worst-case computation time. Because the MPC solver has to return the optimal solution before the next feedback sampling time, referred to as the **execution time certificate**. Recently, the **execution time certificate** of MPC (reduced to certifying the worst-case number of iterations if each iteration requires the same fixed number of floating-point operations) has attracted significant scholarly interest and remains a vibrant research

area [1], [2], [4]–[9]. A breakthrough is made by our previous work [1], which proposed *data-independent*, *simple-calculated*, and *exact* (*not worst-case*) iteration complexity: $\left\lceil \frac{\log(\frac{2n}{\epsilon})}{-2 \log(\frac{\sqrt{2n}}{\sqrt{2n} + \sqrt{2-1}})} \right\rceil + 1$ ($O(\sqrt{n})$ -order) for Box-QP (1). Then, it was applied to certifying the execution time of nonlinear MPC via the real-time-iteration scheme [10] and Koopman operator [11], respectively. Furthermore, [9] proposed exact iteration complexity: $\left\lceil \frac{\log(\frac{n+1}{\epsilon})}{-\log(1 - \frac{0.414213}{\sqrt{n+1}})} \right\rceil$ for general convex QP. The algorithms in [1], [9] solve a linear system of equations (with $O(n^3)$) at each iteration, thus resulting $O(n^{3.5})$ time complexity. In [2], the solution of linear equations is replaced by multiple rank-1 updates, resulting in the first *implementable* QP algorithm with $O(n^3)$ time complexity (with $\mathcal{N}_{\text{iter}} = O(\sqrt{n})$ and $\mathcal{N}_{\text{rank-1}} = O(n)$).

However, those time-certified interior-point-method (IPM) algorithms proposed in [1], [2], [9] are still not practically competitive: their certified computation times are typically longer than those of state-of-the-art QP solvers, which, in contrast, do not provide an execution time certificate. For example, the **heuristic** Mehrotra's predictor-corrector IPM algorithm [12], renowned for its computational efficiency (empirically exhibiting $O(\log n)$ iteration complexity), has become the foundation of most IPM-based optimization software, yet its global convergence and theoretical iteration complexity bound remain unknown, and it even may diverge in some examples [13, see p. 411], [14]. This naturally raises the question:

Can we design a practically efficient predictor-corrector IPM-based Box-QP algorithm that also achieves the best-known certified iteration complexity of $O(\sqrt{n})$?

A. Contributions

This paper gives a positive answer by proposing a predictor-corrector IPM algorithm with a certified, data-independent, and easily computable worst-case iteration bound, $\mathcal{N}_{\max} = \left\lceil \frac{\log(\frac{2n}{\epsilon})}{-2 \log(1 - \frac{0.2348}{\sqrt{2n}})} \right\rceil$ ($O(\sqrt{n})$ -order), while empirically exhibiting much faster iteration complexity (such as $O(\log n)$ or $O(n^{0.25})$).

Although the proof framework is an extension of the predictor-corrector IPM framework from linear programs [15] to Box-QP (1), the proof is more complicated than the original linear programming case, as the direction vectors are not orthogonal in the Box-QP case. More importantly, our proposed predictor-corrector IPM algorithm is **implementable**

^a Johns Hopkins University, MD 21218, USA;

^b Massachusetts Institute of Technology, MA 02139, USA; Corresponding author: Liang Wu with liangwu@mit.edu.

since a Box-QP admits cost-free initialization [1], whereas the algorithm in [15] is not, as it assumes the availability of a strictly feasible initial point (usually requires solving another LP, known as the *phase I* stage [16, Sec. 11.4]); consequently, no numerical experiments are reported in [15].

Compared with our previous time-certified Box-QP algorithm [1], the proposed algorithm demonstrates a $5\times$ speedup.

II. FEASIBLE PREDICTOR-CORRECTOR IPM ALGORITHM

According to [16, Ch 5], the Karush–Kuhn–Tucker (KKT) condition of Box-QP (1) is the following nonlinear equations,

$$H(t)z + h(t) + \gamma - \theta = 0, \quad (2a)$$

$$z + \phi - \mathbf{1}_n = 0, \quad (2b)$$

$$z - \psi + \mathbf{1}_n = 0, \quad (2c)$$

$$(\gamma, \theta, \phi, \psi) \geq 0, \quad (2d)$$

$$\gamma \odot \phi = 0, \quad (2e)$$

$$\theta \odot \psi = 0, \quad (2f)$$

where γ, θ are the Lagrangian variables of the lower and upper bound, respectively, and ϕ, ψ are the slack variables of the lower and upper bound, respectively. \odot represents the Hadamard product, i.e., $\gamma \odot \phi = \text{col}(\gamma_1\phi_1, \gamma_2\phi_2, \dots, \gamma_n\phi_n)$.

Path-following primal–dual IPMs are categorized into two types: *feasible* and *infeasible*, distinguished by whether the initial point satisfies Eqns. (2a)–(2d). For the complementarity constraints (2e)–(2f), *feasible* path-following IPMs require the initial point to lie in a narrow neighborhood. To demonstrate this, let us denote the feasible region by \mathcal{F} , i.e.,

$$\mathcal{F} = \{(z, \gamma, \theta, \phi, \psi) : (2a)–(2c), (\gamma, \theta, \phi, \psi) \geq 0\} \quad (3)$$

and the set of strictly feasible points by

$$\mathcal{F}^+ \triangleq \{(z, \gamma, \theta, \phi, \psi) : (2a)–(2c), (\gamma, \theta, \phi, \psi) > 0\}. \quad (4)$$

We also consider the neighborhood

$$\mathcal{N}(\beta) \triangleq \left\{ (z, \gamma, \theta, \phi, \psi) \in \mathcal{F}^+ : \left\| \begin{bmatrix} \gamma \odot \phi \\ \theta \odot \psi \end{bmatrix} - \mu \mathbf{1}_{2n} \right\|_2 \leq \beta \mu \right\}, \quad (5)$$

where the duality measure $\mu \triangleq \frac{\gamma^\top \phi + \theta^\top \psi}{2n}$ and $\beta \in [0, 1]$. *Feasible* path-following IPMs require the initial point satisfying

$$(z^0, \gamma^0, \theta^0, \phi^0, \psi^0) \in \mathcal{N}(\beta), \quad (6)$$

and computing such a point is typically expensive for general strictly convex QPs.

