Robot Task and Motion Planning using Domain-Independent Algorithms

Caelan Reed Garrett
Advisors: Tomás Lozano-Pérez and Leslie Pack Kaelbling
04/19/2018 @ UNH
web.mit.edu/caelan/
Robot must select both **high-level** actions & **low-level** controls

- **Application areas**: semi-structured and human environments

- Household
- Warehouse fulfilment
- Food service
- Construction
Task and Motion Planning (TAMP)

- Plan in a **hybrid** space with many variables
- **Discrete** and **continuous** variables & actions

- **Variables** - robot configuration, object poses, door joint positions, is-on, is-in-hand, is-holding-water, is-cooked, ...
- **Actions** - move, pick, place, push, pull, pour, cook, ...
Cooking and Stacking
Cooking and Stacking
Motion Planning Background

- Plan in a **continuous** configuration space
- **Sampling-based** motion planning
 1. **Sample** robot configurations (randomly)
 2. **Connect** nearby configurations if collision-free path
 3. **Search** for a path within resulting graph

- **PRM**
- **RRT**
- **RRT***
AI (Task) Planning Background

- Plan in a large **discrete** space with **many variables**
- **Planning languages:** STRIPS/PDDL
- **Facts:** boolean state variables
- **Parameterized** actions
 - **Preconditions** test validity
 - **Effects** change the state
- **Heuristic search** algorithms

Example:

```
(:action stack
 :parameters (?b1 ?b2)
 :precondition (and
   (Holding ?b1)
   (Clear ?b2))
 :effect (and
   (HandEmpty)
   (On ?b1 ?b2)
   (not (Holding ?b1))
   (not (Clear ?b2)))
```

Initial State

```
E A B C D
```

Goal State

```
E C A B D
```
Geometric Constraints Affect Plan

- Inherits challenges of both motion & AI planning
 - High-dimensional, continuous state-spaces
 - Discretized state-space grows combinatorially
 - Long horizons

- Continuous constraints limit high-level strategies
 - Kinematic reachability
 - Joint limits & collisions
 - Visibility
 - Stability & stiffness
Geometric Constraints Affect Plan

- Inherits challenges of both motion & AI planning
 - High-dimensional, continuous state-spaces
 - Discretized state-space grows combinatorially
 - Long horizons

- Continuous constraints limit high-level strategies
 - Kinematic reachability
 - Joint limits & collisions
 - Visibility
 - Stability & stiffness
64 Continuous & 10 Discrete Variables
64 Continuous & 10 Discrete Variables
Prior Work

- **Multi-Modal Motion Planning** - Alami et al., Siméon et al., Hauser and Latombe, Barry et al., Vega-Brown and Roy

 - Inefficient in high-dimensional state-spaces
Prior Work

- **Multi-Modal Motion Planning** - Alami et al., Siméon et al., Hauser and Latombe, Barry et al., Vega-Brown and Roy
 - Inefficient in high-dimensional state-spaces
- **Semantic Attachments** - Dornhege et al., Erdem et al., Dantam et al.
 - Assume an a priori discretization
Prior Work

- **Multi-Modal Motion Planning** - Alami et al., Siméon et al., Hauser and Latombe, Barry et al., Vega-Brown and Roy
 - Inefficient in high-dimensional state-spaces
- **Semantic Attachments** - Dornhege et al., Erdem et al., Dantam et al.
 - Assume an a priori discretization
- **Task & Motion Interface** - Cambon et al., Kaelbling and Lozano-Pérez, Lagriffoul et al., Srivastava et al., Toussaint
 - Inflexible to new domains
Our Approach

- Extends Planning Domain Description Language (PDDL)
 - Modular & domain-independent
- Enables the inclusion of sampling procedures
 - Can encode domains with infinitely-many actions

