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A Time-certified Predictor-corrector IPM
Algorithm for Box-QP
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Abstract— Minimizing both the worst-case and average
execution times of optimization algorithms is equally crit-
ical in real-time optimization-based control applications
such as model predictive control (MPC). Most MPC solvers
have to trade off between certified worst-case and practical
average execution times. For example, our previous work
[1] proposed a full-Newton path-following interior-point
method (IPM) with data-independent, simple-calculated,
and exact O(4/n) iteration complexity, but not as efficient as
the heuristic Mehrotra’s predictor—corrector IPM algorithm
(which sacrifices global convergence). This letter proposes
a new predictor—corrector IPM algorithm that preserves the
same certified O(,/n) iteration complexity while achieving
a 5x speedup over [1]. Numerical experiments and codes
that validate these results are provided.

Index Terms— Box-constrained quadratic program, iter-
ation complexity, interior-point method, model predictive
control.

. INTRODUCTION

HIS paper considers a scaled box-constrained quadratic
program (Box-QP) with time-varying data (H (¢), h(t))
as follows,
1
min 5zTH(zf)z + 2T h(t) 0
s.it. —1,<z2<1,,

where H(t) € R™ "™ is symmetric positive semi-definite.
Without loss of generality, we assume that the box constraints
are scaled to [—1,,1,].

Time-varying Box-QP (1) often arises from real-time model
predictive control (MPC) problems. For example, input-
constrained MPC [1], ¢;-penalty soft-constrained MPC [2],
and model-penalized MPC [3] can be formulated as a Box-
QP (1). While a shorter average computation time for MPC
is desirable, the most critical factor is determining the worst-
case computation time. Because the MPC solver has to return
the optimal solution before the next feedback sampling time,
referred to as the execution time certificate. Recently, the
execution time certificate of MPC (reduced to certifying the
worst-case number of iterations if each iteration requires the
same fixed number of floating-point operations) has attracted
significant scholarly interest and remains a vibrant research
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area [1], [2], [4]-[9]. A breakthrough is made by our pre-
vious work [1], which proposed data-independent, simple-

calculated, and exact (not worst-case) iteration complexity:
log(%z,— +1 (O(y/n)-order) for Box-QP (1). Then,
—210g(ﬁ\;§71)
it was applied to certifying the execution time of nonlinear

MPC via the real-time-iteration scheme [10] and Koopman

operator [11], respectively. Furthermore, [9] proposed exact
n+1

. . . lo
iteration complexity: W for general convex
VoS

QP. The algorithms in [1], [9] solve a linear system of equa-
tions (with O(n?)) at each iteration, thus resulting O(n3-5)
time complexity. In [2], the solution of linear equations is
replaced by multiple rank-1 updates, resulting in the first
implementable QP algorithm with O(n3) time complexity
(Wlth Mtcr = O(\/ﬁ) and -/\/rankfl = O(TL))

However, those time-certified interior-point-method (IPM)
algorithms proposed in [1], [2], [9] are still not practically
competitive: their certified computation times are typically
longer than those of state-of-the-art QP solvers, which, in con-
trast, do not provide an execution time certificate. For example,
the heuristic Mehrotra’s predictor-corrector IPM algorithm
[12], renowned for its computational efficiency (empirically
exhibiting O(logn) iteration complexity), has become the
foundation of most IPM-based optimization software, yet its
global convergence and theoretical iteration complexity bound
remain unknown, and it even may diverge in some examples
[13, see p. 411], [14]. This naturally raises the question:

Can we design a practically efficient predictor—corrector
IPM-based Box-QP algorithm that also achieves the
best-known certified iteration complexity of O(\/n)?

A. Contributions

This paper gives a positive answer by proposing a predictor-
corrector IPM algorithm with a certified, data-independent,
and easily computable worst-case iteration bound, Np.x =

log(22) ) . .. .
[21% (=) (O(y/n)-order), while empirically exhibit

ing much faster iteration complexity (such as O(logn) or
O(n%25)).

Although the proof framework is an extension of the
predictor-corrector IPM framework from linear programs [15]
to Box-QP (1), the proof is more complicated than the original
linear programming case, as the direction vectors are not
orthogonal in the Box-QP case. More importantly, our pro-
posed predictor—corrector IPM algorithm is implementable
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since a Box-QP admits cost-free initialization [1], whereas the
algorithm in [15] is not, as it assumes the availability of a
strictly feasible initial point (usually requires solving another
LP, known as the phase I stage [16, Sec. 11.4]); consequently,
no numerical experiments are reported in [15].