A. Cost-free initialization for Feasible IPMs

Inspired by our previous work [1], which was the first to point out that Box-QP supports cost-free initialization for feasible IPMs, this letter proposes the following initialization to ensure $(z^0, \gamma^0, \theta^0, \phi^0, \psi^0) \in \mathcal{N}(\beta)$.

Remark 2.1: For $h = 0$, the optimal solution of Box-QP (1) is $z^* = 0$. For $h \neq 0$, first scale the objective as

$$\min_z \frac{1}{2} z^\top (2\lambda H) z + z^\top (2\lambda h),$$

which does not affect the optimal solution and can ensure the initial point lies in $\mathcal{N}(\beta)$ if $\lambda = \frac{\beta}{\sqrt{2}\|h\|_2}$. Then (2a) is replaced by

$$2\lambda H z + 2\lambda h + \gamma - \theta = 0,$$

and the initialization strategy for Box-QP (1) is

$$z^0 = 0, \quad \gamma^0 = \mathbf{1}_n - \lambda h, \quad \theta^0 = \mathbf{1}_n + \lambda h, \quad \phi^0 = \mathbf{1}_n, \quad \psi^0 = \mathbf{1}_n, \quad (7)$$

which clearly places this initial point in $\mathcal{N}(\beta)$ by its definition in Eqn. (6) (for example, $\left\| \begin{bmatrix} \gamma^0 \odot \phi^0 \\ \theta^0 \odot \psi^0 \end{bmatrix} - \mu \mathbf{1}_{2n} \right\|_2 = \beta \mu$, where $\mu = 1$). In particular, this letter chooses $\beta = \frac{1}{4}$, then $\lambda = \frac{1}{4\sqrt{2}\|h\|_2}$.

B. Algorithm descriptions

For simplicity, we introduce $v \triangleq \text{col}(\gamma, \theta) \in \mathbb{R}^{2n}$, $s \triangleq \text{col}(\phi, \psi) \in \mathbb{R}^{2n}$. According to Remark 2.1, we have $(z, v, s) \in \mathcal{N}(\beta)$. Then, all the search directions $(\Delta z, \Delta v, \Delta s)$ (for both predictor and corrector steps) are obtained as solutions of the following system of linear equations:

$$(2\lambda H) \Delta z + \Omega \Delta v = 0, \quad (8a)$$

$$\Omega^\top \Delta z + \Delta s = 0, \quad (8b)$$

$$s \odot \Delta v + v \odot \Delta s = \sigma \mu \mathbf{1}_{2n} - v \odot s, \quad (8c)$$

where $\Omega = [I, -I] \in \mathbb{R}^{n \times 2n}$, σ is chosen 0 in predictor steps and 1 in corrector steps, respectively, and $\mu \triangleq \frac{v^\top s}{2n}$ denotes the duality measure.

Remark 2.2: Eqns. (8a) and (8b) imply that

$$\Delta v^\top \Delta s = \Delta v^\top (-\Omega^\top \Delta z) = \Delta z^\top (2\lambda H) \Delta z \geq 0,$$

which is critical in the following iteration complexity analysis. Note that in [15], $\Delta v^\top \Delta s = 0$, thus making our analysis different and more complicated than the linear program case. By letting

$$\begin{aligned} \Delta \gamma &= \sigma \mu \frac{1}{\phi} - \gamma + \frac{\gamma}{\phi} \Delta z, & \Delta \theta &= \sigma \mu \frac{1}{\psi} - \theta - \frac{\theta}{\psi} \Delta z, \\ \Delta \phi &= -\Delta z, & \Delta \psi &= \Delta z, \end{aligned} \quad (9)$$

Eqn. (8) can be reduced into a more compact system of linear equations,

$$\left(2\lambda H + \text{diag}\left(\frac{\gamma}{\phi}\right) + \text{diag}\left(\frac{\theta}{\psi}\right) \right) \Delta z = \sigma \mu \left(\frac{1}{\phi} - \frac{1}{\psi} \right) + \gamma - \theta. \quad (10)$$

The proposed feasible adaptive-step predictor-corrector IPM algorithm for Box-QP (1) is first described in Algorithm 1. In the next Subsection, we prove that Algorithm 1 converges to the ϵ -optimal solution ($v^\top s \leq \epsilon$) in the worst-case number of iterations

$$N_{\max} = \left\lceil \frac{\log\left(\frac{2n}{\epsilon}\right)}{-2 \log\left(1 - \frac{0.2348}{\sqrt{2n}}\right)} \right\rceil, \quad (11)$$

which is an $O(\sqrt{n})$ -order iteration complexity. In practice, Algorithm 1 exhibits $O(n^{0.25})$ or $O(\log n)$ -order iteration complexity due to the conservativeness of our proof.

