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Abstract

There is a very large literature on stochastic control of jump diffusions and a

smaller literature on such games. With the exception of two long-forgotten papers

this literature assumes that it is the sizes of the jumps, rather than their arrival

intensities, that is controlled. The second assumption, which is more natural in

many economic contexts, is typically avoided because a failed Lipschitz condition

means that the classical existence and uniqueness proofs cannot be used. We here

derive an asymptotic solution to the game with controlled jump intensities and

show that its equilibrium is very similar to that of the game with controlled jump

sizes. The paper thus makes two contributions: It supplies a way to solve some

control problems and games with controlled jump intensities and it shows that the

commonly used formulation with controlled jump sizes is quite defensible for at

least some classes of games.

Key Words: Stochastic control, Games with jump diffusions, Point processes

with evolving intensities JEL Codes: C73, C61, C02

∗The paper benefitted from comments by participants in MIT’s Organizational Economics Lunch as
well as the 2022 ISMS and SIOE conferences.

1

mailto:bwerner@mit.edu


1 INTRODUCTION

Optimization problems with jump diffusions have found wide-spread use in economics,

operations research, and related fields.1 As far as we know, all published applications

assume that it is the jump sizes, rather than the jump intensities that are controlled. At

least in economics, this is an unnatural assumption in many applications: For example,

when agents engage in search or R&D investments, it seems most logical to assume that

higher efforts lead to faster, rather than bigger, arrivals.

A (the?) major reason for not looking at controlled arrival rates is that the resulting state

dynamics do not satisfy Lipschitz conditions, such that one cannot apply the classical

existence and uniqueness results. The fact that Jacod and Protter (1982) and Protter

(1983) identified a set of conditions under which this class of problems can be solved

made no difference. These results are simply not used: Protter himself does not cite

them in his textbook on Stochastic Integration (2005) and Oeksendahl (2022) believes

that the two assumptions give very similar results and thus that the choice makes little

difference. The results in this paper support that belief but we also show how to find an

approximate solution to games with controlled jump intensities. We formulate and solve

investment games with controlled jump sizes and controlled jump intensities in Sections

II and III, respectively. Comparisons and concluding comments are made in Section IV.

2 GAME WITH CONTROLLED JUMP SIZES

Two players, X and Y , compete in continuous time. The outcome at time t depends on

both their stocks, the state variables (xt, yt) ∈ R+2, x0 = y0 = 0. At time T < ∞, the

game ends, and all stocks become worthless. Until then, the stocks of X and Y grow

according to independent Poisson processes with intensity λ and jumps of size (ut, vt),

respectively. The players choose the size of the jumps in their stocks as C2 Markov

controls; X’s strategy is u(xt, yt, t) and Y ’s is v (yt, xt, t). Their stocks therefore grow

1The first control theory application in economics was due to Merton (1971) and Oeksendahl and
Sulem (2005) is a comprehensive textbook. There are fewer game theory applications, but Wernerfelt
(1988) gives conditions for existence of several equilibrium concepts, in particular Markov.
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over time according to

xt =

∫ t

0

u (xs−, ys−, s−) dNx[λ]ds (1)

yt =

∫ t

0

v (ys−, xs−, s−) dNY [λ]ds (2)

where Nx[λ] and NY [λ] are independent Poisson processes with intensity λ and the inte-

grals sum the jumps at arrivals between 0 and t.2 Since having explicit solutions helps us

make a detailed comparison between the two formulations, we assume that X and Y max-

imize the second order polynomials
∫ T

0
e−ρt [γx2

t − ηy2t − θxtyt + αxt − βyt + σ − 1/2u2
t

−πut] dt and
∫ T

0
e−ρt [γy2t − ηx2

t − θxtyt + αyt − βxt + σ − 1/2v2t − πvt] dt, respectively.