Compared with our previous time-certified Box-QP algo-
rithm [1], the proposed algorithm demonstrates a 5x speedup.

Il. FEASIBLE PREDICTOR-CORRECTOR IPM
ALGORITHM

According to [16, Ch 5], the Karush—Kuhn-Tucker (KKT)
condition of Box-QP (1) is the following nonlinear equations,

H(t)z+h(t)+v—0=0, (2a)
st h—1,=0, (2b)

s 41, =0, (2¢)

(7.0, 9,¢) =0, (2d)

Yoo =0, (Ze)

fop =0, (2f)

where 7,6 are the Lagrangian variables of the lower and
upper bound, respectively, and ¢, are the slack variables
of the lower and upper bound, respectively. @ represents the
Hadamard product, i.e., vy © ¢ = col(v1¢1, V202, , Yn®n)-

Path-following primal-dual IPMs are categorized into two
types: feasible and infeasible, distinguished by whether the
initial point satisfies Eqns. (2a)—(2d). For the complementarity
constraints (2e)—(2f), feasible path-following IPMs require the
initial point to lie in a narrow neighborhood. To demonstrate
this, let us denote the feasible region by F, i.e.,

F={(z7.0,6,¢) : Qa)—(20), (v,0,¢,¢) =0}  (3)
and the set of strictly feasible points by

FrE2{(2,7,0,6,9) : Qa)—(20), (1,0, 6,4) > 0}. (4

We also consider the neighborhood

N(B) £ {(z,%mﬁﬂb) e F* ‘ [ bl ] — iz

NG

where the duality measure 1 = % and 3 € [0, 1]. Fea-
sible path-following IPMs require the initial point satisfying

(29,7°,6%,¢°,4%) e N(B), (6)

and computing such a point is typically expensive for general
strictly convex QPs.

A. Cost-free initialization for Feasible IPMs

Inspired by our previous work [1], which was the first
to point out that Box-QP supports cost-free initialization for
feasible IPMs, this letter proposes the following initialization
to ensure (29,742,600 ¢% %) € N(B).

Remark 2.1: For h = 0, the optimal solution of Box-QP
(1) is z* = 0. For h # 0, first scale the objective as

miniz" (2AH)z + 2" (2)\h),

Sﬂll}7

which does not affect the optimal solution and can ensure the
o e,. . . . . _ B .
initial point lies in N (3) if A = 3T Then (2a) is replaced
by

2 Hz+2M\h+~v—-0=0,
and the initialization strategy for Box-QP (1) is

ZO = 07 'YO = ]-n - Ah, 60 = ]-n + Ahv d)o = 17),7 IZJO = ]-nv

(N
which clearly places this initial point in A'(3) by its definition
0 o 40
in Eqn. (6) (for example, 70 © ¢0 —ulonll = Bu,
0° o) 9

where p = 1). In particular, this letter chooses 5 = %, then
1

©4V2flhl2”

B. Algorithm descriptions

For simplicity, we introduce v = col(v,6) € R?", s =
col(¢,1)) € R2™. According to Remark 2.1, we have
(z,v,5) € N(B). Then, all the search directions (Az, Av, As)
(for both predictor and corrector steps) are obtained as solu-
tions of the following system of linear equations:

(2AH)Az + QAv =0, (8a)
QTAz+As=0, (8b)
soeAv+veAs=oculy, —vos, (8c)

where Q) = [I,—1] € R"*?" 5 is chosen 0 in predictor steps
. . A T
and 1 in corrector steps, respectively, and p = % denotes
the duality measure.
Remark 2.2: Eqns. (8a) and (8b) imply that

Av'As = AvT(—QTAz) = AZT(20AH)Az > 0,

which is critical in the following iteration complexity analysis.
Note that in [15], Av'As = 0, thus making our analysis
different and more complicated than the linear program case.
By letting
1 5y 1 0
A~y o,u¢ ’y—I—d)Az, Al aud} 0 ZﬁAZ’ ©)
Ap =—-Az, A=Az,

Eqn. (8) can be reduced into a more compact system of linear
equations,

(2)\H+diag(%) —l—diag(%)) Az =op <; - ;) +v-0.