- Admits efficient, generic algorithms
 - Samplers are blackbox inputs
 - Software respects this abstraction
 - Algorithms solve a sequence of finite PDDL problems
 - Leverage fast AI planners as search subroutines
2D Pick-and-Place Example

- **Goal**: block A within the red region
- Robot and block poses are continuous (x, y) pairs
- Block B obstructs the placement of A

![Diagram](image-url)
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions

 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
- move, pick B, move, place B,
 move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick \(B \), move, place \(B \),
 - move, pick \(A \), move, place \(A \)
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick B, move, place B,
 - move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
- move, pick B, move, place B,
 move, pick A, move, place A
2D Pick-and-Place Solution

- One (of infinitely many) possible solutions
 - move, pick \(B \), move, place \(B \),
 - move, pick \(A \), move, place \(A \)
2D Pick-and-Place Initial & Goal

- **Some constants are** numpy arrays

- **Static initial facts** - value is constant over time
 - (Block, A), (Block, B), (Region, red), (Region, grey), (Conf, [-7.5 5.]), (Pose, A, [0. 0.]), (Pose, B, [7.5 0.]), (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

- **Fluent initial facts** - value changes over time
 - (AtConf, [-7.5 5.]), (HandEmpty), (AtPose, A, [0. 0.]), (AtPose, B, [7.5 0.])

- **Goal formula:** \((\exists ?p) \ (\text{and} \ (\text{Contained A} \ ?p \ \text{red}) \ (\text{AtPose A} \ ?p)) \)
2D Pick-and-Place Actions

- Typical PDDL action description except that arguments are **high-dimensional & continuous!**
- To use the actions, must **prove** the following **static facts:**

 \[
 \text{(Motion } ?q1 \ ?t \ ?q2), \ (\text{Kin } ?b \ ?p \ ?g \ ?q) \]

(:action move
 :parameters (?q1 ?t ?q2)
 :precondition (and (Motion ?q1 ?t ?q2) (AtConf ?q1))
 :effect (and (AtConf ?q2) (not (AtConf ?q1))))

(:action pick
 :parameters (?b ?p ?g ?q)
 :precondition (and (Kin ?b ?p ?g ?q)
 (AtConf ?q) (AtPose ?b ?p) (HandEmpty))
 :effect (and (AtGrasp ?b ?g)
 (not (AtPose ?b ?p)) (not (HandEmpty)))))
Suppose we were given the following additional static facts:

(Motion, [-7.5 5.], \(\tau_1 \), [0. 2.5]), (Motion, [-7.5 5.], \(\tau_2 \), [-5. 5.]), (Motion, [-5. 5.], \(\tau_3 \), [0. 2.5]), (Kin, A, [0. 0.], [0. -2.5], [0. 2.5]), …
BFS in Discretized State-Space

- Suppose we were given the following additional static facts:
 - (Motion, [-7.5 5.], \(\tau_1 \), [0. 2.5]), (Motion, [-7.5 5.], \(\tau_2 \), [-5. 5.]),
 (Motion, [-5. 5.], \(\tau_3 \), [0. 2.5]), (Kin, A, [0. 0.], [0. -2.5], [0. 2.5]), ...

\[\text{(move, [-7.5 5.], } \tau_1, [0. 2.5])\]

\[\text{(AtConf, [0. 2.5])}\]
\[\text{(AtPose, A, [0. 0.])}\]
\[\text{(AtPose, B, [7.5 0.])}\]
\[\text{(HandEmpty)}\]
BFS in Discretized State-Space

- Suppose we were given the following additional static facts:
 - \((\text{Motion}, [-7.5 5.], \tau_1, [0. 2.5]), (\text{Motion}, [-7.5 5.], \tau_2, [-5. 5.]), (\text{Motion}, [-5. 5.], \tau_3, [0. 2.5]), (\text{Kin}, A, [0. 0.], [0. -2.5], [0. 2.5]), \ldots\)

Initial State

- \((\text{move}, [-7.5 5.], \tau_1, [0. 2.5])\)

```
(AtConf, [-7.5 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)
```

