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Hyperspectral Imaging Techniques for Lyophilization:
Advances in Data-Driven Modeling Strategies and
Applications

Huiwen Yu, Prakitr Srisuma, Cedric Devos, Jie Wang, Allan S. Myerson,
and Richard D. Braatz*

Lyophilization, aka freeze drying, is a key process used in the production of
biotherapeutic products. The optimization of lyophilization formulations and
operations is a slow process that could be accelerated by on-line analytics. In
recent years, hyperspectral imaging (HSI) has garnered increasing attention
from both academia and industry in biopharmaceutical and food engineering
fields. As a non-invasive, rapid, non-destructive, accurate, and automated tool
that combines advantages from both spectroscopy and imaging techniques,
HSI holds significant potential for analyzing and optimizing lyophilization
processes and products. However, the huge and information-rich datasets
generated from HSI are difficult to be modeled and interpreted properly. This
article reviews and discusses the literature on the application of HSI on
lyophilization, and the strategies that use the resulting data to build models.
Such strategies include preprocessing, spectral unmixing, classification and
regression, and data fusion. From the data modeling and application
perspectives, the current challenges and future prospects regarding HSI
techniques for lyophilization are addressed. This article is intended to provide
guidance and insights for non-specialist researchers and engineers into
leveraging HSI and the data-driven modeling strategies for addressing a wide
range of lyophilization-related challenges.

1. Introduction

Lyophilization, aka freeze drying, is an important process in
the pharmaceutical and food industry for extending storage life
and improving the stability of various products.[1–3] Lyophiliza-
tion primarily relies on the sublimation process for water re-
moval, requiring the process to be carried out at lower temper-
atures compared to typical dehydration and drying techniques.
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As a result lyophilization is more effective
at preserving the quality and structure of
heat-sensitive materials, such as pharma-
ceutical and food products. Lyophilization
distinguishes itself from other common
drying techniques (e.g., hot air, spray, or
microwave drying) by preserving (to a large
extent) the structure and composition of
the product, thereby maintaining product
quality and critical quality attributes.[4]

For example, the removal of water is im-
portant to ensure the long-term stability
of drug formulations.[5] Similarly, in the
food industry, water can cause spoilage and
microbial growth and lyophilization is ben-
eficial for storing items without the need
for continuous refrigeration.[6] By freezing
the products and reducing the pressure
to induce sublimation, lyophilization in-
creases product stability and enhances
the preservation for a wide range of prod-
ucts including biopharmaceuticals,[7,8]

nutraceuticals, food,[9] and biomaterials.[10]

Recently, advanced lyophilization tech-
niques have been shown to enable

long-term and high-temperature storage of lipid nanoparticles
used in mRNA vaccine manufacturing.[11,12]

Compared to traditional drying techniques, the lyophilization
process ismore complex and involves several distinct steps: freez-
ing, primary drying, and secondary drying.[13] During the freez-
ing stage, most of the water in the liquid solution is converted
to ice crystals. The duration of the freeze-drying cycle, product
stability, and crystallization of various components can be sig-
nificantly affected during this stage. After the freezing stage,
lyophilization proceeds to primary drying and concludes with
secondary drying. During primary drying, ice is removed un-
der vacuum through sublimation in a low-temperature and low-
pressure environment. As the final step, secondary drying aims
to remove unfrozen bound water under vacuum by desorption.
Temperature, pressure, and moisture content are important vari-
ables during lyophilization that impact the quality of lyophilized
products. Lyophilization is expensive, time-consuming, and envi-
ronmentally complex,[8,14] and the sterility requirements and sen-
sitivity of processed products further impose practical difficulty
in monitoring and characterization of lyophilization.[15] Conse-
quently, precise and efficient characterization, analytics, control,
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Figure 1. Hyperspectral image data structure with an example of NIR-HSI for lyophilization process during pharmaceutical manufacturing. The conveyer
belt is from BioRender.com.

andmonitoring of lyophilization-related critical quality attributes
remain challenging.
As an emerging technique, hyperspectral imaging (HSI)

has garnered increasing attention from both academia and
industry in recent years. HSI, aka chemical imaging and spec-
troscopy imaging,[16] combines the advantages of cutting-edge
spectroscopy and imaging techniques. Using a portion of the
electromagnetic spectrum, HSI collects and processes image
information from measured material in the manner of record-
ing their continuous spectral profiles. Typically, HSI data are
stored in a three-dimensional format, with spatial dimensions
denoted as x and y, and the spectral band dimension as z. This
arrangement results in a 3D data cube structure. The typical HSI
data structure with an example of Near-Infrared (NIR)-HSI for a
lyophilization process during pharmaceutical manufacturing is
illustrated in Figure 1. Each HSI image represents information
from a specific spectral band, and the HSI data cube is gener-
ated by combining a set of HSI images covering a wide range of
wavebands. In theHSI image system, each pixel contains an indi-
vidual spectral profile of the measured materials. These spectral
profiles, aka spectral signatures, can be used for various purposes
such as characterization, analytics, identification, control, and
monitoring. Consequently, HSI generates a substantial amount
of spectral image data. For example, an HSI dataset with a spatial
resolution of 1000 by 1000 pixels contains 1 000 000 spectral
profiles, each with a specific set of wavelength variables. Unlike
traditional RGB imaging,[17] which only captures information
from red, green, and blue channels, HSI provides data across
a wide range of wavebands, while also preserving spatial infor-
mation for each pixel. Unlike multispectral imaging (MSI), HSI
records abundant spectral information across a wide range of
continuouswavebands, rather than targeting discrete and narrow
wavebands. This advantage allows HSI to capture more contin-
uous, detailed, and accurate spectral characteristics of materials
compared to MSI techniques.[18] Additionally, HSI techniques
have had significant benefits from its high spectral resolution
and high temporal resolution,[19] making it a powerful tool for
a wide range of types of practical analytics and process control
tasks.
The successful early application of HSI dates back to the 1980s

in the field of remote sensing.[20] Over the past two decades,

HSI has found widespread use in characterizing, identifying, de-
tecting, and monitoring a diverse range of complex biological
materials and products.[21–23] A typical HSI system comprises
a light source, an imaging spectrograph system, and a cam-
era system.[24] In lyophilization applications, samples are illumi-
nated by the light source. The front lens of the imaging spec-
trograph system then image the samples into the transmission
spectrograph. The produced spectrum is captured by the cam-
era system, which includes an array detector or other sensors.
Continuousmeasurements over time generate the complete HSI
data for the samples, known as the “hypercube.” Figure 2 pro-
vides a schematic illustration of an HSI system for lyophilization
applications. HSI systems can be classified based on various cri-
teria, such as the types of detectors, spectral range, measurement
modes, and image acquisition modes. For example, there are
whisk broom scanners, push broom scanners, snapshotHSI, and
filter-based HSI, each differing in image acquisition mode.[25] In
push broom scanners, the camera acquires images in a linear
scanning manner, moving over the samples. Whisk broom scan-
ners scan the full spectrum pixel by pixel, while filter-based HSI
performs a staring scan of the scene.[26] Filter-based HSI relies
on optical band-pass filters and primarily operates on stationary
platforms, whereas the first two types of broom scanners are suit-
able for moving environments, such as conveyor belts. Snapshot
HSI, on the other hand, does not involve scanning and captures
the HSI image in a single snapshot, characterized by fast acquisi-
tion time and easy implementation.Many types ofHSI have been
developed over the years, including Ultraviolet (UV)-HSI, Visi-
ble (Vis)-HSI, NIR-HSI, Mid-infrared (MIR)-HSI, Raman-HSI,
Fluorescence-HSI, and Fourier transform infrared (FT-IR)-HSI.
These HSI systems vary in spectral range or measurement mode
and have been used for characterization, analysis, monitoring,
and control purposes in various biochemical applications.[27,28]

HSI is a non-invasive, rapid, non-destructive, highly accurate,
and automated tool suitable for precise characterization, control,
and monitoring in lyophilization. Unlike traditional chemical
analysis, HSI implementations do not necessarily require com-
plex sample preparation processes and chemical labeling.[29,30]

As a result, HSI can significantly reduce labor costs and be
economically cost-effective. Currently, the HSI systems used
in lyophilization are mainly from visible light to near-infrared
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Figure 2. The schematic illustration of a typical HSI system for lyophilization applications. The “y = ax + b” denotes that data-driven models for most
HSI applications are linear.

bands. The spectral resolution of these HSI systems covers from
nanometers to centimeters representing different detection ca-
pabilities and different detection times. Studies have demon-
strated the effectiveness of HSI in capturing meticulous chemi-
cal and physical information during and after lyophilization. Par-
ticulates as small as 2 mm have been detected by current HSI
systems.[31] Root mean squared prediction error as low as 0.15
has been reported for HSI.[32] Highly sensitive HSI detection
of physical and chemical information is crucial for lyophiliza-
tion applications. In pharmaceutical production, drugs are highly
sensitive to moisture and prone to hydrolysis and degradation
and regulatory agencies impose strict limits on residual mois-
ture levels.[33] Precise HSI detection of residual moisture dur-
ing the lyophilization process is essential for ensuring drug sta-
bility, efficacy, and safety throughout their shelf life. Addition-
ally, trace foreign matter such as fibers can easily contaminate
lyophilization drugs, posing a risk to drug safety. Highly sen-
sitive HSI enhances the detection of such ultra-low variation
of contaminants, reducing the risk of contamination in phar-
maceutical production and improving overall product quality.
HSI has been demonstrated for water to ice conversion, prod-
uct crystallization, solid-state characterization, moisture content
determination, protein unfolding, and investigation of interact-
ing phenomena.[2,34–37] Leveraging its extendedwavelength range
and spatial imaging advantage, HSI reveals material properties
that are not apparent through other imaging techniques, making
it a valuable tool in the lyophilization analysis for pharmaceutical
systems. HSI enables analysis of complex heterogeneous sam-
ples often encountered in lyophilization.[38] Furthermore, HSI
is well-suited for in-line monitoring of lyophilization from start
to finish, enabling simultaneous monitoring of multiple vari-
ous factors or parameters, thus facilitating automated inspection.
Compared to conventional analysis techniques, HSI presents dis-
tinct advantages such as precision, speed, and non-destructive

Figure 3. The number of papers indexed in Google Scholar on the subjects
of “hyperspectral imaging” and “freeze drying” in the past 15 years.