Algorithm 1 Time-certified predictor-corrector IPM for Box-QP (1)

Input: Given a strictly feasible initial point $(z^0, v^0, s^0) \in \mathcal{N}(1/4)$ from Remark 2.1 and a desired optimal level ϵ . Then the worst-case iteration bound is $N_{\max} = \left\lceil \frac{\log(\frac{2n}{\epsilon})}{-2 \log(1 - \frac{0.2348}{\sqrt{2n}})} \right\rceil$.

for $k = 0, 1, 2, \dots, N_{\max} - 1$ **do** label* = 0., ref = 0

- 1) if $(v^k)^\top s^k \leq \epsilon$, then break;
- 2) Compute the predictor direction $(\Delta z_p, \Delta v_p, \Delta s_p)$ by solving Eqn. (8) with $(z, s, v) = (z^k, v^k, s^k)$, $\sigma \leftarrow 0$, and $\mu \leftarrow \mu^k = \frac{(v^k)^\top s^k}{2n}$ (involving Eqns. (10) and (9));
- 3) $\Delta \mu_p \leftarrow \frac{(\Delta v_p)^\top \Delta s_p}{2n}$;
- 4) $\alpha^k \leftarrow \min\left(\frac{1}{2}, \sqrt{\frac{\mu^k}{8\|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\|}}\right)$;
- 5) $\hat{z}^k \leftarrow z^k + \alpha^k \Delta z_p$, $\hat{v}^k \leftarrow v^k + \alpha^k \Delta v_p$, $\hat{s}^k \leftarrow s^k + \alpha^k \Delta s_p$;
- 6) Compute the corrector direction $(\Delta z_c, \Delta v_c, \Delta s_c)$ by solving Eqn. (8) with $(z, v, s) = (\hat{z}^k, \hat{v}^k, \hat{s}^k)$, $\sigma \leftarrow 1$, and $\mu \leftarrow \hat{\mu}^k = \frac{(\hat{v}^k)^\top \hat{s}^k}{2n}$ (involving Eqns. (10) and (9));
- 7) $z^{k+1} \leftarrow \hat{z}^k + \Delta z_c$, $v^{k+1} \leftarrow \hat{v}^k + \Delta v_c$, $s^{k+1} \leftarrow \hat{s}^k + \Delta s_c$;

end

Output: z^{k+1} .

C. Convergence and worst-case iteration complexity

The analysis is carried out separately for the predictor and corrector steps. We first present the common results that apply to both.

Lemma 2.3: Let $(z, v, s) \in \mathcal{F}^+$ and let $(\Delta z, \Delta v, \Delta s)$ be the solution of Eqn. (8). Then,

$$\|\Delta v \odot \Delta s\| \leq \frac{\sqrt{2}}{4} \|r\|^2, \quad (12)$$

where $r \triangleq \frac{1}{\sqrt{v \odot s}} (\sigma \mu \mathbf{1}_{2n} - v \odot s)$.

Proof: Dividing both sides of Eqn. (8c) by $\sqrt{v \odot s}$, results in

$$\sqrt{\frac{s}{v}} \odot \Delta v + \sqrt{\frac{v}{s}} \odot \Delta s = r. \quad (13)$$

Let us denote

$$p \triangleq \sqrt{\frac{s}{v}} \odot \Delta v, \quad q \triangleq \sqrt{\frac{v}{s}} \odot \Delta s, \quad (14)$$

we have $p + q = r$, $\Delta v \odot \Delta s = p \odot q$, $\Delta v^\top \Delta s = p^\top q$. By Remark 2.2, $\Delta v^\top \Delta s \geq 0$, so $p^\top q \geq 0$. Then, we have

$$\sum_{p_i q_i \geq 0} p_i q_i \geq - \sum_{p_i q_i < 0} p_i q_i, \quad i = 1, \dots, 2n.$$

We can obtain the result as follows:

$$\begin{aligned} \|\Delta v \odot \Delta s\|^2 &= \|p \odot q\|^2 = \sum_{i=1}^{2n} (p_i q_i)^2 = \sum_{p_i q_i \geq 0} (p_i q_i)^2 + \sum_{p_i q_i < 0} (p_i q_i)^2 \\ &\leq \left(\sum_{p_i q_i \geq 0} p_i q_i \right)^2 + \left(\sum_{p_i q_i < 0} p_i q_i \right)^2 \leq 2 \left(\sum_{p_i q_i \geq 0} p_i q_i \right)^2 \\ &\quad (\text{we have } 4p_i q_i = (p_i + q_i)^2 - (p_i - q_i)^2) \\ &\leq 2 \left(\sum_{p_i q_i \geq 0} \frac{1}{4} (p_i + q_i)^2 \right)^2 \leq 2 \left(\sum_i \frac{1}{4} (p_i + q_i)^2 \right)^2 = 2 \left(\frac{1}{4} \|r\|^2 \right)^2. \end{aligned}$$

That is, $\|\Delta v \odot \Delta s\| \leq \frac{\sqrt{2}}{4} \|r\|^2$, which completes the proof. \blacksquare

In Algorithm 1, both pairs $(\Delta z_p, \Delta v_p, \Delta s_p)$ and $(\Delta z_c, \Delta v_c, \Delta s_c)$ are obtained by solving Eqn. (8b) and thus by Remark 2.2 we have

$$\Delta v_p^\top \Delta s_p \geq 0, \quad \Delta v_c^\top \Delta s_c \geq 0. \quad (15)$$

The key of Algorithm 1 is that, during the predictor step, the iterate transitions from $(z^k, v^k, s^k) \in \mathcal{N}(1/4)$ to $(\hat{z}^k, \hat{v}^k, \hat{s}^k) \in \mathcal{N}(1/2)$, and during the corrector step, it returns from $(\hat{z}^k, \hat{v}^k, \hat{s}^k) \in \mathcal{N}(1/2)$ to $(z^{k+1}, v^{k+1}, s^{k+1}) \in \mathcal{N}(1/4)$, which will be proved in Lemmas 2.4 and 2.5, respectively.