- \((\text{move}, [-7.5 5.], \tau_2, [-5. 5.])\)

```
(AtConf, [-5. 5.])
(AtPose, A, [0. 0.])
(AtPose, B, [7.5 0.])
(HandEmpty)
```
BFS in Discretized State-Space

Suppose we were given the following additional static facts:

- \((\text{Motion}, [-7.5, 5.], \tau_1, [0, 2.5])\), \((\text{Motion}, [-7.5, 5.], \tau_2, [-5, 5.])\),
- \((\text{Motion}, [-5, 5.], \tau_3, [0, 2.5])\), \((\text{Kin}, A, [0, 0.], [0, -2.5], [0, 2.5])\), ...

\[(\text{move}, [-7.5, 5.], \tau_1, [0, 2.5])\]
\[(\text{move}, [-7.5, 5.], \tau_2, [-5, 5.])\]
\[(\text{move}, [-5, 5.], \tau_3, [0, 2.5])\]
BFS in Discretized State-Space

- Suppose we were **given** the following additional static facts:
 - \((\text{Motion}, [-7.5, 5.], \tau_1, [0. 2.5])\), \((\text{Motion}, [-7.5, 5.], \tau_2, [-5. 5.])\),
 - \((\text{Motion}, [-5. 5.], \tau_3, [0. 2.5])\), \((\text{Kin}, A, [0. 0.], [0. -2.5], [0. 2.5]), \ldots\)

\[
\begin{align*}
\text{Initial State} & : (\text{move}, [-7.5, 5.], \tau_1, [0. 2.5]) \\
& \quad (\text{AtConf}, [0. 2.5]) \\
& \quad (\text{AtPose}, A, [0. 0.]) \\
& \quad (\text{AtPose}, B, [7.5 0.]) \\
& \quad (\text{HandEmpty}) \\
\text{(pick, A, [0. 0.], [0. -2.5], [0. 2.5])} \\
\end{align*}
\]

\[
\begin{align*}
\text{(move, [-7.5 5.], \tau_2, [-5. 5.])} \\
& \quad (\text{AtConf}, [-5. 5.]) \\
& \quad (\text{AtPose}, A, [0. 0.]) \\
& \quad (\text{AtPose}, B, [7.5 0.]) \\
& \quad (\text{HandEmpty}) \\
\end{align*}
\]

\[
\begin{align*}
\text{(move, [-5. 5.], \tau_3, [0. 2.5])} \\
& \quad (\text{AtConf}, [0. 2.5]) \\
& \quad (\text{AtGrasp, A, [0. -2.5]}) \\
& \quad (\text{AtPose}, B, [7.5 0.]) \\
\end{align*}
\]
Values given at start:

1 initial configuration: (Conf, [-7.5 5.])

2 initial poses: (Pose, A, [0. 0.]), (Pose, B, [7.5 0.])

2 grasps: (Grasp, A, [0. -2.5]), (Grasp, B, [0. -2.5])

Planner needs to find:

1 pose within a region: (Contain A ?p red)

1 collision-free pose: (CFree A ?p ? B ?p2)

4 grasping configurations: (Kin ?b ?p ?g ?q)

4 robot trajectories: (Motion ?q1 ?t ?q2)
What Samplers Do We Need?

