Philosophy 24.111: Philosophy of Quantum Mechanics, Fall 2007 Handout 2: An Outline of Bell's Theorem

1. Preliminaries

Bell's Locality Principle: Let $P_{H V}$ be the probability function determined by a hidden variables theory. Then the theory is a local theory if

$$
P_{H V}(A, B \mid a, b, \lambda)=P_{H V}(A \mid a, \lambda) P_{H V}(B \mid b, \lambda) .
$$

Expectation Values: Let A_{1}, \ldots, A_{n} be a range of outcomes of some process, where exactly one of those outcomes must occur. Assign numerical values $V\left(A_{1}\right), \ldots, V\left(A_{n}\right)$ to each outcome. Then the expected outcome (or expectation value) relative to this range is $\sum_{i}\left(V\left(A_{i}\right) \operatorname{Prob}\left(A_{i}\right)\right)$.

We consider a range of outcomes of join spin experiments on particles in the singlet state: \{The particles go the same way; the particles go different ways\}. Assign value +1 to the first, -1 to the second.

We also consider a range of outcomes of spin experiments on a single particle. The range is \{The particle goes up; the particle goes down\}. Assign value +1 to the first, -1 to the second.

Let

- $E_{H V}(a, b, \lambda)$ be the expectation value of the joint spin measurement when the magnets are set at a and b and the hidden state is λ.
- $E_{H V}^{1}(a, \lambda)$ be the expectation value of the spin measurement on the left particle when its magnet is set at a and the hiden state of the pair is λ.
- $E_{H V}^{2}(b, \lambda)$ be the expectation value of the spin measurement on the right particle...

Note that if $P_{H V}$ satisfies Bell's locality principle, then

$$
E_{H V}(a, b, \lambda)=E_{H V}^{1}(a, \lambda) E_{H V}^{2}(b, \lambda)
$$

2. Proof of Bell's Theorem.

Statement of the theorem: If $P_{H V}$ satisfies Bell's locality principle, then $P_{H V} \neq P_{Q M}$. proof (outline): First we prove a

Lemma: if $x, y, x^{\prime}, y^{\prime} \in[-1,1]$ then $S\left(x, y, x^{\prime}, y^{\prime}\right) \in[-2,2]$, where $S\left(x, y, x^{\prime}, y^{\prime}\right)=$ $x y+x y^{\prime}+x^{\prime} y-x^{\prime} y^{\prime}$.

Then we use the Lemma to show that if $P_{H V}$ satisfies the locality principle,

$$
\left|E_{H V}(a, b)+E_{H V}\left(a, b^{\prime}\right)+E_{H V}\left(a^{\prime} b\right)-E_{H V}\left(a^{\prime} b^{\prime}\right)\right| \leq 2
$$

Then we pick particlar angles $a, b, a^{\prime}, b^{\prime}$ and show that for those angles

$$
\left|E_{Q M}(a, b)+E_{Q M}\left(a, b^{\prime}\right)+E_{Q M}\left(a^{\prime} b\right)-E_{Q M}\left(a^{\prime} b^{\prime}\right)\right|>2
$$