The proposed feasible adaptive-step predictor-corrector IPM
algorithm for Box-QP (1) is first described in Algorithm 1. In
the next Subsection, we prove that Algorithm 1 converges to
the e-optimal solution (v ' s < €) in the worst-case number of
iterations

log (22
Noax = o) | (an
—2log (1 — W)

which is an O(y/n)-order iteration complexity. In practice,
Algorithm 1 exhibits O(n%2?3) or O(logn)-order iteration
complexity due to the conservativeness of our proof.

Authorized licensed use limited to: MIT. Downloaded on January 01,2026 at 12:41:14 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Control Systems Letters. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/LCSYS.2025.3647842

Algorithm 1 Time-certified predictor-corrector IPM for Box-
QP (1)

Input: Given a strictly feasible initial point (2°,2°,5%) €
N(1/4) from Remark 2.1 and a desired optimal level e. Then

_ les(®)
~2log (102248 ) |
for k= 0,1,2, -, Nyyax — 1 do label*=0., ref=0

1) if (v¥)Ts*F < e, then break;

2) Compute the predictor direction (Az,, Avy,, As,) by

solving Eqn (8) Wlth (z,8,0) = (27,0, s%), o «+ 0,
T

(involving Eqns. (10) and (9));

the worst-case iteration bound is Ny ax = [

and p < pf = [COME
3) Aﬂp Av,,) Asp

2n i
k

k 3 1 H
D« <_mm(27\/s”mpmsp—

Apiplon]l ) ’

5) 2k 2k 4 akAzp, oF «— vF 4 akAvp, §F — sk 4
aFAsy;
6) Compute the corrector direction (Az., Av.,As.) b

solving Eqn (8) Wlth (z,0,8) = (2%, 0%, 8%), 0 «+ 1,
T

and p u S 2 (1nvolv1ng Eqgns. (10) and (9));
7) Zhtl 2 +Az oh L p kEy Ave, Pt 884+ As,;
end

Output: z*+1

C. Convergence and worst-case iteration complexity

The analysis is carried out separately for the predictor and
corrector steps. We first present the common results that apply
to both.

Lemma 2.3: Let (z,v,s) €
the solution of Eqn. (8). Then,

FT and let (Az, Av,As) be

\/QII 17,

[Ave As|| < - I (12)

where r £ \/iﬁ(a,ulgn —vos).
Proof: Dividing both sides of Eqn. (8c) by /v o s, results

\/geAv—i—\/E@As:r.

v s

pﬁ\/geAv, qﬁ\/EQAs,
v s

wehave p+q=r, AvoAs=poq, Av'As=p'q By
Remark 2.2, AvT As >0, so p' ¢ > 0. Then, we have

Z Pidi 2 — Z Pigi, t=1,---,2n.

pigi >0 piqi<0

in
(13)

Let us denote

(14)

We can obtain the result as follows:

Z (pz(h) + Z pz%

Piq; >0 Piqi <0

2 2 2
< D2 pa| +| DD pa| <2 D pia
Piq; >0 Piq; <0 Piq; =0

(we have 4pig; = (pi +ai)* — (i — 4i)?)

2
<2< > i(pﬁqi)Z) <2<Z

Piq; >0 i

2n
[Ave As|® = lpoq|® = (piai)?
i=1

1 2 1 2
2 2
i i —9 .
](p i) > = (]”TH )

That is, ||[Ave As|| < %HT”Q, which completes the proof. W

In Algorithm 1, both pairs (Az,, Avy, As,) and
(Az., Av., As.) are obtained by solving Eqn. (8b) and
thus by Remark 2.2 we have

Av) As, >0, Av] Asc > 0. (15)

The key of Algorithm 1 is that, during the predictor
step, the iterate transitions from (z*,v* s¥) € N(1/4) to
(2%, 0k, 8F) € N'(1/2), and during the corrector step, it returns
from (2% 0%, &%) € N'(1/2) to (K1 0P+ k1) € N(1/4),
which will be proved in Lemmas 2.4 and 2.5, respectively.

