Lecture 15

1 Return to 3D

3D is where lots, but not all, of the cool stuff is.

$$i\hbar\partial_t\psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m}\vec{\nabla}^2 + V(\vec{r})\right]\psi(\vec{r},t) \tag{1}$$

1.1 An aside on coordinates

• Cartesian (free, harmonic oscillator, etc) (x, y, z)

$$\nabla^2 = \partial_x^2 + \partial_y^2 + \partial_z^2 \tag{2}$$

$$\vec{\nabla}^2 = \partial_r^2 + \frac{2}{r} \,\partial_r + \frac{1}{r^2} \left(\partial_\theta^2 + (\cot \theta) \partial_\theta \right) + \frac{1}{r^2 \sin^2 \theta} \,\partial_\phi^2 \tag{3}$$

where

$$x = r\cos\theta\cos\phi, y = r\cos\theta\sin\phi, z = r\sin\theta \tag{4}$$

- Cylindrical (LHC beam) $(\rho,\,\phi,\,z)$

$$\vec{\nabla}^2 = \partial_z^2 + \partial_\rho^2 + \frac{1}{\rho} \partial_\rho + \frac{1}{\rho^2} \partial_\phi^2 \tag{5}$$

where

$$x = \rho \cos \phi, y = \rho \sin \phi \tag{6}$$

Example 1: Free Particle in Cartesian Coordinates

$$V(x, y, z) = 0 (7)$$

$$E\psi(x,y,z) = \left(-\frac{\hbar^2}{2m}\right)\left[\partial_x^2 + \partial_y^2 + \partial_z^2\right]\psi(x,y,z) \tag{8}$$

We use separation of variables. Suppose

$$\psi(x, y, z) = \psi_x(x) + \psi_y(y) + \psi_z(z) \tag{9}$$

then

$$E\psi_x\psi_y\psi_z = (-\frac{\hbar^2}{2m})[\psi_x''\psi_y\psi_z + \psi_x\psi_y''\psi_z + \psi_x\psi_y\psi_z'']$$
 (10)

Divide by $\psi = \psi_x \psi_y \psi_z$:

$$-\frac{2m}{\hbar^2}E = \frac{\psi_x''}{\psi_x} + \frac{\psi_y''}{\psi_y} + \frac{\psi_z''}{\psi_z}$$
 (11)

Separation: $\psi_x'' = -\epsilon_x \psi_x$, $\psi_y'' = -\epsilon_y \psi_y$, $\psi_z'' = -\epsilon_z \psi_z$ where $\epsilon_x + \epsilon_y + \epsilon_z = \frac{2mE}{\hbar^2}$. The solutions to each of those equations:

$$\psi_x = A_x e^{\pm ik_x x}, \frac{\hbar^2 k_x^2}{2m} = \epsilon_x \tag{12}$$

$$\psi_y = A_y e^{\pm ik_y y}, \frac{\hbar^2 k_y^2}{2m} = \epsilon_y \tag{13}$$

$$\psi_z = A_z e^{\pm ik_z z}, \frac{\hbar^2 k_z^2}{2m} = \epsilon_z \tag{14}$$

Combining, we get

$$\frac{\hbar^2 \vec{k}^2}{2m} = E \tag{15}$$

$$E = \frac{\vec{p}^2}{2m} \tag{16}$$

$$\phi_k = Ae^{i(k_x x + k_y y + k_z z)} = \phi_0 e^{i\vec{k}\cdot\vec{x}} \tag{17}$$

$$A = \frac{1}{\sqrt{2\pi^3}}\tag{18}$$

Note:

• Orthonormality:

$$\langle \phi_k | \phi_{k'} \rangle = \int d^3x \, \phi_k^*(x) \, \phi_{k'}(x) = \delta^3(k - k')$$
 (19)

• Completeness:

$$\langle \phi_k | \phi_{k'} \rangle = \int d^3k \, \phi_k^*(x) \, \phi_k(x') = \delta^3(x - x')$$
 (20)

• Conservation of Probability:

$$\rho = |\phi|^2 = \frac{1}{(2\pi)^3} \tag{21}$$

$$\vec{J} = \frac{\hbar}{m} Im(\phi^* \vec{Del}\phi) = \frac{\hbar \vec{k}}{m} \frac{1}{\sqrt{2\pi}^3}$$
 (22)