We can, for example, think of the game as describing a duopoly in which two firms

invest in various assets that improve their competitive positions. To keep the expressions

shorter and make the argument more transparent, we start by looking at the case in which

α = β = σ = π = 0, (ρ, η, θ) ∈ R+3, and γ > η. This means that X and Y maximize∫ T

0
e−ρt [γx2

t − ηy2t − θxtyt − 1/2u2
t ] dt and

∫ T

0
e−ρt [γy2t − ηx2

t − θxtyt − 1/2v2t ] dt, respec-

tively. (The extension to the more general case is easy and we will return to it later.)

By Theorem 3.1 in Oeksendal and Sulem (2004), the players want to find C2 value

functions W (xt, yt, t) ,W (yt, xt, t) from R+3 → R that satisfy the Bellman equations:3

Maxu(x,y,t)
{
e−ρt

[
γx2

t − ηy2t − θxtyt − 1/2u2
t

]
+ ∂W (xt, yt, t) /∂t+ λ [W (xt− + ut−,yt−, t−)

−W (xt−, yt−, t−)] + λ
[
W

(
xt−, yt− + v∗t−, t−

)
−W (xt−, yt−, t−)

]}
= 0,W (xT , yT , T ) = 0,

for player X,

(3)

and

Maxv(y,x,t)
{
e−ρt

[
γy2t − ηx2

t − θxtyt − 1/2v2t
]
+ ∂W (yt, xt, t) /∂t+ λ [W (yt− + vt−, xt−, t−)

−W (yt−, xt−, t−)] + λ
[
W

(
yt−, xt− + u∗

t−, t−
)
−W (yt−, xt−, t−)

]}
= 0,W (yT , xT , T ) = 0,

for player Y .

(4)

2The problem formulation suggests a filtration induced by the states (xs, ys, s), and we will conduct
the analysis in that context. The notation reflects that we will work with the right continuous with left
limits (”cadlag” from the French version) versions of all processes, xt, yt, ut, and vt., such that the jump
at t is xt − xt− etc. The appearance of the - subscript in the terms for jumps in both xt and yt does not
mean that they jump at the same time but reflects that the Bellman equation looks at expected values.

3Since the value functions are C2, we can use the infinitesimal generators of xt and yt to describe the
movements of the value functions in infinitesimal time-intervals.
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The first terms in (3) and (4) are the payoffs at t and the remaining terms make up a first

order Taylor approximation to the dynamics of W . The (Markov) equilibrium controls

u∗
t− and v∗t− are therefore given by the first order conditions:

u∗
t− (xt−, yt−, t−) = eρt−λ∂W (xt−, yt−,t−) /∂x (5)

v∗t− (yt−, xt−, t−) = eρt−λ∂W (yt−, xt−, t−) /∂y (6)

Since the players face symmetric problems, we will henceforth focus on X. Substitution

of (5) and (6) into (3) allows us to rewrite the Bellman equation as:4

e−ρt
(
γxt

2 − ηy2t − θxtyt
)
− eρtλ2 [∂W (xt−, yt−, t−) /∂x]2 /2 + ∂W (xt, yt, t) /∂t+

+λ[W (xt− + eρtλ∂W (xt−, yt−, t−) /∂x, yt−, t−
)
−W (xt−, yt−, t−)

]
+

λ
[
W

(
xt−, yt− + eρtλ∂W (yt−, xt−, t−) /∂y,t−

)
−W (xt−, yt−, t−)] = 0,

W (xT , yT , T ) = 0

(7)

We guess a solution of the form:

W g (xt, yt, t) ≡ e−ρt
[
a(t)x2

t + b(t)xt + c(t) + d(t)y2t + e(t)yt + f(t)xtyt
]
,

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = 0
(8)

Using that the strategies are symmetric, this gives:

ug
t− = λ [2a(t)xt− + b(t) + f(t)yt−] (9)

vgt− = λ [2a(t)yt− + b(t) + f(t)xt−] (10)

λ [W g (xt− + λ2a(t)xt− + λb(t) + λf(t)yt−, yt−, t−)−W g (xt−, yt−, t−)] =

e−ρtλ2[a(t)λ+ 1]
{
4a(t)2x2

t− + 4a(t)b(t)xt− + b(t)2 + f(t)2y2t−+

2b(t)f(t)yt− + 4a(t)f(t)xt−yt−}

(11)