analysis.[39] Additionally, HSI can generate comprehensive vi-
sualization maps of the product that facilitate detailed qualita-
tive and quantitative assessments of the homogeneity of critical
quality attributes, whereas traditional spectral techniques pro-
vide information limited to specific detection areas.[2] This fea-
ture is specifically important for lyophilization in which non-
uniformity exists throughout the process, e.g., thermal gradients
resulting from vials heated or cooled by the bottom shelf. Conse-
quently, HSI holds the potential to induce a paradigm shift from
a quality-by-testing framework to a quality-by-design methodol-
ogy, a transition particularly advocated for in the pharmaceutical
industry.[2]

A literature search via Google Scholar using the key words
“hyperspectral imaging” and “freeze drying” for the period from
2009–2023 illustrates a significant increase in the literature over
the past 15 years (Figure 3), indicating growing interest in HSI
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techniques within the lyophilization community. The number of
publications continues to show an upward trend, indicating that
interest in this area is high enough to justify a review of progress
and directions for continued efforts.
This article does not aim to comprehensively cover all topics

related to HSI data modeling techniques, nor does it provide an
exhaustive review of HSI technique itself. Instead, we offer a per-
spective on typical HSI data modeling strategies that have the
potential to address lyophilization-related HSI modeling chal-
lenges. Additionally, we emphasize the value of direct applying
HSI techniques in lyophilization contexts. The paper is organized
as follows. In the second section, we provide explanations for the
notation andmathematical symbols used. Moving on to the third
section, we offer an overview and discussion of data-driven mod-
eling strategies for HSI data analysis with the application poten-
tial for lyophilization contexts. This section covers variousmodel-
ing strategies, including HSI data preprocessing methods, spec-
tral unmixing modeling, classification and regression methods,
and data fusion strategies. The fourth section summarizes and
discusses recent HSI applications in lyophilization to pharma-
ceuticals, food, and other biological systems. Following this, we
delve into current challenges and future perspectives related to
HSI data modeling and applications in lyophilization. Finally, we
conclude the paper.

2. Notations and Symbols

This article adheres to conventional notation and
nomenclature.[40,41] Scalars are denoted by italic non-bold
letters e.g., X, and vectors are represented using bold lowercase
letters, e.g., x. Matrices are denoted by bold uppercase letters
such as X, with elements denoted as Xij. Tensors are denoted by
bold capital letters with an underline, e.g., X. The mathematical
symbols ○, ⊗, and ⊙ correspond to the outer, Kronecker, and
Khatri-Rao products, respectively. The Kronecker product is
also referred to as the matrix direct product and the Khatri-Rao
product is column-wise Kronecker product.[42] For matrices A
and B with the dimensions of I by F and J by F, their Khatri-Rao
product of A and B is defined by

KR(AB) = A⊙ B = [vec(a1b
⊤

1 ) ⋯ vec(aFb
⊤

F )]

= [(a1 ⊗ b1) ⋯ (aF ⊗ bF)] (1)

where aF and bF are theFth column vector frommatricesA andB,
vec is the vectorization of matrices, and ⊤ denotes the transpose.
The Kronecker product of A and B is defined by

Kron(AB) = A⊗ B =
⎡⎢⎢⎣
a11B ⋯ a1FB
⋮ ⋱ ⋮
aI1B ⋯ aIFB

⎤⎥⎥⎦ . (2)

3. Data-Driven Modeling Strategies

3.1. HSI Data Pre-Processing

The quality of HSI image data is influenced by various factors, in-
cluding the lyophilization products or process, light source, prod-
uct interface, sensor equipment, and any artifacts introduced by

humans. These combined impact factors manifest as a set of an-
alytical and modeling challenges in practical lyophilization HSI
data analysis, including scattering effects, spectral noise, abnor-
mal signals (e.g., spike signal and dead pixels), image compres-
sion, and image distortion. Preprocessing plays a crucial role in
lyophilization HSI data modeling and analysis. Whether the goal
is classification, regression, or exploratory analysis, proper pre-
processing consistently improves model performance, reduces
model fitting error, and enhances understanding of themeasured
lyophilized products or processes.
Due to light deviating from a straight trajectory into different

paths, unexpected and undesired variations can occur in the spec-
tral data, leading to nonlinearity scattering effects.[43] Over the
years, several scattering correctionmethods have been developed
to address this issue in HSI data analysis. The commonly used
methods are standard normal variate (SNV) and multiplicative
scatter correction (MSC), which focus on solving addictive and
multiplicative scattering, respectively.[44] The SNV method is a
normalization method that subtracts each spectrum by the mean
spectrum and divides by the standard deviation. However, SNV
cannot handle multiplicative scattering effects. To address this
limitation, the MSCmethod corrects the spectra affected by mul-
tiplicative scattering, by fitting a linear model between the indi-
vidual spectra and a reference spectrum. Specifically, the model
is

xcor =
xind − b0

b
= xref +

1
bref

e (3)

where xcor is the corrected spectrum value in the specific wave-
length, xind is an individual spectrum value in the specific wave-
length, xref is the reference spectrum value in the specific wave-
length, b and b0 are the estimated correction coefficients, and e is
the modeled error of the individual spectrum. In recent years,
some variants/extended versions of MSC and SNV have been
developed, including dynamic localized SNV, partial peak SNV,
SNV with detrending, extended MSC, and weighted MSC.[45–47]

Thesemethods can increase the performance and applicability of
MSC and SNVnormalizationmethods for lyophilizationHSI im-
age data preprocessing. In addition to these methods, derivative-
based approaches can also address scattering effects. The first
derivative and second derivativemethods are popular due to their
ability to remove both additive and multiplicative effects.
Spectral noise can be a challenge in HSI data preprocessing.

Derivative methods, such as the Savitzky–Golay method,[48] are
employed for denoising inHSI data analysis. The Savitzky–Golay
method selects a window around a data point and calculate its
projection onto a polynomial fit of the window points. This step
allows estimation of derivatives of any order for the data points.
As a smoothing technique, the Savitzky–Golaymethod effectively
reduces spectral noise level. However, the choice of local window
size and the orders of derivatives significantly impacts the perfor-
mance of the Savitzky–Golaymethod and its variants. In addition
to the Savitzky–Golay method, recent studies have demonstrated
improved performance of smoothing and denoising methods in
reducing noise in HSI data analysis. These include wavelet trans-
form (WT), denoising autoencoder (DAE), empirical mode de-
composition (EMD), and deep learning methods.[49,50]
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Abnormal signal, e.g., spike, characterized by a sudden rise
to a large magnitude followed by a dramatic fall, is a challeng-
ing task that needs to be handled in HSI data preprocessing.
The spikes can occur due to various factors, including abnormal
behaviors of the specific HSI detector and environmental con-
ditions of the lyophilization measurement. To address spikes in
Raman HSI, Goedhart et al.[51] proposed a method for the identi-
fication and removal of cosmic ray spikes. Thismethod combines
identification and removal steps using a low-pass filter, Gaussian
masked kernel regression, and third-order P-spline on the sig-
nals. Lopez et al.[52] developed an automated method based on
peaks widths and prominences. They set a threshold value for
these features or use the ratio of these two features as the thresh-
old value to detect the spikes in spectral signal analysis.The new
spikes handling method shows competitive performance in real
HSI data analysis. Another common abnormal signal issue is
the so-called dead pixel. It is caused by abnormalities in the spe-
cific detector. The occurrence of dead pixels varies among dif-
ferent types of detectors. For example, it is reported that NIR
detectors tield approximately one percentage dead pixels during
HSI measurements.[53] Recently, double low rank matrix decom-
position methods[54] have been applied for handling dead pix-
els. In these methods, general matrix decomposition models are
used, and dead pixels are treated as sparse components. A sim-
ple and intuitive way to handle spikes or dead pixels is to use
interpolation methods. Specifically, the median or mean value of
the subwindow points or the neighbor pixels is used for inter-
polating these abnormal signals. Moreover, it is not unusual to
encounter the image distortion in collected lyophilization HSI
image dataset. The reasons for distortion can be diverse. HSI
equipment placed in a moving lyophilization process, such as
an HSI camera on conveyor belts in pharmaceutical manufactur-
ing, likely produces the distorted images. Additionally, the use of
complex optics such as a co-focal camera probably also results
in HSI images with distortion.[53] The typical approach to han-
dle HSI image distortion involves identifying reference points in
the images and implementing interpolation using conventional
methods such as bicubic interpolation.[55] The combination of
reference correction and interpolation techniques is widely used
for addressing HSI image distortion. However, special attention
should be given to the selection of a reference, which significantly
affects the method performance.
Image compression plays an important role in lyophilization

HSI data preprocessing. As mentioned in the Introduction sec-
tion, the HSI images often arrive in the hands of analysts or en-
gineers as large amounts of data. Dealing with big data presents
challenges related to data storage, data transfer, and compu-
tational costs. HSI image compression techniques are prepro-
cessing methods specifically designed to address the compres-
sion challenge during the preprocessing stage while minimizing
loss of relevant and important HSI information. Wavelet trans-
form is a mature technique for lyophilization HSI image com-
pression, leveraging its advantageous filter properties to reduce
redundant information. Both continuous and discrete wavelet
transform methods have been applied to compress HSI im-
ages. For example, support vector regression has been com-
bined with the 3D wavelet transform for large-scale HSI im-
age compression.[56] This wavelet transform-based approach pre-
served spatial and spectral information while removing redun-

dancies from the HSI image data. Variable selection methods
also contribute to lyophilization HSI image compression. Tech-
niques commonly used in statistics and chemometrics – such as
genetic algorithm, interval partial least squares(IPLS), recursive
least squares, adaptive selection methods – have demonstrated
competitive performance in this context.[57] Another approach in-
volves dimensional reduction techniques, which transform the
high-dimensional HSI image into lower dimensional spaces.
Principal component analysis (PCA) is a typical method for this
purpose.[58] PCA decomposes lyophilization HSI image data into
a set of principal components, comprising a score matrix and a
loading matrix. The principal components capture the essential
compressed physical/chemical information from lyophilization
products or process, while the residuals represent the redundant
image details. In practical lyophilization HSI data preprocessing,
the choice of HSI image compression methods depends on the
types ofHSI data, analytic andmodeling requirements, and noise
level. The ways of determining the size of important variables
impact the performance of variable selection methods. With this
regard, prior knowledge of the data from the specific lyophiliza-
tion products or process may be necessary. Moreover, in dimen-
sional reduction methods such as PCA, determining the appro-
priate number of components is not always intuitive. A combina-
tion of statistical diagnostic (e.g., scree test) and prior knowledge
on the data helps make informed decisions. It is worth noting
that the individual preprocessing technique can address various
HSI image problems based on specific modeling needs. For ex-
ample, while the wavelet transform method is commonly used
for image compression, it also serves as a spectral denoiser in
HSI data analysis. In real-world scenarios, different preprocess-
ing techniques often coexist within the same lyophilization HSI
modeling task, addressing issues such as scattering effects, ab-
normal signals, and data redundancy simultaneously.
In recent years, high-order tensor-based methods have shown

potential for HSI image preprocessing. For example, tensor
ring decomposition provides lyophilization HSI image compres-
sion. Essentially, the tensor ring model aims to capture a se-
quence of latent tensors, referred to as core tensor arrays Z =
[Z1,Z2,Z3,… ,Zn], from the high-order tensor data, where Zk ∈
ℜrk×Ik×rk+1 , r= [r1, r2, r3, …, rn] denotes the tensor ringmodel rank,
and Ik represents each dimension of the high-order tensor. For
a third-order tensor X, the tensor ring model can be expressed
element-wise by