Therefore,

$$\vec{J} = \rho \vec{v} \tag{23}$$

• As with the free particle in one dimension, we can build wavepackets!

$$\psi(\vec{x},0) = \int d^3k \tilde{\psi}(\vec{k})\phi_{\vec{k}}(\vec{x})$$
 (24)

$$= \int d^3k \frac{1}{\sqrt{\pi^3}} e^{i\vec{k}\cdot\vec{x}} \tilde{\psi}(\vec{k}) \tag{25}$$

$$\psi(\vec{x},t) = \int d^3k \phi_k(x) \tilde{\psi}(\vec{k}) e^{i\frac{\hbar \vec{k}^2}{2m}}$$
 (26)

where

$$\omega_{\vec{k}} = \frac{E_{\vec{k}}}{\hbar} \tag{27}$$

Example 2: 3D Harmonic Oscillator

$$V(\vec{r}) = \frac{1}{2}m\omega_0^2(x^2 + y^2 + z^2) = V_x(x) + V_y(y) + V_z(z)$$
(28)

$$E\psi(x,y,z) = \frac{-\hbar^2}{2m} [\partial_x^2 + \partial_y^2 + \partial_z^2]\psi + [V_x + V_y + V_z]\psi$$
 (29)

We use separation of variables: $\psi = \psi_x \psi_y \psi_z$ to rewrite this as a set of three equations, of the form

$$E_x \psi_x(x, y, z) = \left[\frac{-\hbar^2}{2m} \partial_x^2 + V_x(x)\right] \psi_x(x) \tag{30}$$

etc, where

$$E = E_x + E_y + E_z \tag{31}$$

We end up with three independent harmonic oscillators.

$$\psi = \psi_l(x)\psi_m(y)\psi_n(z) \tag{32}$$

and

$$E = \hbar\omega_0(l + m + n + \frac{3}{2}) \tag{33}$$

where N=l+m+n represents the "number of quanta excited". Solutions are specified by three integers, which results in degeneracy. Multiple different states can share the same energy - the degeneracy corresponds to a hidden symmetry, by Noether's thoerem. Examples of degenerate states are shown below:

Table 1: Results for the relationship between trap stiffness α and laser current, from two equipartition and PSD methods. Form: y = mx + b

Energy	(l, m, n)	Degeneracy
$\frac{9}{2}\hbar\omega_0$	(3, 0, 0) (2, 1, 0) (1, 1, 1)	10
$\frac{7}{2}\hbar\omega_0$	(2, 0, 0) (1, 1, 0)	6
$rac{5}{2}\hbar\omega_0$	(1, 0, 0) (0, 1, 0) (0, 0, 1)	3
$ \frac{\frac{9}{2}\hbar\omega_0}{\frac{7}{2}\hbar\omega_0} $ $ \frac{5}{2}\hbar\omega_0 $ $ \frac{3}{2}\hbar\omega_0 $	(0, 0, 0)	1

Example 3: 3D Square Box You'll do this in recitation and on the pset. The answer is:

$$\psi(x,y,z) = \left(\sqrt{\frac{2}{a}}\sin(\frac{n_x\pi x}{a})\right)\left(\sqrt{\frac{2}{b}}\sin(\frac{n_y\pi y}{b})\right)\left(\sqrt{\frac{2}{c}}\sin(\frac{n_z\pi z}{c})\right)$$
(34)

$$E_n = \frac{\pi^2 \hbar^2}{2m} \left[\frac{n_x^2}{a^2} + \frac{n_y^2}{b^2} + \frac{n_z^2}{c^2} \right]$$
 (35)

1.2 Angular Momentum

What is the operator corresponding to \vec{L} ?

$$\vec{\hat{L}} = \vec{\hat{r}} x \vec{\hat{p}} \tag{36}$$

$$= \hat{y}\hat{p}_z - \hat{z}\hat{p}_y; \hat{z}\hat{p}_x - \hat{x}\hat{p}_z; \hat{x}\hat{p}_y - \hat{y}\hat{p}_x$$
 (37)

Note: $[\hat{x}, \hat{p}_y]$

In spherical coordinates:

$$\hat{L}^2 = -\hbar^2 \left(\frac{1}{\sin \theta} \, \partial_\theta \sin \theta \, \partial_\theta + \frac{1}{\sin^2 \theta} \partial_\phi^2 \right) \tag{38}$$

$$\hat{L}_z = -i\hbar \partial_\phi \tag{39}$$

As you showed:

$$[L_x, L_y] = i\hbar L_z; [L_y, L_z] = i\hbar L_x; [L_z, L_x] = i\hbar L_y; [L^2, L_x] = [L_y, L^2] = [L_z, L^2] = 0$$
(40)