Lemma 2.4: (Analysis of Predictor Step): Consider Al-
gorithm 1. If (2%, v* s*) € N(1/4) and the predictor step
applies the step-size

£ in [ 1 ur (16)
Q- =min | —
27\ 8||Avy © Asp — Applayll )’
. (,Uk)Tsk‘
with % = ~=—— and
Av] As
Ap, & —2 (17)

2n
Then, (2%,9%, 8%) € N(1/2) holds.
Proof: For any step-size € [0, 1], let us define

P (a) 2 0P + alw,, sF(a) 2 sF +aAs,
and
) 2 @) 5+ a)
2n '
By Eqn. (8c) and the choice o = 0 in the predictor step, we
have (by AUJASP = 2nApp):

(Avp)TAsp

(@) = (L= a)ph 4 a? == = (L= )i’ + a*Apy,
(13)

and by Av) As, >0 (App, > 0), a >0, we have

k(@) > (1 — )t (19)
Next,

Hvk(a) o s*(a) — uk(a)lgnH

= H(l —a)(wF e s — uF1,,) + a®(Av, 0 As, — A/,Lplgn)H
<(1—a)|vfes® — pF1a,] + a?||Av, 0 As, — Apyla,||

<
l-—a ,
< Tﬂk + 042||Avp © Asp — Applan,

and by the choice of o in Eqn. (16), for any « € [0, a*]

1
0<a< 3 and S(XQHAUP o Asp — Appla, || < uk,
thus we have
[|v" (c @sk(a) — Lon ||
l—a l—a 1
< 1
=7 “+8“ 4 “(+2(1a)>
l—a ., 1,
< < —
S —5—u < gut(a),
which can imply that for all € [0,a%]: v*(a) @ s’“(a)

J: v >
1% ()12, and further by Contmulty (o) > 0and s (a) >
0. This completes the proof of (2%,2% %) € N'(1/2). [
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Lemma 2.5: (Analysis of Corrector Step): Consider Algo- Then, by Eqn. (21), for any step-size « € [0, 1], we have
rithm 1. If (2%, 2% 2%) € N'(1/2), then (2FH1 ofH1 gh+l) €
N(1/4). [v* (@) @ ¥ (@) = g (@) 1o

A Qi 1— ik
Proof: For any step-size « € [0, 1], let us define < ( 20é)u + a2 || Av, 0 Asd|
k+1 s k+1 2 gk
V") 2 98 + aAv,, ¥ (a) £ 55 + aAs,, <(1—a) Y 2\[1 (l_amk+ 22 .
; —_— —— 4 a°-
(g & (@) T (@) =T s gh
= ) _1)2 _1)2
2n _ (a 1) +1ﬂkg (a 1) +1uk+1(a)§1uk+1(a).
then by Eqn. (8a) and the choice o = 1 in the corrector step, 4 4 2
we have (by (0%)78" = 2na", Av] As. = 2nApe): which can imply that for all a € [0, 1]
(%) T5% + a(pk2n — 0%5%) + a2Av] As, 1
§H ) = _ (@) 05t (@) = S ()1,
T
= aF + a2%, and namely by continuity v**1(«) > 0 and s**1(a) > 0.
" (20) Moreover, in the special case that @« = 1, we have
K «
where gF = C 2)n . By Av] As. >0 and a > 0, we have # = 1 and it proves that
- 1
W () 2 it 2D o4t o 4 =, | <
Next, let us define which completes the proof. [ ]
A AvT As, Lemma 2.6: Consider Algorithm 1. At the k-th iteration,
Apre = ——, (22)  the following inequaliti
m g inequalities
and we have Apy < % uk, (24a)
H k+1( ) k+1( ) - ,ukJrl 12‘!LH Oék 2
= H(l —a)(0F 0 5% — iF19,) + o (Ave 0 As,, — Ayclzn)H ik < <1 — 2) 1, (24b)
<(1- )||v 0 &7 — iPe| + || Ave © As. — Ao, || oN?
(1—a)i Ape < (1 —~ ) — " (24c)
< 5 + o?[|Ave © As, — Apielay || 2 16n
. hold.
Focusing on the term [|Ave © Asc — Apielanl, Proof- Taking the 2-norm on both sides of Eqn. (13) (by
|Ave © Ase — Apelan| the definition in Eqn. (14)) results in
2n T 2 _ 2
= Z(Avasc’iP — 2Apc(Av] Ase) + 2n(Apc)? 4Av As + ”p - QH = ”TH >
1? which implies that (by the definition in Eqn. (12))
=D (Aveilsei)? = 2n(Ape)? < [|Ave © Asel|. 2
=t 4AvT As < |r||* = H Joos (oulay —vos) (25)
By Lemma 2.3 and the choice ¢ = 1 in the corrector step,
we have Regarding the inequality (24a), the predictor step adopts o <—
0 and (z,v,s 2k ok this yields
|Ave © Ase| < ~= v2 H \/7(,&12” — ok o5k ( )= ) 1) )
T <22 (0,k ok k
Because (2%, 2% %) € N'(1/2), we have ||0* 03 —i*1,, | < Av, Asp < 4 ||k o sk (0 1ap — v7 0 57)
1k
S[i%, so foreachz—l, -,2n 1 1
e _ Z(,Uk)'l'sk: PN AM;D < Z:u’k7
1 k 3 ~k . /,\k. 2k 2 _ 1 ~k
Pl F s < ot = (mm( vres ) — ok which completes the proof of the inequality (24a).