λ [W g (xt−, yt− + λ2a(t)yt− + λb(t) + λf(t)xt−, t−)−W g (xt, yt, t−)] =

e−ρtλ2
{
λd(t)f(t)2x2

t− + [λb(t)d(t) + e(t)]f(t)xt− + b(t)[λb(t)d(t) + e(t)]+

4a(t)d(t)[λa(t) + 1]y2t− + 2[b(t)d(t) + 2λa(t)b(t)d(t) + a(t)e(t)]yt−+

2d(t)f(t)[2λa(t) + 1]xt−yt−}

(12)

4Since the value functions are C2, we can use the infinitesimal generators of xt and yt to describe the
movements of the value functions in infinitesimal time-intervals.
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Rewriting the Bellman equation in terms of the coefficients in W g (xt, yt, t) gives:

γx2
t − ηy2t − θxtyt − λ2 [2a(t)xt− + b(t) + f(t)yt−]

2 /2 + [a′(t)− ρa(t)]x2
t + [b′(t)−

ρb(t)]xt + [c′(t)− ρc(t)] + [d′(t)− ρd(t)] y2t + [e′(t)− ρe(t)] yt + [f ′(t)− ρf(t)]xtyt+

λ2[a(t)λ+ 1]
{
4a(t)2x2

t− + 4a(t)b(t)xt− + b(t)2 + f(t)2y2t− + 2b(t)f(t)yt− + 4a(t)f(t)xt−yt−
}

+ λ2
{
λd(t)f(t)2xt−

2 + [λb(t)d(t) + e(t)]f(t)xt− + b(t)[λb(t)d(t) + e(t)]+ 4a(t)d(t)[λa(t) + 1]

y2t− + 2[b(t)d(t) + 2λa(t)b(t)d(t) + a(t)e(t)]yt− + 2d(t)f(t)[2λa(t) + 1] xt−1yt−} .

a(T ) = b(T ) = c(T ) = d(T ) = e(T ) = f(T ) = 0

(13)

W g (xt, yt, t) solves (7) if the constant term and the coefficients on x2
t , xt, y

2
t , yt and xtyt

all are zero at T . This means that the coefficients in W g (xt, yt, t) solve the following

differential equations:

a′(t) = −γ − 2a(t)2λ2[1 + 2a(t)λ]− λ3d(t)f(t)2 + ρa(t), a(T ) = 0 (14)

b′(t) =
[
−4λ3a(t)2 − 2λ2a(t) + λ3d(t)f(t) + ρ

]
b(t) + λ3e(t)f(t), b(T ) = 0 (15)

c′(t) = −λ2b(t)[λa(t)b(t) + b(t)/2 + λb(t)d(t) + e(t)] + ρc(t), c(T ) = 0 (16)

d′(t) = η − 4λ2a(t)d(t)[a(t)λ+ 1]− λ2f(t)2[a(t)λ+ 1/2] + ρd(t), d(T ) = 0 (17)

e′(t) = −b(t)[2λa(t) + 1][2d(t) + f(t)] + 2a(t)e(t)] + ρe(t), e(T ) = 0 (18)

f ′(t) = θ − 2λ2f(t)[2a(t)λ+ 1][a(t) + d(t)] + ρf(t), f(T ) = 0 (19)

Since (14) - (19) is a system of ODEs with continuous right-hand sides, a unique solution

exists, and we can conclude that:

Proposition 1: W ∗ (xt, yt, t) = e−ρt [a(t)x2
t + b(t)xt + c(t) + d(t)y2t + e(t)yt + f(t)xtyt],

solves the Bellman equation (7), and the Markov equilibrium strategies are u∗
t− = λ [2a(t)xt−

+b(t) + f(t)yt−] and v∗t− = λ [2a(t)yt− + b(t) + f(t)xt−].

So the value functions are second order polynomials, and the policy functions are pro-

portional to the arrival intensity and linear in both players’ stocks.

Since Proposition 1 gives an explicit solution to the game, we can quite easily derive

several interesting corollaries.