Lemma 2.4: (Analysis of Predictor Step): Consider Algorithm 1. If $(z^k, v^k, s^k) \in \mathcal{N}(1/4)$ and the predictor step applies the step-size

$$\alpha^k = \min\left(\frac{1}{2}, \sqrt{\frac{\mu^k}{8\|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\|}}\right), \quad (16)$$

with $\mu^k = \frac{(v^k)^\top s^k}{2n}$ and

$$\Delta \mu_p \triangleq \frac{\Delta v_p^\top \Delta s_p}{2n}. \quad (17)$$

Then, $(\hat{z}^k, \hat{v}^k, \hat{s}^k) \in \mathcal{N}(1/2)$ holds.

Proof: For any step-size $\alpha \in [0, 1]$, let us define

$$v^k(\alpha) \triangleq v^k + \alpha \Delta v_p, \quad s^k(\alpha) \triangleq s^k + \alpha \Delta s_p,$$

and

$$\mu^k(\alpha) \triangleq \frac{(v^k(\alpha))^\top s^k(\alpha)}{2n}.$$

By Eqn. (8c) and the choice $\sigma = 0$ in the predictor step, we have (by $\Delta v_p^\top \Delta s_p = 2n \Delta \mu_p$):

$$\mu^k(\alpha) = (1 - \alpha) \mu^k + \alpha^2 \frac{(\Delta v_p)^\top \Delta s_p}{2n} = (1 - \alpha) \mu^k + \alpha^2 \Delta \mu_p, \quad (18)$$

and by $\Delta v_p^\top \Delta s_p \geq 0$ ($\Delta \mu_p \geq 0$), $\alpha \geq 0$, we have

$$\mu^k(\alpha) \geq (1 - \alpha) \mu^k. \quad (19)$$

Next,

$$\begin{aligned} &\|v^k(\alpha) \odot s^k(\alpha) - \mu^k(\alpha) \mathbf{1}_{2n}\| \\ &= \|(1 - \alpha)(v^k \odot s^k - \mu^k \mathbf{1}_{2n}) + \alpha^2 (\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n})\| \\ &\leq (1 - \alpha) \|v^k \odot s^k - \mu^k \mathbf{1}_{2n}\| + \alpha^2 \|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\| \\ &\leq \frac{1 - \alpha}{4} \mu^k + \alpha^2 \|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\|, \end{aligned}$$

and by the choice of α^k in Eqn. (16), for any $\alpha \in [0, \alpha^k]$

$$0 \leq \alpha \leq \frac{1}{2} \text{ and } 8\alpha^2 \|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\| \leq \mu^k,$$

thus we have

$$\begin{aligned} &\|v^k(\alpha) \odot s^k(\alpha) - \mu^k(\alpha) \mathbf{1}_{2n}\| \\ &\leq \frac{1 - \alpha}{4} \mu^k + \frac{1}{8} \mu^k \leq \frac{1 - \alpha}{4} \mu^k \left(1 + \frac{1}{2(1 - \alpha)}\right) \\ &\leq \frac{1 - \alpha}{2} \mu^k \leq \frac{1}{2} \mu^k(\alpha), \end{aligned}$$

which can imply that for all $\alpha \in [0, \alpha^k]$: $v^k(\alpha) \odot s^k(\alpha) \geq \frac{1}{2} \mu^k(\alpha) \mathbf{1}_{2n}$, and further by continuity: $v^k(\alpha) > 0$ and $s^k(\alpha) > 0$. This completes the proof of $(\hat{z}^k, \hat{v}^k, \hat{s}^k) \in \mathcal{N}(1/2)$. \blacksquare

Lemma 2.5: (Analysis of Corrector Step): Consider Algorithm 1. If $(\hat{z}^k, \hat{x}^k, \hat{z}^k) \in \mathcal{N}(1/2)$, then $(z^{k+1}, v^{k+1}, s^{k+1}) \in \mathcal{N}(1/4)$.

Proof: For any step-size $\alpha \in [0, 1]$, let us define

$$v^{k+1}(\alpha) \triangleq \hat{v}^k + \alpha \Delta v_c, \quad s^{k+1}(\alpha) \triangleq \hat{s}^k + \alpha \Delta s_c, \\ \mu^{k+1}(\alpha) \triangleq \frac{(v^{k+1}(\alpha))^\top s^{k+1}(\alpha)}{2n},$$

then by Eqn. (8a) and the choice $\sigma = 1$ in the corrector step, we have (by $(\hat{v}^k)^\top \hat{s}^k = 2n\hat{\mu}^k, \Delta v_c^\top \Delta s_c = 2n\Delta\mu_c$):

$$\mu^{k+1}(\alpha) = \frac{(\hat{v}^k)^\top \hat{s}^k + \alpha(\hat{\mu}^k 2n - \hat{v}^k \hat{s}^k) + \alpha^2 \Delta v_c^\top \Delta s_c}{2n} \\ = \hat{\mu}^k + \alpha^2 \frac{\Delta v_c^\top \Delta s_c}{2n}, \quad (20)$$

where $\hat{\mu}^k = \frac{(\hat{v}^k)^\top \hat{s}^k}{2n}$. By $\Delta v_c^\top \Delta s_c \geq 0$ and $\alpha \geq 0$, we have

$$\mu^{k+1}(\alpha) \geq \hat{\mu}^k. \quad (21)$$

Next, let us define

$$\Delta\mu_c \triangleq \frac{\Delta v_c^\top \Delta s_c}{2n}, \quad (22)$$

and we have

$$\|v^{k+1}(\alpha) \odot s^{k+1}(\alpha) - \mu^{k+1}(\alpha) \mathbf{1}_{2n}\| \\ = \|(1 - \alpha)(\hat{v}^k \odot \hat{s}^k - \hat{\mu}^k \mathbf{1}_{2n}) + \alpha^2(\Delta v_c \odot \Delta s_c - \Delta\mu_c \mathbf{1}_{2n})\| \\ \leq (1 - \alpha)\|\hat{v}^k \odot \hat{s}^k - \hat{\mu}^k e\| + \alpha^2\|\Delta v_c \odot \Delta s_c - \Delta\mu_c \mathbf{1}_{2n}\| \\ \leq \frac{(1 - \alpha)\hat{\mu}^k}{2} + \alpha^2\|\Delta v_c \odot \Delta s_c - \Delta\mu_c \mathbf{1}_{2n}\|.$$