X(i1,i2,i3) = Tr(Z1
i1Z

2
i2Z

3
i3) = Tr

(
n∏

k=1
Zk
ik

)
(4)

where Tr(⋅⋅⋅) is the trace operation for matrices, X(i1,i2,i3) is the

element located at position (i1, i2, i3) in tensor X, and Zk
ik cor-

responds to the ikth lateral slice matrix of the interested tensor
array Zk. In recent work, tensor ring decomposition was used to
approximate and constrain the grouped non-local tensor, which
is an additional term in theHSI compression function. This term
has both spatial-spectral and non-local dimension correlations in
HSI image compression. The tensor ring model-based HSI im-
age compression method preserves the initial tensor structure
of HSI image data, enhances basis learning of materials con-
stituents in the image data, and achieves the precise HSI im-
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age compression reconstruction.[59] BeyondHSI image compres-
sion, high-order tensor methods have also been explored for HSI
denoising. The rank-(Lr, Lr, 1) block term tensor decomposition
is a powerful model for lyophilization HSI denoising. The HSI
tensor is decomposed as a linear combination of the so-called low
multilinear rank terms. The rank-(Lr, Lr, 1) block term tensor de-
composition model can be expressed as

X =
F∑
f =1

Af B
⊤

f ◦cf (5)

where X ∈ ℜI×J×K , F is the rank of block term tensor decompo-
sition model, Af is a I by Lr matrix, Bf is a J by Lr matrix, and
cf is a K by 1 vector. This model has been extended to form the
nonlinear transformed block term tensor method for handling
mixed HSI noise.[60] The HSI noise minimization function is re-
vised by introducing a regularized term and a gradient-map ten-
sor term. The new noise minimization function is constrained
by an element-wise nonlinear transform block term tensor 6 de-
composition approximation.
In the past few years, other tensor models have been explored

to address different HSI preprocessing challenges.[61,62] The
emerging of high-order chemometrics and mathematical meth-
ods provides newmodeling tools for tackling complex lyophiliza-
tion HSI image preprocessing tasks.

3.2. HSI Unmixing Modeling

The initial information for gaining insights fromHSI analysis re-
garding a specific lyophilization product or process lies within the
image itself. However, raw hyperspectral image does not directly
reveal microscopic components, such as information on pure
spectral signatures and abundances. These details are of high in-
terest to lyophilization users in practice. Hyperspectral unmixing
refers to a set of techniques aimed at extracting detailed informa-
tion on spectral signatures from the lyophilization image data.
Since spectral signatures in lyophilization hyperspectral images
typically result from amixture of different substances, hyperspec-
tral unmixing seeks to identify the pure spectrum of each sub-
stance, often referred to as “endmembers”, associated with each
pixel. Additionally, the fractional abundance of each endmember
is estimated.[63] Linear unmixing methods serve as widely used
tools for unmixing the hyperspectral image. One of themost pop-
ular and straightforward linear unmixing approaches is the linear
mixture model (LMM).[64] In the LMM, each pixel in the image
is assumed to be a linear combination of the endmembers scaled
by their respective abundances. The interactions between differ-
ent endmembers are considered negligible. Mathematically, the
LMMmodel can be expressed in matrix form as

X = AB + E (6)

where X is a S by Q HSI matrix, A is a S by V endmember ma-
trix or pure spectral signature matrix, B is a V by Q abundance
matrix, and E is a S by Q error matrix with the same dimension
as X. Due to the mathematical simplicity and intuitive model
structure, LMM models are widely used to perform the linear

lyophilization HSI data unmixing. Over the years, some LMM-
based or LMM-like methods have been developed and applied
to HSI data modeling, including Vertex Component Analysis
(VCA),[65] Perturbed Linear Mixing Model,[66] Multivariate Curve
Resolution (MCR),[67] Augmented Linear Mixing Model,[68] and
Non-negativity Matrix Factorization (NMF).[69]

When considering matrix-based linear models, it is natural to
consider PCA.[58] However, PCA is not applicable for the HSI un-
mixing task. The reason lies in the orthogonality assumption of
PCA’s decomposed principal components (loadings and scores).
In lyophilization HSI spectral unmixing, it is nearly impossible
for spectral profiles from the HSI imaging system (such as NIR-
HSI and Raman-HSI) to be orthogonal. Despite the limitation,
PCA serves as a pre-analysis tool for other spectral unmixing
methods. For example, PCA helps estimate the appropriate num-
ber of components in MCR modeling and aids in exploration in
lyophilization HSI data analysis. Similarly, Independent Compo-
nent Analysis (ICA) does not perform well for lyophilization HSI
spectral unmixing in many practical cases. ICA assumes statis-
tically independent bilinear components, whereas pure spectral
profiles in lyophilization HSI data rarely exhibit independence
with each other, e.g., the chemical attributes in the lyophiliza-
tion process may present high correlation. Nonetheless, ICA re-
mains versatile for other modeling purposes in lyophilization
HSI data analysis, such asHSI image classification and compres-
sion. Among the LMM-based or LMM-like models, MCR stands
out as one of the most popular methods for HSI spectral unmix-
ing. Similar to Equation 6, the MCR model can be written as

X = DS⊤ + E (7)

where X is the reconstructed raw HSI matrix, D is the decom-
posed concentration matrix corresponding to A in LMM equa-
tion, S⊤ is the decomposed pure spectral profiles matrix corre-
sponding toB in LMMequation, andmatrix E contains themodel
residual. Unlike PCA, MCR has the capability to extract a pure
spectral profile and concentrations while maintaining chemical
meaning under a specific model constraint.[70] For instance, in-
stead of yielding orthogonal components, the non-negativity con-
strained MCR model provides non-negative pure spectral pro-
files and concentrations that aligns with real world scenarios
in lyophilization HSI analysis. In contrast, PCA cannot guaran-
tee that the decomposed components are chemically meaning-
ful as they may include negative values. Beyond non-negativity
constraints, MCR offers flexibility in imposing additional model
constraints–an essential advantage for HSI data analysis. For ex-
ample, local rank constraints enhance the reliability ofMCR solu-
tions inHSI data analysis.[71] Theworkhouse algorithm for fitting
the MCRmodel is the alternating least squares algorithm (MCR-
ALS).[72] MCR-ALS starts with a determination of the number
of components, followed by an initial guess on the loading and
score matrices D and S⊤. After a set of alternating least squares
optimization steps on the estimates D and S⊤, the model com-
putation will end when the error change satisfies a predefined
criterion. From that, the pure spectral profile and its abundance
profile of different endmembers can be obtained. The simplic-
ity, scalability, and chemically meaningful solutions provided by
MCR-ALSmake it a useful tool for lyophilizationHSI spectral un-
mixing. Regardless of whether MCR or other matrix-based mod-
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Figure 4. A graphical illustration on linear and nonlinear HSI mixture in lyophilization application caused by a) single and b) multiple scattering, respec-
tively.

els such as NMF are used, they all operate by converting the raw
lyophilization HSI third-order data cube into a second-order data
matrix. Since HSI data inherently have a three-way structure,
straightforward unfolding may lead to loss of spatial information
with respect to the relative positions of pixels.[73] Furthermore,
in many cases involving complex lyophilization tasks, unfolding
HSI data into a matrix results in a significant increase in the
number of variables along one of the matrix dimensions, posing
computational challenges for matrix-based models.
In recent years, tensor decomposition methods have been ex-

plored to address the limitation of matrix-based HSI unmixing
models. The CP (CANDECOMP/PARAFAC) model is one such
tensor decompositionmodel used for lyophilization HSI spectral
unmixing. In the CP model, lyophilization HSI data are consid-
ered as being in tensor format X, which is then decomposed into
a set of three-way outer products in the case of a third-order HSI
tensor. The decomposition is expressed as

X = ‚X + E =
F∑
f =1

af ◦bf ◦cf + E. (8)

where ‚X denotes the tensor model, F is the tensor rank, and E
corresponds to the residual. The third-order vector (af, bf, and cf)
contains the fth column vector from the matrices A, B, and C
respectively, which are derived from the third-order HSI tensor.
The CP model can be written in the matrix form as

XI×JK = A(C⊙ B)⊤ + EI×JK (9)

where XI × JK is the unfolding matrix of HSI tensor X, and the di-
mensions of the decomposed matrices A, B and C are I by F, J
by F, and K by F, respectively. The resulting CP format enhances
model interpretability for lyophilization HSI data and facilitates
handling the complex lyophilization analytic tasks. The decom-
posed matrices A, B, and C can characterize the spatial, spectral,
and temporal/angle aspects in continuous lyophilization process.
Recently, various tensor models have been investigated for per-
forming HSI spectral unmixing tasks.[73]

In practical lyophilization applications, physical interactions
among different materials may exist in lyophilization HSI mea-

surement scenes. For such cases, the assumptionmade by LMM-
like models that interactions between different endmembers are
negligible falls short. Consequently, using linear models may
lead to inaccurate andmisleadingHSI spectral unmixing results.
Nonlinear unmixing challenges arise due to multiple scatter-
ing effects, which can be observed in scenarios involving multi-
layered materials lyophilization applications. A visual compar-
ison between linear and nonlinear HSI measurement scenes
in the lyophilization process is shown in Figure 4. To address
the nonlinear unmixing challenges, various nonlinear mixture
models have been developed. These include polynomial mixing
models,[74] robust nonnegative matrix factorization,[75] graphical
models,[76] neural network and kernelmethods,[77] and nonlinear
low-rank tensor factorization unmixing method.[78] These non-
linear methods can be broadly classified into two categories. One
category is physics-based methods. These methods use mathe-
matical tools to model the physical or optical interaction, such as
polynomial mixing models. The other type of methods are data-
centered. These approaches derive results directly from the HSI
data using machine learning techniques, such as neural network
and kernel methods. Although nonlinear models currently re-
ceive much less attention than prevalent linear models, they are
poised to gain increasing interest in the future due to the grow-
ing analytical demands posed by complex lyophilization products
and processes.