Two strategies for building eigenfunctions of \hat{L}^2 :

1. Solve PDE by brute force: not so bad for \hat{L}_z

$$-i\hbar\partial_{\phi}Y = \hbar mY \tag{41}$$

so

$$Y \propto e^{im\phi}, m \in \mathbb{Z} \tag{42}$$

Horrible looking for \hat{L}^2 !

2. Use operator methods, as we did for HO

Today we'll focus on (2).

First: commuting observatles.

 $[x, p_x] = i\hbar \mathbb{1}$ SO WHAT?

• Suppose E $\phi_{x,p}$ which is simultaneous an eigenfunction of \hat{x} and \hat{p} :

$$\hat{x}\phi_{x,p} = x\phi_{x,p}, \hat{p}\phi_{x,p} = p\phi_{x,p} \tag{43}$$

$$(\hat{x}\hat{p} - \hat{p}\hat{x})\phi_{xp} = (\hat{x}p - \hat{p}x)\phi_{xp} = (xp - px)\phi_{xp} = 0$$
(44)

$$[\hat{x}, \hat{p}]\phi_{xp} = 0 \tag{45}$$

We can only find simultaneous eigenstates if [A, B] = 0!

• Thm: $\Delta A \Delta B = \frac{1}{2} |\langle [A, B] \rangle|$

Next, given a set of observables, we can form a **complete set**. This is a set in which every element commutes with every other element.

Ex. x, p_x breaks into x or p_x .

Ex. x, y, z, p_x, p_y, p_z breaks into x, y, z or x, y, p_z .

What is the most you can know at once? $p_x, p_y, p_z, p_x, p_y, z$

Ex. L_x, L_y, L_z, L^2 or Any one L, L^2

NB $[L_x, L_y] = i\hbar L_z$ so cannot simultaneously be eigenfunctions of L_x, L_y **NB** Rotational symmetry means all are equivalent. Pick coordinates st \hat{L}_z simple. So, \hat{L}_z, \hat{L}^2

So let's find eigenfunctions Y_{lm} of \hat{L}_z, \hat{L}^2

$$L_z Y_{lm} = \hbar m Y_{lm} \tag{46}$$

$$L^{2}Y_{lm} = \hbar^{2}l(l+1)Y_{lm} \tag{47}$$

Useful tool: raising and lowering operators

$$L_{+} = L_{x} + iL_{y}, L_{-} = L_{x} - iL_{y} \tag{48}$$

$$L_{+} = (L_{-})^{\dagger}, L_{-} = (L_{+})^{\dagger} \tag{49}$$

Note the similarity to $a^{\dagger} = (a)^{\dagger}$

$$[L_{+}, L_{-}] = 2\hbar L_{z}, [L^{2}, L_{\pm}] = 0, [L_{z}, L_{\pm}] = \pm \hbar L_{\pm}$$
(50)

Note the similarity to $[\hat{N},a^{\dagger}]=a^{\dagger}$ and [N,a]=-a

Note: $L_-L_+ = \hat{L}^2 - L_z^2 - \hbar L_z$

The point: Suppose $L_z Y_{lm} = \hbar m Y_{lm}$ and $L^2 Y_{lm} = \hbar^2 l(l+1) Y_{lm}$. Then,

$$L_z(L_+Y_{lm}) = ([L_z, L_+] + L_+L_z)Y_{lm}$$
(51)

$$= (\hbar L_{+} + L_{+} \hbar m) Y_{lm} = \hbar (m+1) (L_{+} Y_{lm})$$
(52)

$$L_z(L - Y_{lm}) = \hbar(m - 1)(L - Y_{lm})$$
(53)

$$L^{2}(L \pm Y_{lm}) = \hbar^{2}l(l+1)(L_{\pm}Y_{lm})$$
(54)

Ladder of states with fixed l is just like the ladder of harmonic oscillator states. Instead of jumping between states of different n values using a and a^{\dagger} , you jump between m, m-1, m-2, m+1, m+2, etc, using the L_{-} and L_{+} operators. The key is: L_{\pm} do not change l - there is a new tower for each l!