Focusing on the term $\|\Delta v_c \odot \Delta s_c - \Delta\mu_c \mathbf{1}_{2n}\|$,

$$\|\Delta v_c \odot \Delta s_c - \Delta\mu_c \mathbf{1}_{2n}\| \\ = \sqrt{\sum_{i=1}^{2n} (\Delta v_{c,i} \Delta s_{c,i})^2 - 2\Delta\mu_c (\Delta v_c^\top \Delta s_c) + 2n(\Delta\mu_c)^2} \\ = \sqrt{\sum_{i=1}^n (\Delta v_{c,i} \Delta s_{c,i})^2 - 2n(\Delta\mu_c)^2} \leq \|\Delta v_c \odot \Delta s_c\|.$$

By Lemma 2.3 and the choice $\sigma = 1$ in the corrector step, we have

$$\|\Delta v_c \odot \Delta s_c\| \leq \frac{\sqrt{2}}{4} \left\| \frac{1}{\sqrt{\hat{v}^k \odot \hat{s}^k}} (\hat{\mu}^k \mathbf{1}_{2n} - \hat{v}^k \odot \hat{s}^k) \right\|^2.$$

Because $(\hat{z}^k, \hat{x}^k, \hat{z}^k) \in \mathcal{N}(1/2)$, we have $\|\hat{v}^k \odot \hat{s}^k - \hat{\mu}^k \mathbf{1}_{2n}\| \leq \frac{1}{2}\hat{\mu}^k$, so for each $i = 1, \dots, 2n$

$$\frac{1}{2}\hat{\mu}^k \leq \hat{v}_i^k \hat{s}_i^k \leq \frac{3}{2}\hat{\mu}^k \Leftrightarrow \left(\min(\sqrt{\hat{v}^k \odot \hat{s}^k}) \right)^2 = \frac{1}{2}\hat{\mu}^k$$

Thus, we have

$$\left\| \frac{1}{\sqrt{\hat{v}^k \odot \hat{s}^k}} (\hat{\mu}^k \mathbf{1}_{2n} - \hat{v}^k \odot \hat{s}^k) \right\|^2 \\ \leq \frac{1}{(\min(\sqrt{\hat{v}^k \odot \hat{s}^k}))^2} \|\hat{\mu}^k \mathbf{1}_{2n} - \hat{v}^k \odot \hat{s}^k\|^2 \quad (23) \\ \leq \frac{2}{\hat{\mu}^k} \left(\frac{1}{2}\hat{\mu}^k \right)^2 = \frac{1}{2}\hat{\mu}^k.$$

Then, by Eqn. (21), for any step-size $\alpha \in [0, 1]$, we have

$$\|v^{k+1}(\alpha) \odot s^{k+1}(\alpha) - \mu^{k+1}(\alpha) \mathbf{1}_{2n}\| \\ \leq \frac{(1 - \alpha)\hat{\mu}^k}{2} + \alpha^2 \|\Delta v_c \odot \Delta s_c\| \\ \leq \frac{(1 - \alpha)\hat{\mu}^k}{2} + \alpha^2 \frac{\sqrt{2}}{4} \frac{1}{2}\hat{\mu}^k \leq \frac{(1 - \alpha)\hat{\mu}^k}{2} + \alpha^2 \frac{2}{8}\hat{\mu}^k \\ = \frac{(\alpha - 1)^2 + 1}{4}\hat{\mu}^k \leq \frac{(\alpha - 1)^2 + 1}{4}\mu^{k+1}(\alpha) \leq \frac{1}{2}\mu^{k+1}(\alpha).$$

which can imply that for all $\alpha \in [0, 1]$

$$v^{k+1}(\alpha) \odot s^{k+1}(\alpha) \geq \frac{1}{2}\mu^{k+1}(\alpha) \mathbf{1}_{2n}$$

and namely by continuity $v^{k+1}(\alpha) > 0$ and $s^{k+1}(\alpha) > 0$.

Moreover, in the special case that $\alpha = 1$, we have $\frac{(\alpha - 1)^2 + 1}{4} = \frac{1}{4}$ and it proves that

$$\|v^{k+1} \odot s^{k+1} - \mu^{k+1} \mathbf{1}_{2n}\| \leq \frac{1}{4}\mu^{k+1},$$

which completes the proof. \blacksquare

Lemma 2.6: Consider Algorithm 1. At the k -th iteration, the following inequalities

$$\Delta\mu_p \leq \frac{1}{4}\mu^k, \quad (24a)$$

$$\hat{\mu}^k \leq \left(1 - \frac{\alpha^k}{2}\right)^2 \mu^k, \quad (24b)$$

$$\Delta\mu_c \leq \left(1 - \frac{\alpha^k}{2}\right)^2 \frac{1}{16n}\mu^k \quad (24c)$$

hold.