- **Low-dimensional** placement stability constraint (*Contain*)
 - i.e. 1D manifold embedded in 2D pose space
 - Directly **sample values that satisfy the constraint**
 - May need **arbitrarily many** samples
 - Gradually enumerate an **infinite sequence**

![Diagram](image)
Intersection of Constraints

- **Kinematic constraint** \(\text{(Kin)} \) involves poses, grasps, and configurations
- **Conditional samplers** - samplers with inputs

![Diagram showing the intersection of constraints with poses, grasps, and configurations.]
Composing Conditional Samplers

- **Outputs** of one conditional sampler are the **inputs** to another
- **Directed acyclic graph (DAG)** of conditional samplers

- **Placement Sampler**
- **Pose**
- **Inverse Kinematics**
- **Grasp g**
- **Config**
- **Motion Planner**
- **Trajectory τ_1, τ_2, \ldots**
- **Config q2**
Stream: a function to a generator

- **Advantages**
 - Programmatic implementation
 - Compositional
 - Supports infinite sequences

- **Stream** - function from an **input object tuple** \((x_1, x_2, x_3)\) to a (potentially infinite) sequence of **output object tuples** \([(y_1, y_2), (y'_1, y'_2), \ldots]\)

```python
def stream(x1, x2, x3):
    i = 0
    while True:
        y1 = i*(x1 + x2)
        y2 = i*(x2 + x3)
        yield (y1, y2)
        i += 1
```

- **Diagram:**
 - Input \(x_1\)
 - Input \(x_2\)
 - Input \(x_3\)
 - **stream**
 - Outputs \([(y_1, y_2), (y'_1, y'_2), \ldots]\)
Stream Certified Facts

- Objects alone aren’t helpful: what do they represent?
 - Communicate semantics using predicates!

- Augment stream specification with:
 - **Domain facts** - static facts declaring legal inputs
 - e.g. only configurations can be motion inputs
 - **Certified facts** - static facts that all outputs satisfy with their corresponding inputs
 - e.g. poses sampled from a region are within it
Sampling Contained Poses

(:stream sample-region
 :inputs (?b ?r)
 :domain (and (Block ?b) (Region ?r))
 :outputs (?p)
 :certified (and (Pose ?b ?p) (Contain ?b ?p ?r)))

def sample_region(b, r):
 x_min, x_max = REGIONS[r]
 w = BLOCKS[b].width
 while True:
 x = random.uniform(x_min + w/2,
 x_max - w/2)
 p = np.array([x, 0.])
 yield (p,)

Block b Region r sample-region Pose [(p), (p'), (p''), ...]
Sampling IK Solutions

- **Inverse kinematics** (IK) to produce robot grasping configuration
- Trivial in 2D, non-trivial in general (e.g. 7 DOF arm)

```
(:stream sample-ik
  :inputs (?b ?p ?g)
  :domain (and (Pose ?b ?p) (Grasp ?b ?g))
  :outputs (?q)
  :certified (and (Conf ?q) (Kin ?b ?p ?g ?q)))
```
Calling Motion Planner

- “Sample” (e.g. via an RRT) multi-waypoint trajectories
- Include **joint limits & fixed obstacle collisions**, but not movable object collisions

```
(:stream sample-motion
  :inputs (?q1 ?q2)
  :domain (and (Conf ?q1) (Conf ?q2))
  :outputs (?t)
  :certified (and (Traj ?t) (Motion ?q1 ?t ?q2)))
```
Check Block Collisions

- **Test stream**: stream without output objects
- Return True if **collision-free** placement (e.g. via FCL)

```
(:stream test-cfree
 :inputs (?b1 ?p1 ?b2 ?p2)
 :domain (and (Pose ?b1 ?p1) (Pose ?b2 ?p2))
 :outputs ()
 :certified (CFree ?b1 ?p1 ?b2 ?p2))
```
STRIPStream = STRIPS + Streams

- **Domain dynamics** (*domain.pddl*): declares actions
- **Stream properties** (*stream.pddl*)
 - Declares stream inputs, outputs, and certified facts
- **Problem and stream implementation** (*problem.py*)
 - Initial state, **Python constants**, & goal formula
- **Stream implementation using Python generators**

Diagram

- **User provides**
 - Domain
 - Streams
 - Init & Goal

- **STRIPStream Planner**
 - **Plan**
 - **Supporting Facts**
Two STRIPStream Algorithms