Regarding the inequality (24b), by Eqn. (18) and the state-

Thus, we have .
ment i), we have

2
1 K NN 1
[ 1 n— . o
H o e = (1 b+ (0420, < (1 - bt +
1 K b ak)2 P 2

< 15, — 23
= (min(Vars s 1 e T e Y (=)
< 3(}4€)2 _ lAk
k2 ol which completes the proof of the inequality (24b).
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Regarding the inequality (24c) the corrector step adopts

(z,v,8) = (2F,0%,8%), 0 < 1, and pu « fi¥, and by Eqn.
(23), this yields
1 1 R
T <21 gk _ ko k|| < Zpk
AUCASC_4 '\/m(u 1y, — 0" 08%)|| < 8” .
That is, by the inequality (24b), we have
1 aF\? 1
Ape f<(1—— ) —uF
He = 1o, —< 2) 16n"
which completes the proof of the inequality (24c). ]
Theorem 2.7: Let {(z*,v* s*)} be generated by Algorithm
1. Then )
0.2348
< (1 ) k. (26)
K > < o K
Furthermore, Algorithm 1 requires at most
log (22
Ninax = s ())2348 @7
s )
Proof: By Eqn. (18) and (20)

Pt = pF 4 Ape = (1= a")pk + (a")? Apy, + Ape

(by Lemma 2.6)
k)2 EN 2
N C @ Lok
RSl 1—- =) —
atut+ 4’“‘+( 2)16n”
ok 1
<(1==) (1+—)u~

Because we have

<(1-

[Avy © Asp — Apip Loy
2n
=\ D (AvpiAsy )2 = 280, A0] Asy + 2n(App)?
i=1
2n
= Z(AU;D,Z'ASZM‘)2 —2n(App)? < [|Avy 0 Asy|
i=1

(By Lemma 2.3 and the choice o = 0)
f H vk ® sk) i = Q
Vb e sk 4
the choice of a* in Eqn. (16) can imply that for all n > 1
0.25 0.25
akZmin(l,z 1 )ZQ 1 ,
2 2 V2n 2 V2n

which can imply that the following condition for all n > 2
(n = 1 no need for optimization)

o i (1 4
2 16n
ak: 20.25 1 1
1—— ) (1- —_—t— =
2 ) ( 4 2n * 16n
ak 2025 1
1—— ) (1- —
2 4 \/2n 16mn

20.25

(

( 1
(-9 (- EEE L)

(

(

(2n)p*,

90.25
64n+/ Qn)

)(1 2025 _0.25 1 )
4 \/2n 4

L2025 1 )2 B (1
4 Von)

V2an
0.2348 ) 2
V2n

[ === Practical: Algorithm 1
== Theoretical: Algorithm 1
Ref [1]

103/

Zoomout_, "

Number of iterations

. . . . . . .
100 200 300 400 500 600 700 800 900 1000
Problem dimension: n

Fig. 1. Practical and theoretical iteration counts of Algorithm 1 com-
pared with the exact (practical = theoretical) iteration counts from Ref.

(1.