Corollary (1.1): a(t) > 0 and f(t) < 0 for all t < T and.

Proof: From (14): First, since a′(t) < 0 for t close to T, a(t) > 0 in that neighborhood.
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Second, because a′(s) < 0 if a(s) = 0, a(s) cannot change sign and is therefore positive

for all t < T . Similarly from (19): Since f ′(t) > 0 for t close to T, f(t) < 0 in that

neighborhood and because f ′(t) > 0 if f(t) = 0, f(t) cannot change sign and is therefore

negative for all t < T .

QED

Corollary (1.2): Et=0 |xs − ys| grows with s.

Proof: Suppose that X is ahead at time h in the sense that xh > yh. In that case (since

λ [2a(t)xh+ b(t) + f(t)yh] > λ [2a(t)yh + b(t) + f(t)xh] when xh > yh) , u
∗
t− > v∗t− and X

invests more. The players are equally likely to get the next arrival at time h+i, but sinceX

will invest more, |xh − yh| will grow more if it gets the arrival than if Y does. The expected

value of |xh+i − yh+i| is therefore larger than |xh − yh|. The same mechanism applies for

all later arrivals, and if Y gets the first arrival. So while Et=0 (xs − ys) = 0, Et=0 |xs − ys|

is strictly positive and grows with s.

QED

Corollary (1.3): If x0 > y0, Et=0xs/ys grows with s.

Proof: Suppose again that X is ahead at time h. The players are equally likely to get

the next arrival at time h + i, but the size of a player’s arrival and post arrival stocks

are proportional to his or her stock. So if X gets the arrival at h + i, we can write

xh+i as rxh whereas Y ’s h + i stock would be ryh if it gets the first arrival. Therefore

Et=hxh+i/yh+i = 1/2 [rxh/yh + xh/ (ryh)] = 1/2 (xh/yh) [(r
2 + 1) /r] which is larger than

xh/yh for all r ̸= 1.

QED

Corollary (1.4): The probability that xs − ys changes sign at s+ 1 decreases with s.

Proof: Suppose that xs > ys. X is more likely to get the next arrival and by Corollary

1.2, the expected difference in arrival probabilities grows with xs−ys and thus with time.

QED
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3 GAME WITH CONTROLLED JUMP INTENSI-

TIES

The model is the same as in Section II with three differences: First, the players’ stocks

grow in jumps of size φ > 0 that arrive according to non-homogeneous Point processes

with intensities u (xt−, yt−, t−)for X and v (yt−, xt−, t−) for Y . Second, for reasons ex-

plained below, we bound these intensities. Third, we will be looking for solutions that

are unique in law.

Formally, players choose the intensities as C2 Markov controls; X’s strategy is u (xt, yt, t)

≤ U and Y ’s is v (yt, xt, t) ≤ U . The stocks therefore develop over time according to:

xt =

∫ t

0

dMx [u (xs−, ys−, s−)] ds (20)

yt =

∫ t

0

dMy [v (ys−, xs−, s−)] ds (21)

where Mx [u (xs−, ys−, s−)] andMy [v (ys−, xs−, s−)] are Point processes with jumps of size

φ and intensities u (xs−, ys−, s−) and v (ys−, xs−, s−), respectively. X and Y again max-

imize
∫ T

0
e−ρt [γx2

t − ηy2t − θxtyt − 1/2u2
t ] dt and

∫ T

0
e−ρt [γy2t − ηx2

t − θxtyt− − 1/2v2t ] dt,

respectively, and we continue to assume that (ρ, η, θ) ∈ R+3, and γ > η.

