The QM of spin-1/2 particles; the SternGerlach experiment

Preview: the statistical algorithm vs the orthodox interpretation (vs the other interpretations)

Spin in classical mechanics: chalk and talk

Experiment A: the "basic" Stern-Gerlach experiment

Experiment A: the "basic" Stern-Gerlach experiment

(detection screen)

Experiment A: the "basic" Stern-Gerlach experiment

Experiment A: the "basic" Stern-Gerlach experiment

- Observational fact \#1: In experiment A, some of the particles are detected in the upper region, and some in the lower region; none are detected in between.

Experiment A: the "basic" Stern-Gerlach experiment

Experiment B: two consecutive S-Gs

Experiment B: two consecutive S-Gs

Experiment B: two consecutive S-Gs

Observational fact \#2: In experiment B, all of the particles are detected in the upper region.

A conservative Hypothesis:

Spin is "quantized": spin 1/2 particles can be thought of as little compass needles, but only two orientations out of the infinitely many are possible: North up, or North down.

Experiment C: two S-Gs, different angles

Experiment C: two S-Gs, different angles

Experiment C: two S-Gs, different angles

- Observational fact \#3: In Experiment C, 1/2 of the particles (that make it through) are detected in the upper region, and $1 / 2$ in the lower region. (And, only half make it through.)

Genservative hypothesis

If we think of spin $1 / 2$ particles as compass needles, Experiment C shows that they are not forced to point either North up or North down.

The $\cos ^{\wedge} 2$ law for spin measurements:

- If a large number of spin-1/2 particles that have been deflected up after passing through magnets oriented at angle T (measured clockwise from the vertical) are passed through magnets oriented at angle U, then the proportion of the particles that are deflected up is

$$
\cos ^{\wedge} 2[(T-U) / 2]
$$

Interlude: the wild and crazy world of quantum mechanics

Experiment D: 3 S-Gs

Experiment D: 3 S-Gs

Experiment D: 3 S-Gs

- Observational fact \#4: In Experiment D, 1/2 of the particles (that make it through) are detected in the upper region, and $1 / 2$ in the lower region. And, only $1 / 4$ make it through.

A less conservative hypotheses?

When a spin $1 / 2$ particle encounters a magnetic field, it almost instantly turns to align, or antialign, itself with the field.

A start on the QM statistical algorithm

- (chalkboard!)

A start on the QM statistical algorithm

- Born's rule: If the "state vector" of a spin-1/2 particle is v , and it is about to pass through SG magnets oriented at angle A, then the probability that it will be deflected up is equal to

$$
<v \mid A \text { up }>^{\wedge} 2
$$

- The probability that it will be deflected down is <v|A down>^2.

A start on the QM statistical algorithm

- Vectors play TWO DIFFERENT ROLES in this algorithm:
- Role 1: encode information about what the "system" (particle) will do, when we measure its spin in various directions.
- Role 2: represent possible outcomes of spin measurements.