3.3. HSI Regression and Classification

In biochemical engineering, such as in the pharmaceutical and
food industries, constituent quantification is of major interest for
process understanding and product quality analysis. Regression
methods play an important role in constituents quantification
of HSI measured objects in lyophilization applications. These
regression methods can be broadly categorized into two types:
linear models and nonlinear models. Multiple linear regression
(MLR) is a typical linear model that calculates regression coef-
ficients to model the linear relationship between a set of inde-
pendent variables and a dependent variable.[79] MLR has limita-
tions when dealing with collinearity in the data. Collinearity is
common in HSI analysis in lyophilization applications. For ex-
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ample, two chemicals may exhibit similar concentration profiles
in HSI measurements. The collinearity can be addressed by par-
tial least squares (PLS). Unlike MLR, PLS considers the covari-
ance between the independent variablematrix and the dependent
variable matrix by projecting them into a new space.[80] PLS can
be expressed as

X = TP⊤ + E, Y = UQ⊤ + E, U = WT, (10)

where T and P are scores and loadings of X, and U and Q are
scores and loadings of Y. In the new space defined by T and U,
the regression coefficientsW can be obtained. The combination
advantage of robust modeling on collinear data and multivari-
ate linear regression makes PLS a consistently valuable tool for
lyophilization HSI data regression analysis.
Although lyophilization HSI data are often linear in many

cases due to the Beer–Lambert Law governing the spectral
range,[81] nonlinear relationships exist in some lyophiliza-
tion HSI datasets. Nonlinear regression methods that have
been developed for large HSI data analysis include nonlinear
PLS,[82] support vector regression (SVR),[83] and artificial neural
networks.[84] A substantial dataset is typically required to fully
leverage the advantages of specific nonlinearmodels, due to their
increased degrees of freedom. The predictive accuracy of a re-
gression model based on lyophilization HSI data depends on
the quality of the calibration data, the number of representative
samples, and preprocessingmethods (e.g., variable selection). Ex-
periments design aiming to provide sufficiently representative
lyophilization HSI data and preprocessing procedures tailored
to the spectral characteristics are useful for improving the per-
formance of lyophilization HSI regression models. Removing
data associated with frequency ranges containing spectral arti-
facts or lacking signal associated with the interests species also
contributes to such improvements. Moreover, rigorous cross-
validation using independent datasets and repeated analysis us-
ing different calibration, validation, and testing splits is beneficial
for avoid overfitting.[85]

Inmany cases, the regressionmodels or their variants, are also
employed for classification purposes. For instance, partial least
squares-discriminant analysis (PLS-DA) is widely used to build
classification models.[86] Apart from PLS-DA, other supervised
classification methods can also be used in lyophilization HSI
data analysis. Linear discriminant analysis and k-nearest neigh-
bor (k-NN) are popular choices for supervised classification in
HSI data analysis.[87] Some recent methods proposed and tested
in the context of HSI classification analysis include radial ba-
sis function neural network,[88] deep support vector machine,[89]

convolutional neural networks,[90] and Gaussian naive Bayes
classification[91] etc. The solutions of both linear and nonlinear
HSI classification problems can be reached from the above-listed
methods. To address complex lyophilization HSI classification
problems, ensemble strategies are recommended, which com-
bine different classification methods to leverage the strengths of
both linear and nonlinear classifiers. Spatial correlation among
neighboring pixels in lyophilizationHSI images has the potential
of achieving precise classification, so called spectral-spatial tech-
niques.Mathematicalmorphology-basedmethods are one type of
spectral-spatial techniques. For example, deep learning-based ex-
tended morphology-nonlocal capsule network method has been

proposed for HSI classification in food analytic applications.[92]

Moreover, transfer learning based technique also demonstrates
a significant performance in performing complex HSI image
classification.[93]

Tensor methods show the potential for addressing the chal-
lenges posed by high-order regression and classification tasks in
lyophilization HSI data analysis. Unlike matrix-based methods,
tensor methods exploit the natural tensor structure of lyophiliza-
tionHSI data during regression and classificationmodeling. Ten-
sor methods have demonstrated advantages in achieving better
model performance, even with a small number of training sam-
ples and significant spectral variations in the HSI data.[94] One
useful tensor model used for high-order regression and classifi-
cation purposes in HSI data analysis is the Tucker model,

X = S ×1 A ×2 B ×3 C + E, (11)

where X is the raw HSI tensor with dimension I by J by K; S
is the tensor core array with dimension F1 by F2 by F3; and A, B
andC are the decomposedmatrix corresponds to each order, with
the dimension I by F1, J by F2, K by F3, respectively. The Tucker
model can be written in matrix form as

XI×JK = ASF1×F2F3 (C⊗ B) + EI×JK (12)

where XI × JK is the unfolding matrix of HSI tensor X and SI × JK
is also the matricization of tensor core array S. The Tucker de-
composition terms are widely used for classification purposes.
For instance, a sparse tensor-based classification method em-
ploys Tucker decomposition to extract joint spatial-spectral ten-
sor features while enforcing sparsity constraints on the ten-
sor core array.[95] Accurate and robust classification has been
demonstrated for these extracted features. Another relevant ten-
sor model is N-way partial least squares (N-way PLS), which ex-
tends PLS to third- and higher order tensors. The discriminative
version, N-way partial least squares-discriminant analysis (NPLS-
DA), has been used for classifying tensorial HSI data. Using
Tucker decomposition, the independent variables data in N-way
PLS[96] is expressed as

XI×JK = TSX (P3 ⊗ P2)
⊤ + EI×JK (13)

where XI × JK is the unfolding matrix of HSI tensor X, T is the
score matrix of the first mode, P2 and P3 are the weight matrix of
the second and third modes, SX is the matricization of the tensor
core array with the dimension of F by F by F, F is number of
components, and EI × JK is the matricization of residual tensor E.
Similarly, the dependent variables data in N-way PLS is defined
by

YI×MN = USY (Q3 ⊗Q2)
⊤ + EI×MN (14)

where the terms are defined in the same manner as in the in-
dependent variables equation. The regression coefficients V can
be obtained from the expression U = TV + E. N-way PLS and its
variants have been applied and developed in theHSI literature for
regression and classification tasks.[97,98] Additionally, the CP de-
composition, a standard tensor model, has found applications in
HSI data analysis for classification and regression purposes. Re-
cent research introduces a generalized tensor regression model
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that leverages information from CP decomposition and extends
multivariate labels ridge regression to construct a tensor clas-
sifier for HSI classification.[99] Under the framework of math-
ematical morphology, the resulting terms from CP decomposi-
tion of HSI tensorial data are utilized for pixel-wise classification
in a low-dimensional feature space. The CP-based classification
method is able to handle themulti-modality structure inherent in
HSI data.[100] In summary, tensor-based methods will offer new
valuable insights for robust regression and accurate classification
modeling of complex lyophilization HSI data.

3.4. HSI Data Fusion

Data fusion has emerged as a dynamic field within lyophiliza-
tion HSI data analysis in recent years. Advances in instrumen-
tation technology and ongoing developments in computational
methods, such as chemometrics, now allow extraction of rich in-
formation from a single HSI analytical platform, yielding thou-
sands of gigabytes of data in a short time. However, relying solely
on data from a single HSI platform is insufficient for addressing
all lyophilization challenges. For example, consider mass spec-
trometry imaging and Raman spectroscopy imaging. In Raman
spectroscopy imaging, the signal intensity of a compound is di-
rectly related to its absolute concentration in the measured sam-
ple. Unfortunately, Raman spectroscopy techniques suffer from
low molecular specificity and sensitivity, and are also suscepti-
ble to fluorescence interference.[101] On the other hand, mass
spectrometry imaging offers high molecular specificity and sen-
sitivity due to its high mass resolution, making it suitable for
detecting and analyzing a wide range of complex materials.[102]

However, the performance of mass spectrometry imaging can be
influenced by the biochemical matrix. To address these limita-
tions, fusing Raman spectroscopy imaging and mass spectrom-
etry imaging data provides a complementary combination of es-
sential biochemical information. HSI data fusion enhances the
ability to gain profound insights from complex lyophilization
materials and processes, thereby improving the application of
HSI techniques for analytic, characterization, monitoring, and
control in lyophilization contexts. Data fusion in lyophilization
HSI involves integrating information from various sources to en-
hance the overall problem-solving capability. For example, the fu-
sion of image data from different HSI techniques platforms such
as Vis-NIR-HSI and NIR-HSI multi-modal hyperspectral images
fusion,[103] and the fusion of image data of HSI and other analytic
technologies such as HSI and MSI.[104] In lyophilization applica-
tions, these types of HSI data fusion have been useful in leverag-
ing the combined advantages of different analytic techniques to
better characterize and understand complex lyophilization mate-
rials and processes.
Data fusion in lyophilization HSI involves three distinct

levels:[105] low-level data fusion (LLDF), middle-level data fusion
(MLDF), and high-level data fusion (HLDF). In LLDF, HSI data
from different sources are directly merged, and the combined
data undergo joint analysis using chemometrics and other math-
ematical or statistical methods. LLDF is an intuitive approach for
lyophilization HSI data analysis. At the MLDF level, features ex-
tracted from models based on different source HSI data are em-
ployed for joint analysis. For example, principal component fea-

tures obtained through PCA on lyophilization HSI data can be
used for MLDF analysis. HLDF occurs at the decision layer and
is determined by the specific modeling purposes. For example,
in prediction analysis, individual prediction models are built for
each lyophilization HSI dataset. The results from these models
are then fused for the final prediction analysis. However, HLDF is
rarely used in chemistry or chemical engineering.[106] The level of
HSI data fusion directly determine the used validation methods.
In the case of cross-validation, the validation is done in a single
LLDFmodel which is the solemodel in LLDFHSI analysis, while
validations are performed in each model in MLDF and this leads
to a set of cross-validation analysis since each HSI dataset has its
own model in MLDF and each model have their own model val-
idation. Different levels of lyophilization HSI data fusion and its
data modeling workflows are presented in Figure 5.
Various methods have been explored and employed for HSI

data fusion modeling. Among these, matrix-based approaches
have dominated HSI data fusion analysis for an extended period.
Methods such as MCR and NMF are commonly used for analyz-
ing fused HSI data, although they operate differently in HSI data
fusionmodeling. For instance, theMCRmodel typically operates
on the unfolded pixel spectral matrix of an individual HSI data
cube, aiming to unmix the spectral components. However, when
dealing with fused HSI data, the MCR model must be applied to
a combined multiset of HSI datasets. In other words, different
HSI data cubes are interconnected, and must share a common
dimension—such as spectral, spatial, or pixel dimensions—in
the fused multiset HSI data.[107] When fusing images from the
same HSI platform, they naturally share the common spectral
dimension, as the spectral dimension is the same for HSI im-
ages coming from the same HSI platform. In cases where im-
ages come from the same sample but different HSI platforms,
they typically share the common pixel dimension. For data fusion
within the same HSI platform, the bilinear matrix-based model
can be expressed as