Proof: Taking the 2-norm on both sides of Eqn. (13) (by the definition in Eqn. (14)) results in

$$4\Delta v^\top \Delta s + \|p - q\|^2 = \|r\|^2,$$

which implies that (by the definition in Eqn. (12))

$$4\Delta v^\top \Delta s \leq \|r\|^2 = \left\| \frac{1}{\sqrt{v \odot s}} (\sigma\mu \mathbf{1}_{2n} - v \odot s) \right\|^2. \quad (25)$$

Regarding the inequality (24a), the predictor step adopts $\sigma \leftarrow 0$ and $(z, v, s) = (z^k, v^k, s^k)$, this yields

$$\Delta v_p^\top \Delta s_p \leq \frac{1}{4} \left\| \frac{1}{\sqrt{v^k \odot s^k}} (0\mu^k \mathbf{1}_{2n} - v^k \odot s^k) \right\|^2 \\ = \frac{1}{4} (v^k)^\top s^k \Leftrightarrow \Delta\mu_p \leq \frac{1}{4}\mu^k,$$

which completes the proof of the inequality (24a).

Regarding the inequality (24b), by Eqn. (18) and the statement *i*, we have

$$\hat{\mu}^k = (1 - \alpha^k)\mu^k + (\alpha^k)^2 \Delta\mu_p \leq (1 - \alpha^k)\mu^k + \frac{(\alpha^k)^2}{4}\mu^k \\ = \left(1 - \frac{\alpha^k}{2}\right)^2 \mu^k,$$

which completes the proof of the inequality (24b).

Regarding the inequality (24c) the corrector step adopts $(z, v, s) = (\hat{z}^k, \hat{v}^k, \hat{s}^k)$, $\sigma \leftarrow 1$, and $\mu \leftarrow \hat{\mu}^k$, and by Eqn. (23), this yields

$$\Delta v_c^\top \Delta s_c \leq \frac{1}{4} \left\| \frac{1}{\sqrt{\hat{v}^k \odot \hat{s}^k}} (\hat{\mu}^k \mathbf{1}_{2n} - \hat{v}^k \odot \hat{s}^k) \right\|^2 \leq \frac{1}{8} \hat{\mu}^k.$$

That is, by the inequality (24b), we have

$$\Delta \mu_c \leq \frac{1}{16n} \hat{\mu}^k \leq \left(1 - \frac{\alpha^k}{2}\right)^2 \frac{1}{16n} \mu^k,$$

which completes the proof of the inequality (24c). \blacksquare

Theorem 2.7: Let $\{(z^k, v^k, s^k)\}$ be generated by Algorithm 1. Then

$$\mu^{k+1} \leq \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^2 \mu^k. \quad (26)$$

Furthermore, Algorithm 1 requires at most

$$N_{\max} = \left\lceil \frac{\log(\frac{2n}{\epsilon})}{-2 \log\left(1 - \frac{0.2348}{\sqrt{2n}}\right)} \right\rceil. \quad (27)$$

Proof: By Eqn. (18) and (20)

$$\begin{aligned} \mu^{k+1} &= \hat{\mu}^k + \Delta \mu_c = (1 - \alpha^k) \mu^k + (\alpha^k)^2 \Delta \mu_p + \Delta \mu_c \\ &\quad (\text{by Lemma 2.6}) \\ &\leq (1 - \alpha^k) \mu^k + \frac{(\alpha^k)^2}{4} \mu^k + \left(1 - \frac{\alpha^k}{2}\right)^2 \frac{1}{16n} \mu^k \\ &\leq \left(1 - \frac{\alpha^k}{2}\right)^2 \left(1 + \frac{1}{16n}\right) \mu^k. \end{aligned}$$

Because we have

$$\begin{aligned} &\|\Delta v_p \odot \Delta s_p - \Delta \mu_p \mathbf{1}_{2n}\| \\ &= \sqrt{\sum_{i=1}^{2n} (\Delta v_{p,i} \Delta s_{p,i})^2 - 2 \Delta \mu_p \Delta v_p^\top \Delta s_p + 2n (\Delta \mu_p)^2} \\ &= \sqrt{\sum_{i=1}^{2n} (\Delta v_{p,i} \Delta s_{p,i})^2 - 2n (\Delta \mu_p)^2} \leq \|\Delta v_p \odot \Delta s_p\| \\ &\quad (\text{By Lemma 2.3 and the choice } \sigma = 0) \\ &\leq \frac{\sqrt{2}}{4} \left\| \frac{1}{\sqrt{v^k \odot s^k}} (-v^k \odot s^k) \right\|^2 = \frac{\sqrt{2}}{4} (2n) \mu^k, \end{aligned}$$

the choice of α^k in Eqn. (16) can imply that for all $n \geq 1$

$$\alpha^k \geq \min\left(\frac{1}{2}, \frac{2^{0.25}}{2} \frac{1}{\sqrt{2n}}\right) \geq \frac{2^{0.25}}{2} \frac{1}{\sqrt{2n}},$$

which can imply that the following condition for all $n \geq 2$ ($n = 1$ no need for optimization)

$$\begin{aligned} &\left(1 - \frac{\alpha^k}{2}\right)^2 \left(1 + \frac{1}{16n}\right) \\ &\leq \left(1 - \frac{\alpha^k}{2}\right) \left(1 - \frac{2^{0.25}}{4} \frac{1}{\sqrt{2n}} + \frac{1}{16n} - \frac{2^{0.25}}{64n\sqrt{2n}}\right) \\ &\leq \left(1 - \frac{\alpha^k}{2}\right) \left(1 - \frac{2^{0.25}}{4} \frac{1}{\sqrt{2n}} + \frac{1}{16n}\right) \\ &= \left(1 - \frac{\alpha^k}{2}\right) \left(1 - \left(\frac{2^{0.25} - \frac{1}{2\sqrt{2n}}}{4}\right) \frac{1}{\sqrt{2n}}\right) \\ &\leq \left(1 - \frac{2^{0.25}}{4} \frac{1}{\sqrt{2n}}\right) \left(1 - \frac{2^{0.25} - 0.25}{4} \frac{1}{\sqrt{2n}}\right) \\ &\leq \left(1 - \frac{2^{0.25} - 0.25}{4} \frac{1}{\sqrt{2n}}\right)^2 = \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^2 \end{aligned}$$