The problem no longer satisfies the conditions of Theorem 3.1 in Oeksendal and Sulem

(2004) because the jump intensities u (xt−, yt−, t−) and v
(
yt−, xt− , t−

)
depend on the very

states they govern. Since the coefficients in (20) and (21) therefore do not satisfy Lipschitz

conditions, we cannot apply classical existence and uniqueness results. Fortunately, we

can rely on a more general result first obtained by Jacod and Protter (1982, Corollary

31) and Protter (1983, Corollary 3.11).5 They show that (20) and (21) have solutions

that are unique in law if there exists finite-valued increasing processes p and q such that∫ t

0
u (xs, ys, s) ds ≤ pt and

∫ t

0
v(ys, xs, s)ds ≤ qt for all t ≥ 0.6 These conditions are clearly

satisfied by pt = tU and qt = tU in our model. While it is unfortunate that we have to

add this extra parameter, it is irrelevant for the economic intuition, and we will soon be

5The idea in the proof is to inductively define an increasing sequence of stopping times (jump times)
τ1, τ2, . . . , τn, .. and piece together the entire solution from the intervals [τ1, τ2−) on which classical
theory applies.

6Uniqueness in law means that all solutions produce the same distribution over future realizations
given the same starting point and time. Classical conditions give path-wise uniqueness, a stronger
property under which all solutions follow the same paths everywhere.
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taking it to infinity.

Depending on U and the realizations of (20) and (21), we can have up to four regions:

(i) neither player is constrained, (ii) one player is constrained, (iii) the other player is

constrained, and (iv) both players are constrained. We know that the players start out

and end unconstrained but in between they can visit all four regions several times and

the solution would need to meet value matching and smooth pasting conditions (in three

dimensions) on each occasion. The obvious difficulties associated with finding an explicit

solution to this equation probably explains why the case with controlled intensities is

looked at so rarely.7 We can, however, get a limiting result.

To develop some intuition for the idea, note that the complete solution to the constrained

problem differs from that to the unconstrained problem because it must take into account

the possibility that the system may transition to other regions. In particular, the value

function in the unconstrained region must reflect the possibility that constraint later may

bind for one or both players. The probability that this happens depends on U as well as

the arrival realizations. If a player has a sequence of early arrivals and therefore a large

stock at an early date, it will want to invest at a high level and could hit the constraint.

On the other hand, if U is large and the player accumulates stocks slowly, it is less likely

to ever be constrained (because the incentives to invest become smaller as t approaches

T ). Since the probability of realizations where the constraints on ut− and vt− never bind

goes to l as U goes to infinity. the result follows.

Proposition 2: Suppose that all jumps are of size φ, that the arrival intensities (ut, vt)

are bounded by U > 0, and that these are controlled by players X and Y , respectively.

Further, define A(t), B(t), C(t), D(t), E(t) and F (t) as the solutions to:

A′(t) = −γ −
[
2A(t)2 + F (t)2

]
φ2 + ρA(t), A(T ) = 0

B′(t) = −[A(t)φ+B(t)]φ2[2A(t) + F (t)]− φ2[D(t)φ+ E(t)] + ρB(t), B(T ) = 0,

C ′(t) = −φ2[A(t)φ+B(t)]2/2− φ2[A(t)φ+B(t)][D(t)φ+ E(t)] + ρC(t), C(T ) = 0

D′(t) = η − φ2[4A(t)D(t) + F (t)/2] + ρD(t), D(T ) = 0

E ′(t) = −φ2F (t)[A(t)φ+ 2B(t)]− 2φ2[2A(t)D(t)φ+ A(t)E(t) +B(t)D(t)] + ρE(t), E(T ) = 0

F ′(t) = θ − 2φ2F (t)[2A(t) +D(t)] + ρF (t), F (T ) = 0

7The four pre-pasting value functions are all quadratic, so some progress may still be possible.
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In this case, as U → ∞:

(2.0.1) The probability of Maxt {ut−, vt−} < U converges to 1.

(2.0.2) The value functions W ∗ (xt, yt, t) and W ∗ (yt, xt, t) converge to e−ρt [A(t)x2
t +B(t)xt+

C(t) +D(t)y2t + E(t)yt + F (t)xt−yt−] and e
−ρt [A(t)y2t +B(t)yt + C(t) +D(t)x2

t + E(t)xt+

F (t)xt−yt−], respectively.