[X1 X2 … Xn] = [D1 D2 … Dn]S
⊤ + [E1 E2 … En] (15)

where [X1 X2…Xn] is the pixel spectral matrix containing the sub-
matrices from each image set, [D1 D2…Dn] is the concentration
profile of the constituent in each image set, S⊤ denotes the com-
mon pure spectral signature and [E1 E2…En] is the big residual
matrix composed by submatrices representing the model residu-
als associated with each image set. This type of HSI fusion mod-
eling is applicable for lyophilization analysis. When employing
an HSI device to analyze and monitor the lyophilization pro-
cess in pharmaceutical/food manufacturing, data from different
stages of the lyophilization process are fused together. Build-
ing a data fusion model allows us to understand the evolution
of important attributes and achieve online quality control dur-
ing the lyophilization process. When constructing models us-
ing fused data from different HSI platforms, the bilinear matrix-
based model needs to be adjusted to

[X1 X2 … Xn] = D[S⊤

1 S
⊤

2 … S⊤

n ] + [E1 E2 … En] (16)

where [X1 X2…Xn] is the multiset data consisting of the im-
ages from the same sample but different HSI platforms, D is
the concentrations profile of the constituent in the samples,
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Figure 5. An illustration of different levels of lyophilization HSI data fusion and the data modeling workflow: a) LLDF, b) MLDF, c) HLDF.

[S⊤

1 S
⊤
2 … S⊤

n ] is the large spectral signaturematrix containing the
pure spectral of constituents in the image of each HSI analytic
technique, and [E1 E2…En] is the big residual matrix composed
by submatrices representing the model residuals associated with
each HSI analytic technique. When analyzing fused lyophiliza-
tion data from different types of HSI, the spectral wavelengths
and signal characteristics, such as intensity, vary across different
analytical techniques. Therefore, employing appropriate prepro-
cessing methods–such as scaling and centering techniques–on
various types of lyophilizationHSI data plays an important role in
implementing data fusionmodeling and analysis. Additionally, it
is essential to address potential differences in spatial resolution
when using bilinearmatrix-basedmodels for fused lyophilization
HSI data analysis. Imagematching algorithms are useful for han-
dling spatial direction difference challenges in HSI data fusion
modeling.[108] In cases where significant spatial resolution differ-
ences exist among different HSI techniques, advanced methods
such as multi-block modeling or extended matrix-based models
with multiple objective functions are recommended. For an in-
depth discussion of these methods, the specific references are
suggested.[109,110]

Tensor-based and deep learning-based approaches have re-
cently been developed for HSI data fusion analysis. These meth-
ods not only address challenges related to high dimensionality
and large data volumes in HSI data fusion but also have the
potential of enhancing model interpretability and expert anal-
ysis in practical lyophilization applications. A coupled Tucker
tensor factorization method has been proposed for handling
inter-image variability in HSI-MSI data fusion analysis.[111] This
Tucker tensor-based approach handles spatial and spectral vari-
ations with lower computational cost than prior state-of-the-
art methods. A novel tensor ring fusion model using Bayesian
sparse learning techniques has been developed for HSI-MSI im-

age fusion analysis.[112] The proposed Bayesian probabilistic ten-
sor framework automatically determines the true latent rank in
the fusion model, eliminating the need for manual selection.
Deep learning-based methods can efficiently learn fusion fea-
tures from large image datasets. Nonlinear functions and multi-
ple layers are leveraged to achieve high-precision HSI fusion.[113]

An unsupervised deep learning network has been proposed for
HSI-MSI fusionmodeling that combines a tensor decomposition
model with a deep learning network, to learn a shared code ten-
sor and use it to infer high-resolution HSI images.[114] An en-
hanced blind HSI-MSI image fusion method using a deep learn-
ing framework has been developed that is capable of achieving
better spatial and spectral accuracy by applying modified spec-
tral normalization to the network weights.[115] In addition to
HSI-MSI image fusion analysis, tensor- and deep learning-based
methods have been used for fusion modeling in other types of
HSI techniques. Tensor-based data fusion methods show poten-
tial for prediction and regression analysis across different types
of HSI data fusion.[116] Convolutional neural networks have also
been explored for analyzing fused data from Vis-HSI and NIR-
HSI, with learned features used for classification analysis.[117] A
drawback of deep learning methods for HSI image fusion anal-
ysis is their low generalization ability. Trained models tend to be
highly dependent on the specific type of input HSI data, limit-
ing their wider applicability. In contrast, tensor-based methods
do not suffer from this limitation in most cases. Continued ad-
vances in HSI data fusion models and methods will undoubt-
edly further promote the application of HSI for solving complex
problems in lyophilization-related contexts. Figure 6 provides a
graphical illustration of typical data-driven modeling strategies
for lyophilization HSI data analysis, including HSI preprocess-
ing, unmixing, regression, classification, and data fusion, being
discussed in this article.
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Figure 6. A graphical illustration on the typical data-driven modeling strategies for lyophilization HSI data analysis.

4. Applications in Lyophilization

Recall that lyophilization consists of three main steps, namely
(1) freezing, (2) primary drying, and (3) secondary drying. Dur-
ing freezing, it is common to monitor the product temperature
(and sometimes crystal structure) to ensure that the liquid is com-
pletely frozen before proceeding to the drying step. In primary
drying, monitoring the temperature is critical because the maxi-
mum product temperature should not exceed the glass transition
and collapse temperatures. Besides, the sublimation flux is some-
times measured to ensure that the sublimation process is com-
plete. In secondary drying, the most important parameter is the
residual moisture (bound water), which directly affects the final
product quality (stability). Existing methodologies for analyzing
lyophilized samples predominantly rely on offline techniques,[2]

which are often destructive in nature, involving (typically labor-
intensive[2]) physical and chemical analyses.[1] Measuring the
temperature is relatively simple, e.g., with the use of intrusive
thermocouples. The product moisture is analyzed using the Karl-
Fischer (KF) titration[2,4] or thermogravimetry[8] approaches. The
sublimation flux is usually measured by the pressure rise test.[4]

These methods are characterized by a substantial time delay be-
tween measurement and process. To address the limitations of
traditional chemical and physical methods, researchers have in-
creasingly focused on using chemometrics and HSI techniques.

4.1. Pharmaceutical Manufacturing

In pharmaceutical manufacturing, there are several critical qual-
ity attributes (CQAs) that have to be monitored and controlled

to ensure efficacy and stability and satisfy regulatory require-
ments. The ability to extract spatial information in real time,
which cannot be achieved by various traditional process analyt-
ical technology tools, allows the gaining of more insights about
the products and processes, motivating recent interests in em-
ploying HSI in pharmaceutical applications. This spatial infor-
mation is even more beneficial for processes such as lyophiliza-
tion that have strong associated heterogeneity. For lyophilization,
HSI can be used to provide additional information about some
quantities that are commonly monitored by many existing sen-
sors, e.g., moisture content,[36] or study more complicated phe-
nomena and properties that conventional techniques might not
adequately capture, e.g., solid-state transformation,[118] which is
discussed below.

4.1.1. Determining Residual Moisture and Temperature

Residual moisture (aka water content, bound water concentra-
tion) and temperature directly affect the quality of the final
product and can be measured using many standard techniques
such as Karl-Fischer titration or NIR spectroscopy, but those ap-
proaches do not provide any information on spatial heterogene-
ity. With HSI, spatiotemporal evolution of the residual moisture
and temperature can be studied. For example, NIR-HSI has been
used to investigate the distribution of water during conventional
lyophilization of unit doses.[36] The image datawere processed via
PCA,with the PLS regressionmodel developed fromKarl-Fischer
titration data. NIR-HSI was shown to quickly and accurately de-
termine the water content within 96 vials containing mannitol,
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Figure 7. Reconstructed images of five different mannitol-sucrose samples MS1 to MS5 representing variations from low (blue) to high (red) water
levels. Reproduced with permission from Brouckaert et al.[2] Copyright 2018, American Chemical Society.

sucrose, lysozyme, and bovine serum albumin (BSA). A similar
study[2] used NIR-chemical (NIR-CI) imaging for determination
of the water content of lyophilized products during continuous
lyophilization via spin freezing. For mannitol-sucrose samples,
NIR-CI combined with PCA and PLS was used to reveal the spa-
tial heterogeneity inmoisture content between different vials and
also within each vial (see Figure 7), with the results validated us-
ing Karl-Fisher titration. IR-HSI has been used for online moni-
toring of the spatiotemporal evolution in human serum vials dur-
ing lyophilization.[119] The technique was shown to be a versatile
and powerful tool for online monitoring of lyophilization.

4.1.2. Investigating Solid-State Properties

In lyophilization of pharmaceutical products, the formulation
consists of many components; for example, lyophilization of
mRNA vaccines entails mRNA, lipid nanoparticles, lyoprotec-
tants (e.g., Tris), and cryoprotectants (e.g., sucrose).[12] HSI can
be used to analyze various properties of the complicated solid
structures which impact the final product quality.
NIR imaging has been employed to study the crystallization

of sucrose in multiple lyophilized sugar-protein samples,[36] a
process that affects the stability of proteins. By having the ref-
erence spectra of amorphous and crystalline sucrose, data from
NIR images were used to identify the time when crystallization
starts, the minimum sucrose concentration where crystallization
appears, and the effects of protein on inhibiting sucrose crystal-
lization. Since the stability of the final product and reconstitu-
tion time could be influenced by crystalline components, SNV
and augmented MCR modeling were built on NIR hyperspectral

images to explore the spatial distributions of 𝛽- and 𝛿-mannitol
crystals in the vials during lyophilization.[2] The spatial distri-
butions varied between different vials and various positions in
the same vial, which was attributed to spatial variations in the
freezing rate and temperature.[2] Temperature-controlled Raman
imaging has been used to examine the effects of annealing on
the polymorphic forms of mannitol at various locations within
lyophilized samples.[120] Raman maps, constructed using PCA
scores and Linear Combination of Elements (LCE) analysis, illus-
trate the distribution and transformation of polymorphic forms
across the sample.
Raman mapping has been implemented to study the forma-

tion of complexes with cyclodextrins that entails furazolidone
(FZD) and 𝛽-cyclodextrin (𝛽-CD) or hydroxypropyl-𝛽-cyclodextrin
(HP-𝛽-CD) prepared by lyophilization and kneading.[121] Data
from Raman images were analyzed and used to indicate that the
most effective interactions can be obtained from the compounds
prepared by lyophilization with a molar ratio of 1:2 (drug:CD),
agreeing with past observations in the literature. A more recent
study by Ref. [118] employed Raman mapping to detect solid-
state transformations, i.e., changes in matrix crystallinity, in the
lyophilized iburofen solution. Raman spectra were obtained as
the average of two experimental spectra at each sample point,
with themost representative spectra selected for further analysis.
The selected spectra were truncated to reduce noise, and PCAwas
subsequently used to identify significant spectral features. Corre-
lation analyses between Raman spectra and off-line X-ray powder
diffraction (XRPD) measurements were then conducted using
PLS regressions. Results showed that the proposed technique can
differentiate between samples with different amount of iburofen

Adv. Sci. 2025, 12, e08506 e08506 (12 of 24) © 2025 The Author(s). Advanced Science published by Wiley-VCH GmbH
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andmannitol, and also identified the time when transformations
of iburofen and mannitol take place.