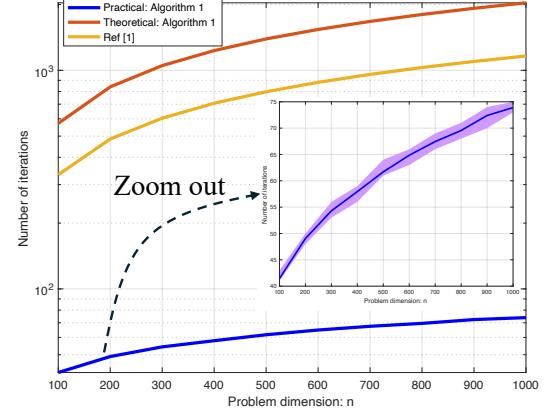


Fig. 1. Practical and theoretical iteration counts of Algorithm 1 compared with the exact (practical = theoretical) iteration counts from Ref. [1].

holds, which proves that $\mu^{k+1} \leq \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^2 \mu^k$.

Based on the above and the initial value $\mu^0 = 1$, $\mu^k \leq \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^{2k} \mu^0 = \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^{2k}$. Hence $(v^k)^\top s_k \leq \epsilon$ holds if $2n \left(1 - \frac{0.2348}{\sqrt{2n}}\right)^{2k} \leq \epsilon$. Taking logarithms gives that $2k \log\left(1 - \frac{0.2348}{\sqrt{2n}}\right) + \log(2n) \leq \log \epsilon$, which holds if $k \geq N_{\max} = \left\lceil \frac{\log(\frac{2n}{\epsilon})}{-2 \log\left(1 - \frac{0.2348}{\sqrt{2n}}\right)} \right\rceil$, which completes the proof. \blacksquare

Remark 2.8: Algorithm 1 exhibit $O(\log n)$ or $O(n^{0.25})$ iteration behavior in practice while the worst-case iteration bound N_{\max} in Eqn. (27) (as $-\log(1 - 0.2348/\sqrt{2n}) \approx 0.2348/\sqrt{2n}$ when $0 < 0.2348/\sqrt{2n} < 1$) is $O(\sqrt{n})$ from the conservative estimate of the adaptive step-size $\alpha^k = \Omega(1/\sqrt{n})$ via Eqn. (12) in Lemma 2.3. Refs. [17] and [18] provide probabilistic proofs that, in linear programming cases, the adaptive step sizes satisfy $\alpha^k = \Omega(1/n^{0.25})$ and $\alpha^k = \Omega(1/\log n)$, respectively.

III. NUMERICAL EXAMPLES¹

A. Practical and theoretical behavior on random Box-QPs

We apply Algorithm 1 to random Box-QP problems with dimensions n ranging from 100 to 1000, and evaluate its practical iteration counts. These are then compared with the theoretical worst-case bound N_{\max} in Eqn. (27) and with the results reported in [1]. Fig. 1 shows that Algorithm 1 practically behaves far less iterations than the $O(\sqrt{n})$ -iteration-complexity results in Eqn. (27) and Ref. [1], which corresponds to Remark 2.8. Fig. 1 also shows that the practical number of iterations of Algorithm 1 exhibits very small variations for Box-QPs of the same dimension.

B. Nonlinear PDE-MPC case study

We apply Algorithm 1 to a nonlinear PDE-MPC problem from [11]. The considered PDE plant is the nonlinear

¹The MATLAB code for Algorithm 1 and numerical examples are publicly available at https://github.com/liangwu2019/PC_BoxQP.

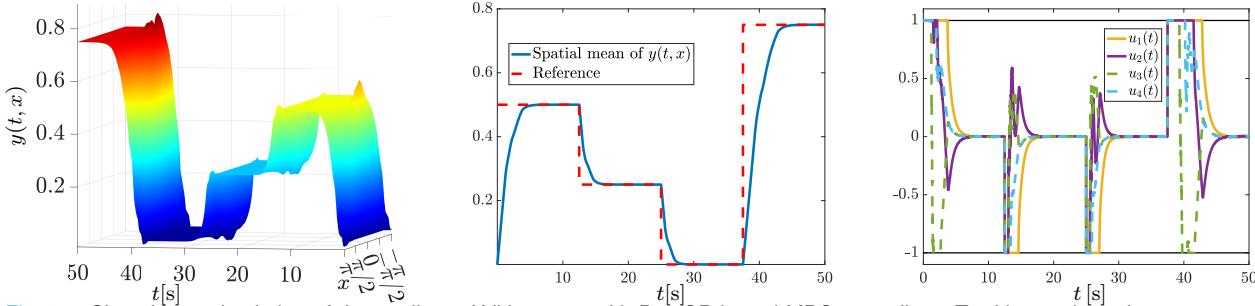


Fig. 2. Closed-loop simulation of the nonlinear KdV system with Box-QP based MPC controller – Tracking a piecewise constant spatial profile reference. Left: time evolution of the spatial profile $y(t, x)$. Middle: spatial mean of the $y(t, x)$. Right: the four control inputs.

