General Motivation

Potential impact

- Si: High capacity (1675 mAh/g) can increase the theoretical energy density and specific energy of the cell of 25-30% respect to graphite-based lithium-ion cells.

Open issues

- Mechanical degradation due to large volumetric expansion (a volumetric strain of about 270%) generate plastic flow and substantial stresses in the material, leading to mechanical failure after a few charge-discharge cycles.
- Capacity loss in solid-electrolyte interface formation.

Our contribution

- To aid the development of failure-tolerant architectures, we develop a continuum model that predicts stress, plastic flow, diffusion and the electrochemical response of Si anode during lithiation.

Test and Calibration

- In situ measurements [Sethuraman et al., 2010] from ad hoc experiments are used to calibrate and verify the predictive capability of the model.

Material parameters under investigation

- Mechanical properties of Si as functions of Li concentration.
- Transport properties of Li through Si.
- Parameters related to the solution chemistry of Li in Si (i.e., the concentration dependence activity coefficient).
- Parameters characterizing electrochemical main and side reactions.

Equations Governing

- Finite element model in 3D spatial set
- Boundary conditions in galvanostatic tests
- Boundary conditions in potentiostatic tests

Thermodynamics of a lithium-ion half-cell

Diffusion of Li through the SEI electrode is driven by the gradient of the chemical potential.

\[
\frac{\mu}{\rho_0} = \frac{1}{2} \frac{\partial F}{\partial c} \quad \text{Diffusion equation}
\]

\[
\mu = \mu(\sigma, \theta)
\]

Chemical potential

Boundary conditions in galvanostatic tests:

\[j(x, t) = j_0 \quad j(x, t) = 0\]

Cell voltage and stress computed

Boundary conditions in potentiostatic tests:

\[j(x, t) = j_0 \quad j(x, t) = 0\]

Current density and stress computed

Electrochemical reactions

The total current density through the external circuit is divided into two contributions \(j_0 = j_E + j_L\).

The current supplied to the desired Faradic reaction is calculated as follows:

\[
j_0 = j_{E,0} \quad j_{L,0} = j_{E,0} \quad j_{L,0} = j_{E,0} \quad j_{L,0} = j_{E,0}
\]

The electrode reaction reaction a Table kinetic is assumed [Sethuraman et al., 2010] predict that the SEI thickness and total capacity vary very little with time as \(1/t^2\) and give a good fit to measurements over a long time period [Piersini & Bassani, 2015] but do not fit our experimental data for a small number of cycles.

\[
j_E = \frac{Q_{\text{in}}}{t} \quad j_L = \frac{Q_{\text{out}}}{t}
\]

The total charge balance \(Q_{\text{in}}\) is assumed to be \(1/t^2\). [Piersini & Bassani, 2015].

Mechanical deformation

The anode consists of amorphous Si-film bonded to a rigid substrate and it is modeled as an isotropic, elastic-viscoplastic solid.

Li transport and reaction kinetics via PITT experiments

Motivation

- Power density of Li-ion cells is strictly related to the diffusion coefficient for Li transport through electrode materials.

Experiment description

- In the potentiostatic intermittent titration technique experiment, the electrode was subjected to incremental step changes in potential, and the subsequent transient evolution of stress and electric current were recorded.

Our approach respect to the classical model [Weppner et al., 1977] accounts rigorously for departures from the ideal diaphragm model resulting from stress and free energy of mixing. It also accounts for nonlinearities arising from the Li insertion kinetics.

Future work

Model of phase boundary propagation in lithiated c-Si and Sn anodes in thin film and spherical particle configurations.