4.1.3. Studying Bioprotection

Stabilizers or lyoprotectants—such as polyols, amino acids, and
polymers—are added to pharmaceutical formulations, along
with other excipients and buffering salts, to improve protein sta-
bility during lyophilization. Ice formation during freezing con-
centrates these excipients in the remaining liquid. Phase sep-
aration may occur if the excipients and proteins at the freeze
concentration show thermodynamic incompatibilities and unfa-
vorable molecular interactions.[122–125] When proteins are sepa-
rated from their stabilizers, they can experience significant phys-
ical and chemical degradation. Detecting phase separation in the
absence of crystallization and the presence of multiple amor-
phous phases is challenging using conventional techniques, such
as scanning electron microscopy (SEM), differential scanning
calorimetry (DSC), polarized light microscopy (PLM), and X-
ray powder diffraction (XRPD).[5,126] Alternatively, HSI has been
shown to be an effective alternative for evaluating the homogene-
ity and phase separation of biopharmaceutical formulations con-
taining stabilizing excipients.[5,126–128]

To address the challenges in using SEM and DSC in detecting
phase separation, NIR imaging has been used to evaluate the ho-
mogeneity of freeze-dried protein-stabilizer (lysozyme-trehalose)
mixtures.[127] The raw reflectance spectra were converted into ab-
sorption spectra and normalized, and then Savitsky-Golay filters
were applied to calculate the second derivative of each spectrum.
Analysis with these preprocessed spectra indicated that corre-
lation coefficient mapping and PLS regression provide clearer
contrasts for investigating spatial heterogeneity. Through tests of
the mixtures with different ratios, NIR imaging combined with
the correlation coefficient or PLS provided a potentially more de-
tailed analysis of phase separation in lyophilized formulations.
Raman mapping has been used to identify amorphous phase
separation in freeze-dried protein formulations.[126,128] Various
mixtures – including Polyvinylpyrrolidone and Dextran, Ficoll
and BSA, and trehalose and lysozyme – at different weight ra-
tios were lyophilized and analyzed using Raman mapping, DSC,
and NIR. The SNV method was used for processing the Raman
data and the root mean square of the weighted deviations in the
peak intensity at each point across the map was the indicator of
the compositional deviations. The results from Raman mapping
closely correlated with those from DSC analysis. Another study
of Raman mapping analysis analyzed the impact of instrument
parameters such as collection aperture, accumulation time, and
line map length on the detection accuracy of phase separation in
freeze-dried protein formulations.[5] The proposed Raman line-
mapping protocol reduced data collection time by 80% while en-
suring validated detection capabilities.
Raman mapping has been used to investigate the mech-

anisms underlying protein stabilization by trehalose during
freeze-drying and the enhanced bioprotective properties of tre-
halose facilitated by glycerol.[130] Throughout each stage of the
freeze-drying process, the interactions between water, trehalose,
and lysozyme were analyzed. Polynomial function analysis and
normalization methods were applied to all spectra collected dur-

ing themapping. Raman signatures of ice crystals, trehalose, and
lysozyme in the samples suggested that the inclusion of glycerol
contributes to a more uniform distribution of chemical species
after freezing. Trehalose’s primary bioprotective effect was ob-
served during the primary drying stage; adding glycerol reduced
the effect while significantly enhancing bioprotection during the
secondary drying stage by forming stronger glycerol-trehalose H-
bonds. The spectral range of 80–1900 cm−1 in Raman images has
been analyzed to evaluate the bioprotective efficiency of sucrose
and trehalose in lyophilization.[129] Raman images acquired af-
ter the freezing stage showed that sucrose exhibited a more spa-
tially homogeneous distribution with lysozyme than trehalose,
suggesting that sucrose provides a larger bioprotective effect than
provided by lysozyme during the primary drying stage (see Figure
8). That is, pronounced phase separation within the lysozyme for-
mulation in the presence of trehalose makes the lysozyme more
vulnerable to interaction with the ice surface. The Amide I band
in Raman spectra was analyzed to investigate protein denatura-
tion. The peak of the Amide I band was determined by fitting Ra-
man spectra with Gaussian functions, the 1500–1800 cm−1 spec-
tral regions of which were baseline-corrected. Shifts of the Amide
I band toward higher frequencies after ice sublimation from all
1861 samples indicated alterations in the secondary structure of
lysozyme. Additional shifts of the Amide I band were observed
after secondary drying, indicating a further structural alteration
of the lysozyme.

4.1.4. Exploring Enzyme Immobilization

HSI has been used to investigate enzyme immobilization
for biocatalysis, which has been increasingly used in phar-
maceutical manufacturing.[22,131] Raman-HSI was applied to
lyophilized pantothenate kinase (PanK), which was immobilized
to acrylamide-based and methacrylate-based resins.[22] By using
multivariate analysis in the form of PCA, Raman-HSI with two
different excitations, namely 532 and 785 nm, was able to resolve
four distinct chemical species: the enzyme PanK, resin (acry-
lamide), buffering agent (Bis-Tris), and glass substrate. Optimal
instrumental parameters were identified, where 785-nm excita-
tion was found to perform better. A similar study[131] investi-
gated the immobilization of PanK using Raman mapping but in-
stead relied on unsupervised machine learning in the form of
NMF. By using Raman mapping with NMF, the technique re-
solved, both spatially and spectrally, the chemical species dis-
tributions, including PanK, both acrylamide and methacrylate
resins, the glass substrate, adhesive glue, and Bis-Tris, agreeing
with the corresponding optical imaging results. These insights
are useful for biocatalytic process development in pharmaceuti-
cal manufacturing.[22,131]

4.1.5. Other Applications and Possibility

HSI has potential value in a wide variety of applications. This sec-
tion summarizes some other available and potential applications
of HSI in pharmaceutical manufacturing that are not discussed
above. One promising application is to detect foreign or undesir-
able substances/particulates in the lyophilization system.[132,133]
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Figure 8. A) A line map showing the normalized Raman intensities (at 875 and 833 cm−1) of D-mannitol (MAN) and sucrose (SUC) in a 1:2 wt%
formulation.[3] Reproduced with permission from Forney-Stevens et al.[3] Copyright 2014, Elsevier. B) Raman maps of the effect of the ratio of lysozyme
to sugar (sucrose and trehalose) on freeze-dried formulations after the freezing stage.[129] Relative integrated intensity ratios are shown: Regions rich in
ice are poor in disaccharide. Trehalose separates better than sucrose from the ice phase. Reproduced with permission from Starciuc et al.[129] Copyright
2020, Elsevier.

Some imaging techniques, e.g., X-ray imaging,[31] were demon-
strated to detect various particulates, including glass, steel, poly-
mers, and organic particulates, in the lyophilized product pre-
pared from human serum albumin. The technique could suc-
cessfully identify steel and glass down to sizes of 80–100 μm,
stoppers and polymers promising larger than about 160 μm, and
organic particulates that expand in one dimension, e.g., hair and
nylon strings (see Figure 9). The only limitation is associated with
the low contrast of some organic substances and small glass par-
ticles. The ability to detect particulates could be highly benefi-

cial for the future of lyophilization, which is moving to continu-
ous manufacturing. In continuous lyophilization, vials and prod-
ucts are usually moved continuously or spun (e.g.,[134]) which
could increase the possibility of having small particulates in the
system. Another interesting application is to study the pattern
of a sublimation front/interface, e.g., using X-ray imaging.[135]

Measuring the sublimation front is not easy with standard sen-
sors/techniques implemented in many existing lyophilization
systems, and hence it is typical to rely on measurement of prod-
uct temperature or sublimation flux (e.g., via the pressure rise
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Figure 9. X-ray images of vials with various particulates, namely steel, glass, stopper, polytetrafluoroethylene (PTFE), polyethylene (PE), and nylon. All
spiked particulates in the vials were successfully detected by the X-ray imaging technique. Reproduced with permission from Sacher et al.[31] Copyright
2021, Elsevier.

test) for monitoring of primary drying.[4,136] Being able to iden-
tify the sublimation front is valuable because it best represents
the evolution of sublimation and hence could be a more accurate
way to determine the end point of primary drying. Given thatHSI
gives complete spatial data of the product, extracting information
about the sublimation front should be possible. A summary of
the typical lyophilization applications of HSI in pharmaceutical
field is presented in Table 1.

4.2. Food and Other Biologically Related Applications

Lyophilization has shown to be an effective technique for re-
moval of water in the food industry with high-quality final prod-
ucts. By eliminating liquid water and operating at low temper-
atures, this food drying process minimizes the risk of physio-
chemical changes in the food while preventing enzymatic and
microbial deterioration.[137] Althoughmicrowave vacuum-drying
is faster and hot air drying is more cost-effective, the supe-
rior preservation of the quality and nutritional content of prod-
ucts makes freeze-drying widely used in the food industry (Ref.
[138]). The increased public demand for high-quality food has
driven the advancement in quality inspection of lyophilized food
products.[139] Whereas traditional methods such as chromatogra-

phy and biotechnological tools, and recent non-destructive tech-
niques such as acoustic methods, have been developed and ap-
plied ([139]), these approaches often require complex sample pro-
cessing and skilled technical staff or are unable to fully quantify
the spatial heterogeneity inherent in food products. In contrast,
HSI is a robust alternative by providing rapid spatial and spec-
tral information from samples through a combination of imaging
and spectroscopic techniques. The spectral data acquired at every
HSI-scanned point contains the physical and chemical proper-
ties of the sample, facilitating the assessment of the impact of a
set of factors such as genetic diversity, climatic conditions, and
agricultural practices.[140] Thus, HSI has been used in quality
inspection and control of various lyophilized food products in-
cluding fish,[6,141] vegetables,[32,142] fruit,[140] mushrooms,[137,143]

cheese,[144] and tea.[145]

4.2.1. Determining Residual Moisture

Moisture content is a critical factor in determining the stability
and quality of lyophilized food products. High residual moisture
content in these products can facilitate the growth and reproduc-
tion of microorganisms, resulting in quality decay and deteriora-
tive reactions.[146,147] To minimize these adverse effects and pre-
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Table 1. Summary of HSI for the lyophilization of pharmaceutical compounds.