Korteweg-de Vries (KdV) equation as follows,

$$\frac{\partial y(t, x)}{\partial t} + y(t, x) \frac{\partial y(t, x)}{\partial x} + \frac{\partial^3 y(t, x)}{\partial x^3} = u(t, x) \quad (28)$$

where $x \in [-\pi, \pi]$ is the spatial variable. We consider the control input u to be $u(t, x) = \sum_{i=1}^4 u_i(t) v_i(x)$, in which the four coefficients $\{u_i(t)\}$ are subject to the constraint $[-1, 1]$, and $v_i(x)$ are predetermined spatial profiles given as $v_i(x) = e^{-25(x-m_i)^2}$, with $m_1 = -\pi/2$, $m_2 = -\pi/6$, $m_3 = \pi/6$, and $m_4 = \pi/2$. The objective is to adjust $u_i(t)$ so that $y(t, x)$ tracks a given reference. Following [11], data are generated from the KdV equation, a Koopman-based linear model is identified, and the resulting MPC problem is formulated as a Box-QP. With a prediction horizon of 10, the Box-QP dimension is $n = 40$, and the stopping tolerance is set to $\epsilon = 10^{-6}$. Table I shows that Algorithm 1 is approximately 5× faster than the method in [1], primarily due to a much smaller iteration count ($202/29 \approx 10$) despite a per-iteration cost that is about twice as large. Figure 2 further demonstrates fast and accurate tracking of the spatial profile $y(t, x)$ with zero control-input violations.

TABLE I

COMPUTATION BEHAVIOR OF ALGORITHM 1 AND THE METHOD IN REF. [1] IN THE PDE-MPC EXAMPLE

Methods	Number of iterations	Execution time [s] ²
Ref [1]	202	3.4×10^{-3}
Algorithm 1	Average: 29.2758 ± 2.3843 Worst-case: 271	6.6024×10^{-4}

IV. CONCLUSION

This letter presents a significant improvement over our previous work [1] with a new predictor–corrector IPM algorithm, preserving the data-independent and simple-calculated $O(\sqrt{n})$ -iteration-complexity, while achieving a 5× speedup.

Limitation: Algorithm 1 and the heuristic Mehrotra's predictor–corrector IPM behave similarly in practical iteration complexity, but Algorithm 1 is slower because it solves two distinct linear systems at each iteration, whereas the latter does not. Future work will address this and then perform more numerical comparisons with other state-of-the-art solvers.

²The execution time results were based on MATLAB implementations running on a Mac mini with an Apple M4 Chip (10-core CPU and 16 GB RAM). Further speedup can be achieved via C-code implementation.

REFERENCES

- [1] L. Wu and R. D. Braatz, “A Direct Optimization Algorithm for Input-Constrained MPC,” *IEEE Transactions on Automatic Control*, vol. 70, no. 2, pp. 1366–1373, 2025.
- [2] ———, “A Quadratic Programming Algorithm with $O(n^3)$ Time Complexity,” *arXiv preprint arXiv:2507.04515*, 2025.
- [3] N. Saraf and A. Bemporad, “Fast model predictive control based on linear input/output models and bounded-variable least squares,” in *2017 IEEE 56th Annual Conference on Decision and Control (CDC)*. IEEE, 2017, pp. 1919–1924.
- [4] S. Richter, C. N. Jones, and M. Morari, “Computational complexity certification for real-time MPC with input constraints based on the fast gradient method,” *IEEE Transactions on Automatic Control*, vol. 57, no. 6, pp. 1391–1403, 2011.
- [5] G. Cimini and A. Bemporad, “Exact complexity certification of active-set methods for quadratic programming,” *IEEE Transactions on Automatic Control*, vol. 62, no. 12, pp. 6094–6109, 2017.
- [6] D. Arnström and D. Axehill, “A Unifying Complexity Certification Framework for Active-Set Methods for Convex Quadratic Programming,” *IEEE Transactions on Automatic Control*, vol. 67, no. 6, pp. 2758–2770, 2021.
- [7] I. Okawa and K. Nonaka, “Linear complementarity model predictive control with limited iterations for box-constrained problems,” *Automatica*, vol. 125, p. 109429, 2021.
- [8] N. Kawaguchi, I. Okawa, and K. Nonaka, “Bounded iteration for multiple box constraints on linear complementarity model predictive control and its application to vehicle steering control,” *SICE Journal of Control, Measurement, and System Integration*, vol. 16, no. 1, pp. 237–246, 2023.
- [9] L. Wu, W. Xiao, and R. D. Braatz, “EIQP: Execution-time-certified and Infeasibility-detecting QP Solver,” *arXiv preprint arXiv:2502.07738*, 2025.
- [10] L. Wu, K. Ganko, S. Wang, and R. D. Braatz, “An Execution-time-certified Riccati-based IPM Algorithm for RTI-based Input-constrained NMPC,” in *2024 IEEE 63rd Conference on Decision and Control (CDC)*. IEEE, 2024, pp. 5539–5545.
- [11] L. Wu, K. Ganko, and R. D. Braatz, “Time-certified Input-constrained NMPC via Koopman operator,” *IFAC-PapersOnLine*, vol. 58, no. 18, pp. 335–340, 2024.
- [12] S. Mehrotra, “On the implementation of a primal-dual interior point method,” *SIAM Journal on optimization*, vol. 2, no. 4, pp. 575–601, 1992.
- [13] J. Nocedal and S. Wright, *Numerical optimization*. Springer, 2006.
- [14] C. Cartis, “Some disadvantages of a Mehrotra-type primal-dual corrector interior point algorithm for linear programming,” *Applied Numerical Mathematics*, vol. 59, no. 5, pp. 1110–1119, 2009.
- [15] S. Mizuno, M. J. Todd, and Y. Ye, “On adaptive-step primal-dual interior-point algorithms for linear programming,” *Mathematics of Operations research*, vol. 18, no. 4, pp. 964–981, 1993.
- [16] S. P. Boyd and L. Vandenberghe, *Convex optimization*. Cambridge University Press, 2004.
- [17] S. Mizuno, M. Todd, and Y. Ye, “Anticipated behavior of path-following algorithms for linear programming,” Cornell University Operations Research and Industrial Engineering, Tech. Rep., 1989.
- [18] S. Mizuno, M. J. Todd, and Y. Ye, “Anticipated behavior of long-step algorithms for linear programming,” Cornell University Operations Research and Industrial Engineering, Tech. Rep., 1990.