- STRIPStream planners decide which streams to use
- Algorithms alternate between searching & sampling:
 1. **Search** a finite PDDL problem for plan
 2. **Modify** the PDDL problem (depending on the plan)

- Search implemented using off-the-shelf algorithms
 - **Off-the-shelf AI planner** - FastDownward
 - Exploits factoring in its search heuristics (e.g. hFF)
 - **Probabilistically complete** given sufficient samplers
Incremental Algorithm

- Incrementally construct all possible initial facts
- Periodically check if a solution exists
- Repeat:
 1. Compose and evaluate a finite number of streams to unveil more facts in the initial state
 2. Search the current PDDL problem for plan
 3. Terminate when a plan is found

![Diagram of the incremental algorithm process]

- FastDownward Search
- Sample Streams
- Start
- Plan found
- Done!
- No plan
- New facts
Incremental: Sampling Iteration 1

Iteration 1 - 14 stream evaluations
Incremental: Sampling Iteration 1

Iteration 1 - 14 stream evaluations

- **Sampled:**
Incremental: Sampling Iteration 1

Iteration 1 - 14 stream evaluations

- Sampled:
 - 2 new robot configurations:
Incremental: Sampling Iteration 1

Iteration 1 - 14 stream evaluations

- **Sampled:**
 - 2 new robot configurations:
 - 4 new block poses:
Incremental: Sampling Iteration 1

Iteration 1 - 14 stream evaluations

- **Sampled:**
 - 2 new robot configurations:
 - 4 new block poses:
 - 2 new trajectories:
Incremental: Search Iteration 1

- Pass current discretization to FastDownward
- If **infeasible**, the current set of samples is insufficient
Incremental: Search Iteration 1

- Pass current discretization to FastDownward
- If *infeasible*, the current set of samples is insufficient
Incremental: Sampling Iteration 2

Iteration 2 - 54 stream evaluations
Incremental: Sampling Iteration 2

Iteration 2 - 54 stream evaluations

- **Sampled:**
Incremental: Sampling Iteration 2

Iteration 2 - 54 stream evaluations

- Sampled:
 - 4 new robot configurations:
Incremental: Sampling Iteration 2

Iteration 2 - 54 stream evaluations

- **Sampled:**
 - 4 new robot configurations:
 - 4 new block poses:
Incremental: Sampling Iteration 2

Iteration 2 - 54 stream evaluations

- **Sampled:**
 - 4 new robot configurations:
 - 4 new block poses:
 - 10 new trajectories:
Incremental: Search Iteration 2

- Pass current discretization to FastDownward
- If infeasible, the current set of samples is insufficient
Incremental: Search Iteration 2

- Pass current discretization to FastDownward
- If **infeasible**, the current set of samples is insufficient
Incremental Example: Iterations 3-4

Iteration 3 - 118 stream evaluations
Iteration 4 - 182 stream evaluations

Solution:
1) move [-7.5 5.] [[-7.5 5.], [-7.5 5.], [7.5 5.], [7.5 2.5]] [7.5 2.5]
2) pick B [7.5 0.] [0. -2.5] [7.5 2.5]
3) move [7.5 2.5] [[7.5 2.5], [7.5 5.], [10.97 5.], [10.97 2.5]] [10.97 2.5]
4) place B [10.97 0.] [0. -2.5] [10.97 2.5]
5) move [10.97 2.5] [[10.97 2.5], [10.97 5.], [0. 5.], [0. 2.5]] [0. 2.5]
6) pick A [0. 0.] [0. -2.5] [0. 2.5]
7) move [0. 2.5] [[0. 2.5], [0. 5.], [7.65 5.], [7.65 2.5]] [7.65 2.5]
8) place A [7.65 0.] [0. -2.5] [7.65 2.5]

- Drawback - many unnecessary samples produced
- Computationally expensive to generate
- Induces large discrete-planning problems
Optimistic Stream Outputs