Study Sample Application Spectral type Wavelength Modeling strategies

[36] Mannitol, sucrose, lysozyme,
bovine serum albumin

Determine water content, study
crystallization of sucrose

NIR 970–2500 nm PCA and PLS

[2] Mannitol and sucrose Determine water content, explore
the distribution of 𝛽-mannitol

and 𝛿-mannitol

NIR 900–1700 nm PCA and PLS

[120] Mannitol Polymorphic forms Raman 514 nm PCA and LCE
[121] Furazolidone Characterize the formation of

complexes with cyclodextrins
Raman 532 nm (N/A) N/A

[22] Pantothenate kinase Investigate enzyme
immobilization

Raman 532/785 nm (N/A) PCA and PLS

[118] Iburofen Study distributions and
transformations of iburofen and

mannitol

Raman 785 nm (N/A) PCA and PLS

[31] Human serum albumin Detect particulate matters X-ray N/A N/A
[131] Pantothenate kinase Investigate enzyme

immobilization
Raman 532/785 nm NMF

[5] Dextran, sucrose,
polyvinylpyrrolidone,

D-mannitol and lysozyme

Phase separation Raman 785 nm SNV

[127] Lysozyme and trehalose Homogeneity NIR 1200–2400 nm Savitsky-Golay filter,
PCA and PLS

[126,128] Polyvinylpyrrolidone, dextran,
Ficoll, bovine serum

albumin, trehalose and
lysozyme

Phase separation Raman 785 nm SNV

[130] Lysozyme, heavy water,
trehalose, and glycerol

Protein stabilization Raman 514.5 nm Baseline correction,
polynomial fitting

[129] Lysozyme, heavy water,
trehalose, and sucrose

Protein stabilization Raman 514.5 nm Intensity integration

serve the quality, flavor, and nutritional value of the food, it is
essential to closely monitor the moisture level in these freeze-
dried products.
To assess the moisture content in grass carp (Ctenopharyn-

godon idella) slices subjected to various freeze-drying dura-
tions, hyperspectral images were generated from Vis-NIR
spectroscopy.[6] PLS with leave-one-out cross-validation was used
to reduce the high-dimensional data to nine influential wave-
lengths, which are associated with the largest absolute regres-
sion coefficients for moisture content prediction. The results in-
dicated that PLSs based on pretreated data compromises the pre-
diction accuracy. A map of the spatiotemporal evolution of mois-
ture content throughout the drying process across the grass carp
slices was generated from the spectra and the regression coeffi-
cients.HSI has also been used to evaluate themoisture content in
freeze-dried shiitake mushrooms,[137] where spectra of 19 wave-
length regions from the UV (405 nm) to NIR (970 nm) were ac-
quired. Three multivariate models, PLS, backpropagation neural
network (BPNN), and least squares-support vector machines (LS-
SVM), were compared for residual moisture estimation in the
freeze-dried mushrooms. Their findings indicate that LS-SVM
provides the highest accuracy in predicting water fractions in the
samples. Another study collected a 3D hyperspectral cube with
spatial dimensions of 816×540 pixels, and a spectral dimension
of 616 nm wavelengths, to assess moisture content for the Agari-

cus bisporusmushroom.[143] The SVM model, with MSC for data
pretreatment and stability competitive adaptive reweighted sam-
pling (SCARS) for keywavelength extraction, achieved good accu-
racy in moisture content prediction during the freeze-drying pro-
cess of Agaricus bisporus. Their moisture distribution map shows
that themoisture content at the edge is lower than that at the core,
indicating preferential sublimation at the sample edge. A study
for a different food product analyzed the NIR region, which en-
compasses various fundamental molecular vibrations such as C-
H, N-H, andO-H, in chili peppers.[148] The successive projections
algorithm (SPA) had higher performance than competitive adap-
tive reweighted sampling (CARS) and genetic algorithm-partial
least squares (GA-PLS) methods in managing redundancy and
collinearity in the spectral data. Based on the most influential
wavelengths identified by SPA, extreme learningmachine (ELM)
models achieved more accurate predictions of moisture content
than PLS and LS-SVM.

4.2.2. Inspecting Quality and Safety Attributes

HSI has been used to assess the functional components and
physical and chemical properties that serve as valuable quality
indicators in freeze-dried food products. These examples illus-
trate the potential for predicting key functional components in
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Figure 10. Examples illustrating the use of HSI for quality inspection through the quantification and localization of chemical components. A) A glucosi-
nolate prediction map in a broccoli floret from a PLS model.[32] Reproduced with permission from Hernandez-Hierro et al.[32] Copyright 2014, Elsevier
B) Distribution maps for different functional components present in Brassica juncea leaves as predicted by the PLS model.[142] Reproduced under the
terms of the CC-BY Creative Commons Attribution License.[142] Copyright 2022 by the authors, published by MDPI.

freeze-dried food products, demonstrating significant industrial
potential. This non-invasive method provides a faster alternative
to more time-consuming and invasive techniques
HSI has been used to inspect the quality of freeze dried grass

carp fillets to predict textural attributes (e.g., hardness, guminess,
chewiness) for different drying periods.[141] Using mean and
median spectra for all 381 spectral wavelengths, a quantitative
PLSR model was constructed. Rather than constructing separate
models for individual textural attributes, one integrated group
of wavelengths was selected to build a distributional map. The
severe textural alterations induced by lyophilization enhanced
the predictive capability of the model. HSI has also been em-
ployed to quantitatively localize functional components in food
(e.g.,[32,142], see Figure 10). For instance, HSI was used to map
the presence of glucosinolates, nitrogen and sulfur-containing
bioactive molecules responsible for bitter flavor, in freeze-dried
broccoli florets.[32] Two distinct spectral regions were utilized:
Vis-NIR (450–900 nm) and NIR (950-1650 nm).[32] PLS was ap-
plied in both cases, with the NIR region yielding superior re-
sults (8 terms versus 7 terms).[32] These HSI experiments high-
lighted the importance of spatial mapping, revealing that glu-
cosinolates were predominantly localized in the external parts
of the broccoli florets.[32] HSI (ranging from 400-1000 nm) has

been employed to detect five representative functional compo-
nents in Brassica juncea leaves (from different cultivation envi-
ronments) after four days of freeze-drying.[142] The leaf edge and
vein were excluded from the analysis due to the lack of func-
tional components present there. The prediction model used a
PLS method with 10 preprocessing combinations. This PLS ap-
proach achieved high accuracy with minimal data and can be ap-
plied relatively easily.
The heterogeneity of freeze-dried apple slices of different func-

tional components has been characterized.[140] The apple slices
were analyzed using NIR-HSI imaging (with a wavelength of
1000–2500 nm and spectral resolution of 12 nm). Randomly ex-
tracted spectra were organized in a matrix, and then pretested,
smoothed, and preprocessed with SNV to increase signal-to-
noise ratios. Then PCA was used for Region of interest (ROI)
selection and characterization. Leave-one-out (LOO)-PLS regres-
sion was used to construct the prediction model and to make
prediction maps of the different quality attributes. In another
study,[145] HSI in the NIR range (400–1000 nm, with a resolu-
tion of 2.8 nm) was used to detect quality using key physical
and chemical components in lyophilized fermented tea leaves.
First, black-and-white correction was performed.[145] Then cen-
tering and zero mean normalization, MSC, smooth, 2 derivative,
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min-max normalization and centeringmethods were used to pre-
process the HSI data and to correct spectral differences.[145] PLS,
SVR, and Random Forest algorithm (RF) models were built on
the HSI data and compared, with the RF model reported to have
better performance in the analysis on endoplasmic components
of tea leaves.
Moreover, HSI has been demonstrated for evaluating the au-

thenticity of lyophilized food products. For example, the authen-
ticity of lyophilized halloumi cheese was assessed using HSI and
traditional NIR spectroscopy.[144] HSI image acquisition in the
400–1000 nm wavelength range was performed.[144] PCA and hi-
erarchical cluster models were applied to the HSI data. The HSI
method provided more distinct clusters of two lyophilized hal-
loumi cheese types than the traditional NIR method.

4.2.3. Other Biologically Related Applications

In recent years, HSI and lyophilization have been integrated
to advance many other biochemically related scientific and an-
alytical fields. HSI provides detailed, multidimensional infor-
mation on samples, while lyophilization preserves sample in-
tegrity by minimizing substance mobility and preventing micro-
bial growth. Integrating these two techniques can significantly
enhance the understanding of biological processes and envi-
ronmental changes by providing comprehensive information on
sample composition, structure, and molecular interactions. For
example, 240 points within a lyophilized eyeball sample with an
area of 80×240 μm2 were scanned using an excitation laser spot
at 0.1 mW.[149] The resulting Raman map showed distinct tissue
components, demonstrating its capability to evaluate the spatial
distribution of biological structures and chemical components in
tissue samples.
HSI based on confocal Raman spectroscopy and freeze-dried

stratum corneum have been applied to study dermal drug deliv-
ery. A proof-of-concept study addressed the challenge of Raman
signal attenuation with increasing depth into the skin, essential
for precise quantification of drug absorption and risk assessment
of chemicals and ingredients.[150] Feasibility was demonstrated of
using lyophilized human skins combined with confocal Raman
spectroscopy for quantitative substance depth profiling. Based on
these studies, an artificial skin surrogate and an algorithm to cor-
rect the attenuation of Raman intensity depth profiles were de-
veloped.
Additionally, the combination of HSI and lyophilization has

been extended to understand past bioecosystem dynamics.[151]

In this scenario, sediment cores from the deepest parts of the
lake were lyophilized prior to HSI analysis. Their results high-
light the importance of characterizing sediment composition
with HSI before assessing chlorophyll-𝛼 concentrations, as the
accurate characterization of sediment composition can vary the
accuracy of chlorophyll-𝛼 estimates. A summary of the represen-
tative lyophilization applications of HSI in food industries and
other biologically related fields is presented in Table 2.