(2.0.3) The Markov equilibrium strategies converge to:

u∗
t− = φ [2A(t)xt− + φA(t) +B(t) + F (t)yt−] and v∗t− = φ [2A(t)yt− + φA(t) +B(t) + F (t)xt−]

Proof: The game starts in the unconstrained region. Consider a time t < T and a pair

of finitevalued functions from [0, t] to [0, U ]. Imagine that the latter pair of functions are

arrival intensities and hold them and t constant. Then, for any pair of reals kx, ky, the

probability of a pair of sequences of realized arrival times such that xt > kx or yt > ky is

decreasing in U . This establishes (2.0.1) and that the extent to which the value functions

in the constrained game depart from those in the unconstrained game goes to zero as U

goes to infinity.

Next, note that the Bellman equation for player X in the unconstrained game is:

Maxu(x,y,t)
{
e−ρt

[
γx2

t − ηy2t − θxtyt− − 1/2u2
t

]
+ ∂W (xt, yt, t) /∂t+ ut− [W (xt− + φ, yt−, t−)

−W (xt, yt− , t−
)]

+ vt−
[
W

(
xt− , yt− + φ, t−

)
−W

(
xt− , yt− , t−

)]
= 0

(22)

The (Markov) equilibrium controls u∗
t− and v∗t− are therefore given by the first order

conditions:

u∗
t− (xt−, yt−, t−) = eρt [W (xt− + φ, yt−, t−)−W (xt−, yt−, t−)] (23)

v∗t− (yt−, xt−, t−) = eρt [W (yt− + φ, xt−, t−)−W (yt−, xt−, t−)] (24)

We can substitute (23) and (24) into (22) and rewrite the Bellman equation as:

e−ρt
(
γx2

t − ηy2t − θxtyt−
)
+ ∂W (xt−, yt−, t−) /∂t+ eρt [W (xt− + φ, yt−, t−)−

W (xt−, yt−, t−)]
2 /2 + eρt [W (yt− + φ, xt−,t−)−W (yt−, xt−, t−)]

[
W

(
xt−, yt− + φ, t−

)
−

W (xt−, yt−, t−)] = 0

(25)
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We again guess a solution of the form:

W g (xt, yt, t) ≡ e−ρt
[
A(t)x2

t +B(t)xt + C(t) +D(t)y2t + E(t)yt + F (t)xt−yt−
]
. (26)

Substituting (26) into (25) gives:

{
A′(t)− ρA(t) + γ +

[
2A(t)2 + F (t)2

]
φ2

}
x2
t + {B′(t)− ρB(t) + [A(t)φ+ B(t)]

φ2[2A(t) + F (t)]− φ2[D(t)φ+ E(t)]
}
xt +

{
C ′(t)− ρC(t) + φ2[A(t)φ+B(t)]2/2−

φ2[A(t)φ+B(t)][D(t)φ+ E(t)]
}
+
{
D′(t)− η − ρD(t) + φ2[4A(t)D(t) + F (t)/2]

}
y2t+{

E ′(t)− ρE(t) + φ2F (t)[A(t)φ+ 2B(t)] + 2φ2[2A(t)D(t)φ+ A(t)E(t) +B(t)D(t)]
}
yt+{

F ′(t)− ρF (t)− θ + 2φ2F (t)[2A(t) +D(t)]
}
xtyt = 0

(27)

Our guess W g (xt, yt, t) therefore solves (27) if the coefficients in W g (xt, yt, t), solve the

following differential equations:

A′(t) = −γ −
[
2A(t)2 + F (t)2

]
φ2 + ρA(t), A(T ) = 0 (28)

B′(t) = −[A(t)φ+B(t)]φ2[2A(t) + F (t)]− φ2[D(t)φ+ E(t)] + ρB(t), B(T ) = 0 (29)

C ′(t) = −φ2[A(t)φ+B(t)]2/2− φ2[A(t)φ+B(t)][D(t)φ+ E(t)] + ρC(t), C(T ) = 0

(30)

D′(t) = η − φ2[4A(t)D(t) + F (t)/2] + ρD(t), D(T ) = 0 (31)

E ′(t) = −φ2F (t) [A(t)φ+ 2B(t)]− 2φ2[2A(t)D(t)φ+ A(t)E(t) +B(t)D(t)]+ (32)

ρE(t), E(T ) = 0

F ′(t) = θ − 2φ2F (t)[2A(t) +D(t)] + ρF (t), F (T ) = 0 (33)

Since (28) – (33) have continuous right-hand sides, a solution exists and (2.0.2) and (2.0.3)

follows.

