Outline

- Focus on Xilinx 4000E-style FPGA (one of the most common FPGAs)
- Thinking FPGA
- Black box optimizations
- Counter design
- Distributed arithmetic
- One-hot state machines
- Miscellaneous tricks
Thinking FPGA

• When starting a design, consider the implementation technology
• Architect your design to fit into an FPGA
 – memory granularity (16x1, 16x2, 32x1)
 – 4 or 5 input logic functions / 4 + 4 and 2-1 mux
 • fewer inputs per logic function is wasteful
 • more inputs is slower
 – routing limitations
 • limited number of tristate buffers and longlines
 • limited number of clock buffers
 – I/O cell features
 • flip flops in I/O cells
 • special delays and slew rate control

“Black Box” Optimization

• Most basic of FPGA design optimizations
 – Essentially performing manual hardware mapping
• Procedure:
 – break down design into combinational logic black boxes
 • inputs and outputs with stuff inbetween
 • arbitrarily complex logic inside the box, but CLB doesn’t care since it is a LUT anyways
 – adjust the “level” of black-boxing until you have mostly 4 or 5 input functions or 4+4 input and 2-1 mux functions
“Black Box” Example

• ALU
 – implements a 32-bit wide 2-input AND, OR, XOR, pass-through
• Example worked through on chalkboard
 – obvious implementation
 • 3 32-bit wide 2-input devices feeding into a mux or a tri-state bus
 – optimized implementation
 • 32 4-input devices: 66% or more savings in area; roughly 30-50% speed increase

Counter Design

• Counters have many design options depending upon the application
 – basic ripple counter
 – ripple-carry
 – lookahead-carry
 – Johnson (mobius)
 – linear feedback shift register (LFSR)
Ripple Counter

- Ripple carry counter is not recommended in FPGA designs due to their asynchronous nature.
- However, ripple carry counters are very efficient in terms of area.
- $k \cdot O(n)$ delay growth with the number of bits, k is large (poor performance).
- Max counting states is 2^N.

Ripple-Carry Counter

- Synchronous design.
- $k \cdot O(n)$ delay growth with n bits, k small.
- This is the basic counter provided in Xilinx libraries.
- Good area efficiency.
- Max counting states is 2^N.
- Loads or sync clears come for free in terms of area and speed.
Carry-Lookahead counter

- Like ripple-carry but carry input to n^{th} counter element is computed using a full sum-of-products of the previous $(n-1)$ bits counter state
- Can have near $O(1)$ delay growth up to a few bits
- Good performance
- Requires a lot of gates
- Combinations of carry-lookahead and ripple-carry can be used to get the best of both worlds
- Max counting states is 2^N

Johnson or Mobius Counter

- $O(1)$ delay growth for most applications
- Well-suited for clock division or count-limit only applications
- Non-binary counter
- Counts to $2 \times n$, where n is the number of flip flops
- Excellent area and speed characteristics
- Near toggle-rate speeds
LFSR Counters

• O(1) delay growth for most applications
• non-binary counter
• $2^N - 1$ states in a pseudorandom sequence
• excellent area and speed characteristics
• near toggle-rate speeds
• ideal for applications where count sequence is irrelevant (FIFO, timers)

LFSR application

• FIFO application
 – Count sequence doesn’t matter
 • just need to address unique memory locations
 • last count value and half-full count values can be predetermined and logic created to detect these conditions
 – Saves area, increases performance
 • no carry look-ahead structures, O(1) delay growth with increasing FIFO depth
Distributed Arithmetic

• Parallel multipliers are expensive to implement in FPGAs
 – requires very wide logic functions or the use of carry-chains
 – hardware and delay growth $O(n^2)$
• Distributed arithmetic serializes multiplies using partial products
 – partial products can be computed in parallel
 – serialized multiplies fit well into FPGA architectures
 – can achieve same throughput as parallel multiplier silicon macros but with longer latency

Distributed Arithmetic

• DA takes advantage of associative and commutative properties of addition

Digit nomenclature: $A = a_n a_{n-1} ... a_2 a_1$

In base 10:

$A \times B = P_n + P_{n-1} + ... + P_2 + P_1$ where $P_n = A \times b_n \times 10^{n-1}$

So $42 \times 121 = 42 \times 1 \times 100 + 42 \times 2 \times 10 + 42 \times 1 \times 1$

In base 2:

$A \times B = P_n + P_{n-1} + ... + P_2 + P_1$ where $P_n = A \times b_n \times 2^{n-1}$

So $101 \times 1101 = (101 \times 1) \ll 3 + (101 \times 1) \ll 2 + (101 \times 0) \ll 1 + (101 \times 1) \ll 0$

multiply operator breaks down to AND operation in one-digit binary; be careful of sign extensions for signed numbers!
Distributed Arithmetic

- Looking at the relation
 \[101 \times 1101 = (101 \times 1) \ll 3 + (101 \times 1) \ll 2 + (101 \times 0) \ll 1 + (101 \times 1) \ll 0 \]

- One sees a basic functional unit- the scaling multiply. This, combined with
 an accumulator and bit-serial input stream (via "time skew buffer"), is the
 essence of the DA multiplier

- Note that the DA implementation discussed here works best for constant *
 variable expressions, which is ideally suited for applications such as
 convolutions and DSP filters
 - replace the \((A \times b_n)\) multiply kernel by a lookup-table instead of several
 AND gates
 - LUTs in some architectures are more efficient than AND gates
 - Time to compute = number of bits in input * time to do scaling multiply

Distributed Arithmetic

- Implementation for variable * \(C_0\); computes result in \(N\) clock cycles
 - diagram courtesy Xilinx
Distributed Arithmetic