5. Future Perspectives

Although lyophilization has been widely used in various indus-
tries, applications of HSI seem to be most beneficial in phar-
maceutical manufacturing, in which the regulations are usually

much more stringent, and thus necessitate rigorous monitoring
and control. With the growth of biopharmaceuticals, lyophiliza-
tion is expected to become more prominent in the manufactur-
ing process. The Quality by Design (QbD) concept, as required
by regulatory agencies, also applies to lyophilization. HSI offers
excellent opportunities for in-situ monitoring in this context. In
this context, HSI has the potential in complementing or replac-
ing currently available technologies, with a focus on two aspects:
(1) improving existing lyophilization systems and (2) developing
novel lyophilization processes.
Typical lyophilization systems usually consist of tools for mea-

suring product temperature, sublimation flux, and residualmois-
ture. HSI can help improve existing lyophilization processes by
providing more information about products that cannot be ob-
tained from standard techniques e.g., homogeneity, solid struc-
ture, and stability.[2] Besides monitoring and control, additional
knowledge from HSI could also be useful for guiding the pro-
cess/formulation design.[121] These benefits make HSI a promi-
nent process analytical technology that plays an important role
since the design and development phase to the actual operation,
ensuring the process is well designed and the final product qual-
ity meets the regulations.
HSI could also play a crucial role in the development of

novel lyophilization processes. For example, lyophilization is
now primarily conducted in batch-wise manner, but the future
holds promise for the adoption of continuous lyophilization
processes.[154–156] Integrating HSI into continuous lyophilization
setups could enable real-time monitoring of product characteris-
tics to facilitate precise and efficient process control and contin-
uous optimization (e.g., Ref. [2]), ultimately leading to improved
efficiency and product quality. This advancement in process an-
alytical technology is more important for continuous operation,
where a process is expected to operate all the time with minimal
interruption or human intervention, than for batch operation.
Data-driven modeling methods are the key to gaining deep in-

sights into complex lyophilization processes or lyophilized prod-
ucts from HSI data. Current research shows that the synergy of
HSI and data modeling technology is changing the practice of
lyophilization analysis and process control. However, the appli-
cation of technology and methods is still in the initial stage of
developments. Due to the large amount of data, high-order diffi-
culty, and parameter complexity of HSI data, it is still challeng-
ing to develop effective and proper HSI data modeling meth-
ods. Currently, HSI technology is mainly used in offline and
small-scale lyophilization analysis applications, and HSI data
analysis mainly relies on traditional modeling methods. The fu-
ture trend of lyophilization technology application is from batch
lyophilization to continuous lyophilization, which correspond-
ingly requires the development of faster,more efficient, andmore
automated HSI data modeling methods to meet the require-
ments of online and real-time analysis of huge high-dimensional
data streams in continuous lyophilization processes.
Due to its advantage in processing high-order complex data,

tensor modeling is one of the promising solutions for solv-
ing the problem of automated real-time online HSI data analy-
sis in continuous lyophilization applications in the future. The
recent research has shown the potential of tensor modeling
technology in solving complex HSI data modeling in the con-
text of such as advanced manufacturing processes, real-time
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Table 2. Summary of HSI for lyophilization applications in food industries and other biochemical related fields.

Study Sample Application Spectral type Wavelength Modeling strategies

[32] Broccoli florets Quantification and localization of
bioactive compounds in florets

Vis-NIR, NIR 950–1650 nm SNV, PCA, PLS

[137] Shiitake mushrooms Quantitative prediction of water fractions
during processing

UV, NIR 405–970 nm PLS, back propagation neural
network, LS-SVM

[142] Brassica juncea leaves Quantification and localization of five
representative functional components

Vis-NIR 400–1000 nm Savitzky-Golay filter, SNV, MSC, 1
derivative, 2 derivative,
normalization, and PLS

[141] Ctenopharyngodon
idella fillets

Textural feature prediction Vis-NIR 400–1000 nm PLS

[6] Ctenopharyngodon
idella fillets

Determination of moisture content under
different freeze drying periods

Vis-NIR 400-1000 nm MSC, SNV, PLS using leave-one-out
cross validation

[140] Apple slices Analysis of heterogeneity of apple slices
(dry content matter, and functional

components)

NIR 1000–2500
nm

PCA and LOO-PLS

[144] Halloumi cheese Species identification for authenification Vis-NIR 400–1000 nm PCA and hierarchical cluster analysis
[145] Black tea leaves Quantification and localization of

chemical and physical components
Vis-NIR 400–1000 nm MSC, 2 derivative, min-max

normalization, Monte Carlo based
non formative variable elimination,
shuffled frog leaping algorithm,

PLS, SVR, and RF.
[143] Agaricus bisporus Quantification and localization of

moisture content throughout process
Vis-NIR 400–1000 nm SVM, SCARS, and MSC

[148] Chili pepper Determination of moisture content NIR 874–1734 nm PLS, ELM, and LS-SVM
[152] Lipids in kidney

tissues
Spatial lipidomics analysis MIR 2500–25,000

nm
K-means clustering, PCA, lasso

regression, 2 derivative,
Savitzky-Golay filter

[153] Varicella-zoster
viruses

Virus fingerprinting and compositional
analysis

MIR 2500–25,000
nm

N/A

industrial pattern recognition, and automated biomedical im-
age analysis.[157–160] Continued progress in developing efficient,
novel, and robust tensor modeling methods will hopefully over-
come the limitations of instantaneous analysis of large amounts
of high-dimensional HSI data in continuous lyophilization, mak-
ing HSI technology suitable in this context. Therefore, future
research on HSI data modeling methods in lyophilization sce-
narios can be to develop more efficient and robust tensor mod-
eling methods to cope with huge computing consumption and
complex data flowmodeling, such as developing parallel and dis-
tributed algorithms for large-scale tensor computing, extending
two-way model optimization methods to high-order tensor mod-
els, and developing specific tensor models for complex irregu-
lar tensor modeling (such as nonlinear high-order tensors data
stream from biochemical manufacturing).
Another noteworthy research direction is the application of

deep learning methods. In deep learning, the implicit spectral
and spatial feature information in the HSI data in lyophiliza-
tion applications can be extensively and automatically learned.
Deep learning methods have significant advantages in handling
large scale data with non-linearity and missing values. Combin-
ing tensor modeling technology with other deep learning tools,
such as using the multi-dimensional feature representation ob-
tained by tensor technology as input learning for deep learning
model, will greatly improve the computing efficiency, multi-way
interpretability, model accuracy and generalization ability of deep

learning models and enhance the insights gaining from complex
lyophilizationHSI data stream. Recent studies has demonstrated
the significant advantage of combining tensor modeling and
deep learning tools in a set of different scenarios.[114,161,162] There
is no doubt that the development and application of deep learn-
ing methods will further change the practice of large-scale HSI
data modeling and the paradigm of HSI technology in lyophiliza-
tion applications.
Recent advancements in HSI technology have opened up new

possibilities for characterizing, analyzing, monitoring, and de-
signing lyophilization processes in large-scale continuous man-
ufacturing under complex conditions. With the requirements
for more sophisticated detection or faster process control in
lyophilization applications, the emergence of new HSI tech-
nologies will bring new solutions. For example, the newly de-
veloped wide-field MIR-HSI system achieves ultra-fast spectral
imaging rates and produces high-definition images at over 10
kHz frame rates based on a megapixel silicon camera that sur-
pass video frame rates.[163] 100 channels of spectral images are
recorded in 10 ms. Additionally, an integrated HSI technology
known as SpectraTrack is expected to overcome the traditional
trade-offs between spatial, temporal, and spectral resolution,
further expanding the capabilities of high-throughput HSI.[164]

High-speed NIR-HSI using a spectral phasor transformation[165]

and fast nano-IR HSI using a spatial–spectral network[166] pro-
vide new technical opportunities for the characterization and
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analytical control of complex and micro-scale lyophilization ma-
terials. These innovations are poised to enhance the efficient
and high-throughput characterization and monitoring of bio-
materials and biopharmaceuticals in continuous lyophilization
processes, improving the automation of large-scale industrial
lyophilization operations. They will also potentially strengthen
the ability to analyze and control more complex dynamic
lyophilization processes and products. However, high-speed and
high-resolution HSI generates massive high-dimensional data
streams, particularly posing challenges for online lyophilization
applications. Extracting valuable insights in real time to guide
process analysis and control will require the development of
more efficient modeling methods and computer algorithms, in-
cluding techniques for preprocessing, regression and classifi-
cation, spectral unmixing, and data fusion. The future applica-
tion of these innovative HSI technologies in large-scale complex
continuous lyophilization processes will depend to a certain ex-
tent on the progress of the data modeling and information ex-
traction methods and algorithms. Advanced data modeling ap-
proaches, particularly those leveraging efficient tensor comput-
ing and deep learning, are expected to play an important role in
the widespread adoption of these high-performance HSI tech-
nologies in lyophilization applications. For many HSI applica-
tions, not all of the wavelengths are needed to be able to build
a predictive model that is sufficiently accurate for the intended
application. For this reason, many commercial HSI sensors only
provide data for a limited number of wavelengths, which in-
creases data processing speed. High spectral resolution is most
desirable when key spectral features for distinguishing between
the individual components in thematerial are narrow, such as for
the Raman spectra of the different polymorphs of mannitol,[167]

while lower spectral resolution could be more proper for those
materials with broad spectral features.

6. Conclusion

For lyophilization applications, HSI technology plays an im-
portant role in characterizing physical and chemical proper-
ties, understanding the state change, monitoring and control-
ling lyophilization process, assessing quality of lyophilized prod-
ucts, and automating manufacturing process. This article out-
lines HSI technology for lyophilization, focusing on representa-
tive data-driven modeling strategies including HSI preprocess-
ing, HSI unmixing, HSI regression and prediction, and HSI
data fusion, as well as promising applications of HSI technol-
ogy in lyophilization scenarios. It is evident from this paper
that lyophilization HSI is a highly interdisciplinary field that in-
tegrates knowledge and technologies from chemometrics, sig-
nal processing, statistical analysis, and biochemical engineer-
ing to address complex lyophilization-related problems. Despite
the widespread use of HSI technology in lyophilization pro-
cesses and product analysis, several challenges remain, partic-
ularly in developing algorithms for real-time processing of high-
dimensional and large-scale HSI data streams andmitigating the
impact of the lyophilization environment and process complex-
ity on imaging quality. Future advancements in HSI technology
for lyophilization will largely depend on overcoming these chal-
lenges. As new lyophilization processes and automation in bio-
chemical manufacturing industries develop, innovations in the

field of lyophilization HSI will continue to emerge. This work is
a small step, and we hope it provides valuable inspiration for fu-
ture research in the field of lyophilizationHSI and its data-driven
modeling strategies.
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