QED

So just as in the game with controlled jump sizes, the value functions with controlled

arrival intensities are second order polynomials, and the policy functions are linear in

both players’ stocks. Finally, except for the quadratic A(t)φ2, the policy functions are

proportional to the jump size which therefore play a role very similar to that played by

the arrival intensity in the game with controlled jump sizes. Between the jump size and

10



the arrival intensity, the uncontrolled magnitude plays more or less the same role in both

models.

It is easy to establish that the game with controlled jump intensities behaves “like” the

game with controlled jump sizes in the sense that Corollaries 2.1 – 2.4 below are analogues

of Corollaries 1.1 – 1.4.

Corollary (2.1): As U → ∞, the probabilities that a(t) > 0 and f(t) < 0 both converge

to 1.

Corollary (2.2): As U → ∞, if x0 > y0, the probability that Et=0xs/ys grows with s

converges to 1.

Corollary (2.3): As U → ∞, the probability that Et=0 |xs − ys| grows with s, converges

to 1.

Corollary (2.4): As U → ∞, the probability that xs−ys changes sign at s+1, decreases

with s.

Proof: By arguments identical to those used to prove Corollaries 1.1 – 1.4

QED

In a natural analogue of the model presented in Section II, we obtain a limiting result

according to which the value - and policy functions are very similar to what we found

there. By Corollaries 2 – 4, the two games share other appealing properties as well.

The analysis in this Section shows that we can solve dynamic optimization problems and

games with controlled jump intensities if we are willing to accept results that depend

on theoretical bounds on the control variables and solutions that are unique in law only.

However, it also suggests that the qualitative properties of the solution are relatively close

to those obtained in similar models with controlled jump sizes.

4 DISCUSSION

There are some theoretical limits on the acceptability of the solution to the second for-

mulation, but we do not see them as particularly important. It is hard to think of an

economic model in which a solution would be disqualified because it only is unique in

law. There are certainly cases in which it is natural to assume that the arrivals cannot

be too close in time (“at most one per day”?), but the two formulations do not differ
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in that respect; only the arrival intensities are at stake. Can there be cases in which it

is important to bound the arrival intensities? We cannot think of an example, but the

answer may be less clear than that about the nature of uniqueness.

We would like to close with four observations: First, as discussed at the start of Section II,

we claim that the result hold for general second order polynomial objective functions of

the form
∫ T

0
e−ρt [γx2

t − ηy2t − θxtyt + αxt − βyt + σ − 1/2u2
t − πut] dt. To see this, start

by writing out the analogue of (7). This only differs because the first term (the payoff func-

tion) is longer and because u∗
t− (xt−,yt−, t−) = eρt−λ∂W (xt−, yt−, t−) /∂x−π, where the π

is new. You then guess a solution of the form W g (xt, yt, t) ≡ e−ρt [a(t)x2
t + b(t)xt + c(t)+

d(t)y2t + e(t)yt + f(t)xtyt], which is the same as (8). By going through each term in the

Bellman equation you can then see that it also is a second order polynomial and therefore

can be solved by W g (xt, yt, t). Second, while it is a limitation that the results only have

been established for objective functions that are second order polynomials, such func-

tions can be thought of as Taylor approximations to a richer set. In many models this

approximation should be good enough to capture economically important effects. Third,

subject to the constraint that objective functions have to be second order polynomials,

it is not important that the games be symmetric. We chose that case because Corollaries

2 – 4 are uninteresting in other settings. Fourth, to help us think about the limitations

of the results, it would be interesting to identify an economic situation in which the two

formulations yield conflicting or at least different intuitions about what is going on.
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