2
holds, which proves that p*+! < (1 — 05%8) k

Based on the above and the initial value ;% = 1, p* <

2k 2k
(1— 70'5%8) = (1— 705%8) . Hence (vF)Tsp < e
2%k
holds if 2n (1 - %) < e. Taking logarithms gives
0.2348

that 2k log( ) +log(2n) < loge, which holds if

02848
2n
k> Npax = [210;0(‘%1(%;)?28> —‘, which completes the proof.
2n

Remark 2.8: Algorithm 1 exhibit O(logn) or O(n°??)
iteration behavior in practice while the worst-case iteration
bound Ny in Eqn . (27) (as —log(1 — 0.2348/v/2n) =~
0.2348//2n when 0 < 0.2348/y/2n < 1) is O(f) from the
conservative estimate of the adaptive step-size o = Q(1/y/n)
via Eqn. (12) in Lemma 2.3. Refs. [17] and [18] provide
probabilistic proofs that, in linear programming cases, the
adaptive step sizes satisfy of = Q(1/n%?°) and of =
Q(1/logn), respectively.

1. NUMERICAL EXAMPLES!

A. Practical and theoretical behavior on random
Box-QPs

We apply Algorithm 1 to random Box-QP problems with
dimensions n ranging from 100 to 1000, and evaluate its
practical iteration counts. These are then compared with the
theoretical worst-case bound Ny, in Eqn. (27) and with
the results reported in [1]. Fig. 1 shows that Algorithm
1 practically behaves far less iterations than the O(y/n)-
iteration-complexity results in Eqn. (27) and Ref. [1], which
corresponds to Remark 2.8. Fig. 1 also shows that the practical
number of iterations of Algorithm 1 exhibits very small
variations for Box-QPs of the same dimension.

B. Nonlinear PDE-MPC case study
We apply Algorithm 1 to a nonlinear PDE-MPC prob-
lem from [11]. The considered PDE plant is the nonlinear

IThe MATLAB code for Algorithm 1 and numerical examples are publicly
available at https://github.com/liangwu2019/PC_BoxQP.
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Fig. 2. Closed-loop simulation of the nonlinear KdV system with Box-QP based MPC controller —

Tracking a piecewise constant spatial profile

reference. Left: time evolution of the spatial profile y(¢, ). Middle: spatial mean of the y (¢, ). Right: the four control inputs.

Korteweg-de Vries (KdV) equation as follows,

oy(t, x oy(t,x Py(t,
)52 2
where © € [—m, 7] is the spatial variable. We consider the
control input u to be wu(t,x) = Z?:l u;(t)v;(x), in which
the four coefficients {uw;(t)} are subject to the constraint
[-1,1], and v;(z) are predetermined spatial profiles given
as v;(z) = e=25(@=m)” " with my —7/2, mg = —7/6,
ms = /6, and my 7/2. The objective is to adjust
u;(t) so that y(¢,z) tracks a given reference. Following [11],
data are generated from the KdV equation, a Koopman-based
linear model is identified, and the resulting MPC problem is
formulated as a Box-QP. With a prediction horizon of 10, the
Box-QP dimension is n = 40, and the stopping tolerance is set
to € = 1076, Table I shows that Algorithm 1 is approximately
5x faster than the method in [1], primarily due to a much
smaller iteration count (202/29 =~ 10) despite a per-iteration
cost that is about twice as large. Figure 2 further demonstrates
fast and accurate tracking of the spatial profile y(¢,x) with
zero control-input violations.

=u(t,z) (28)

TABLE |
COMPUTATION BEHVIOR OF ALGORITHM 1 AND THE METHOD IN REF.
[1] IN THE PDE-MPC EXAMPLE

Methods
Ref [1]
Algorithm 1

Execution time [s]?
3.4 x 1073
6.6024 x 10~4

Number of iterations

202
Average: 29.2758 + 2.3843
Worst-case: 271

IV. CONCLUSION

This letter presents a significant improvement over our
previous work [1] with a new predictor—corrector IPM algo-
rithm, preserving the data-independent and simple-calculated
O(y/n)-iteration-complexity, while achieving a 5x speedup.

Limitation: Algorithm 1 and the heuristic Mehrotra’s pre-
dictor—corrector IPM behave similarly in practical iteration
complexity, but Algorithm 1 is slower because it solves two
distinct linear systems at each iteration, whereas the latter does
not. Future work will address this and then perform more
numerical comparisons with other state-of-the-art solvers.

2The execution time results were based on MATLAB implementations
running on a Mac mini with an Apple M4 Chip (10-core CPU and 16 GB
RAM). Further speedup can be achieved via C-code implementation.
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