- so what?
 - the real power of DA comes in when you try to do multiple-tap FIR filters

\[y[n] = \sum x[k] \cdot h[n - k] \]

\[y[1] = x[0] \cdot h[1] + x[1] \cdot h[0] \]
Example: \(101 \cdot 011 + 110 \cdot 100 \)

\[= (101 \cdot 0) \ll 2 + (101 \cdot 1) \ll 1 + (101 \cdot 1) \ll 0 + (110 \cdot 1) \ll 2 + (110 \cdot 0) \ll 1 + (110 \cdot 0) \ll 0 \]

\[= ((101 \cdot 0) + (110 \cdot 1)) \ll 2 + ((101 \cdot 1) + (110 \cdot 0)) \ll 1 + ((101 \cdot 1) + (110 \cdot 0)) \ll 0 \]

These boxes are about as complex as the boxes used in the one-tap case!

Distributed Arithmetic for a 3-Tap Filter

- Partial Products of equal weight are added together before being summed to next higher partial product weight.

\[\begin{array}{cccccccccc}
-2^2 & 2^2 & 2^1 & 2^0 \\
1 & 0 & 0 & 1 & (-7) & 0 & 1 & 1 & 0 & (6) & 0 & 0 & 1 & 0 & (2) \\
\hline
X & 0 & 1 & 1 & 1 & (7) & X & 0 & 1 & 0 & 1 & (5) & X & 0 & 1 & 1 & 1 & (7) \\
\hline
(& 1 & 0 & 0 & 1 & + & 0 & 1 & 1 & 0 & + & 0 & 0 & 1 & 0 &) & \rightarrow & 0 & 1 & 0 & 1 & \rightarrow & 0 & 0 & 0 & 1 & \rightarrow & 1 & 0 & 1 & 1 & \rightarrow & 0 & 0 & 0 & 1 \\
(& 1 & 0 & 0 & 1 & + & 0 & 0 & 0 & 0 & + & 0 & 0 & 1 & 0 &) & \rightarrow & 0 & 0 & 0 & 1 & \rightarrow & 0 & 1 & 1 & 1 & \rightarrow & 0 & 1 & 1 & 1 & \rightarrow & 0 & 0 & 0 & 1 \\
(& 0 & 0 & 0 & 0 & + & 0 & 1 & 1 & 0 & + & 0 & 0 & 0 & 0 &) & \rightarrow & 0 & 0 & 0 & 0 & \rightarrow & 0 & 0 & 0 & 0 & \rightarrow & 0 & 0 & 0 & 0 & \rightarrow & 0 & 0 & 0 & 0 \\
\hline
1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & (-49) & 0 & 0 & 1 & 1 & 1 & 0 & (30) & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & (-14) & = & 1 & 1 & 1 & 1 & 0 & 1 & 1 & (-5) \\
\end{array} \]

\[= \text{Sign Extension} \]

(slots courtesy Xilinx)
Distributed Arithmetic

- $k \cdot O(2^n) + j \cdot O(1)$, k is relatively small (for area)
- Very close to $O(1)$ performance scaling
- DA can be parallelized and pipelined to gain even more performance
 - Each bit can have its own LUT and adder
 - All bits computed in parallel
 - One result per clock cycle max throughput
8-Tap Symmetric Slice
(8-Bit Example)

A7 B7 C7 D7
C0 C1 C2 C3
A6 B6 C6 D6
C0 C1 C2 C3
A1 B1 C1 D1
C0 C1 C2 C3
A0 B0 C0 D0
X1/2 X1/2 X1/4 X1/4
X1/4 X1/4 X1/4 X1/4
X1/2
+ = ROUNDING ADDER
+ = SIGN EXTENDED ADDER

(courtesy Xilinx)

Distributed Arithmetic

• Performance
 – Serial Distributed Arithmetic (SDA), 10-tap FIR
 • 7.8 Msamp/s for 8 bit samples @ 42 CLBs
 • 4.1 Msamp/s for 16 bit samples @ 50 CLBs
 • old numbers; probably 50% faster now
 – Parallel Distributed Arithmetic (PDA), 8-tap FIR
 • 50-70 Msamp/s for 8 bit samples @ 122 CLBs
 • pipelined, hand-optimized
 – For reference, the XC4008E has 324 CLBs (18 x 18 array)
One-Hot State Machines

- Conventional state machines use \(\log_2(\text{states}) \) bits to implement function
 - output is decoded from state number
 - next state is a combinational function of states
 - state transition rate limited by state number decoding and next state logic delays
- One-hot state machines use as many bits as there are states to implement function
 - only one flip flop storing “1” at any time
 - output is decoded as an OR of appropriate state FFs
 - state transition rate limited only by next state logic delays, which in many cases is zero

Miscellaneous Tricks

- Tri-state mux
 - saves on area, especially for wide muxes
 - may have better or worse performance depending on architecture and device characteristics
 - not shown in illustration is decoder for tri-state buffers
Miscellaneous Tricks

• Use IOBs to register inputs
 – gives faster setup/hold times (eliminates routing delays from setup time)
 – introduces additional latency
 – can save on logic array flip flop usage
• Inverters come for free in most architectures
• Use longlines for timing-critical signals
 – use sparingly since this is a precious resource in Xilinx 4K architectures
 – all wires in Altera “Fast Track” architecture are longlines so routes are always “fast”
• Use pipeline stages to improve pin-locked routing in Altera 8K designs
• When you can afford it, pipeline your design
 – latency versus clock speed tradeoff
• Double-wide half-rate logic (area versus speed)