- Many TAMP streams are exceptionally **expensive**
- Inverse kinematics, motion planning, collision checking
- Only query streams that are **identified** as useful
- Plan with **optimistic hypothetical** outputs
- Inductively create **unique placeholder** output objects for each stream instance (has # as its prefix)

Optimistic evaluations:

1. **s-region:** (b0, red) -> (#p0)
2. **s-ik:** (b0, [0. 0.], [0. -2.5]) -> (#q0),
3. **s-ik:** (b0, #p0, [0. -2.5]) -> (#q2)
Focused Algorithm

- **Lazily** plan using optimistic outputs before real outputs
- **Recover** set of streams used by the optimistic plan
- Repeat:
 1. Construct active optimistic objects
 2. **Search with real & optimistic objects**
 3. If only real objects used, return plan
 4. **Sample** used streams
 5. **Disable** used streams
Focused Example 1

Optimistic Plan:

move([-5. 5.], #t0, #q0), pick(A, [0. 0.], [-0. -2.5], #q0),
move(#q0, #t2, #q1), place(A, #p0, [-0. -2.5], #q1)

Constraints:

(kin, A, #q0, #p0, [-0. -2.5]),
(kin, A, #q1, [0. 0.], [-0. -2.5]),
(motion, [-5. 5.], #t1, #q1),
(motion, #q1, #t2, #q0),
(contain, A, #p0, red),
Focused Example 2: Iteration 1

Optimistic Plan:
\[
\text{move}([-5. \ 5.], \ #t0, \ #q0), \ \text{pick}(A, \ [0. \ 0.], \ [-0. \ -2.5], \ #q0), \\
\text{move}(\#q0, \ #t2, \ #q1), \ \text{place}(A, \ #p0, \ [-0. \ -2.5], \ #q1)
\]

Constraints:
(\text{cfree}, \ A, \ #p0, \ B, \ [7.5 \ 0.]), \ (\text{contain}, \ A, \ #p0, \ \text{red}), \\
(\text{kin}, \ A, \ #q0, \ [0. \ 0.], \ [-0. \ -2.5]), \ (\text{kin}, \ A, \ #q1, \ #p0, \ [-0. \ -2.5]), \\
(\text{motion}, \ #q0, \ #t2, \ #q1), \ (\text{motion}, \ [-5. \ 5.], \ #t0, \ #q0)

Stream evaluations:
1. \text{s-region}: (A, \ \text{red})->[[[8.21 \ 0.]]]
2. \text{t-cfree}: (A, \ [8.21 \ 0.], \ B, \ [7.5 \ 0.])=\text{False}

These stream instances are removed from subsequent searches.
Optimistic Plan:
\[
\begin{align*}
\text{move}([\text{-5. 5.}], #t4, #q2), & \quad \text{pick}(B, [7.5 0.], [-0. -2.5], #q2), \\
\text{move}(#q2, #t9, #q3), & \quad \text{place}(B, #p1, [-0. -2.5], #q3), \\
\text{move}(#q3, #t6, #q0), & \quad \text{pick}(A, [0. 0.], [-0. -2.5], #q0), \\
\text{move}(#q0, #t8, #q4), & \quad \text{place}(A, [8.21 0.], [-0. -2.5], #q4)
\end{align*}
\]

\[t\text{-cfree}: (A, [8.21 0.], B, [7.5 0.]) \text{ previously failed}\]
\[t\text{-cfree}: (A, [8.21 0.], B, #p1) \text{ might succeed}\]
Scaling Experiments
Scaling Experiments
- **Focused** outperforms incremental
- **FastDownward** outperforms BFS
Applications: Pantry Manipulation

- Framework is independent of robot and robotics software
- To stow the object, the robot decides to open the door
Applications: Pantry Manipulation

- Framework is **independent** of robot and robotics software
- To stow the object, the **robot decides** to open the door
Applications: Multi-Robot Planning

- Centralized scheduling of a team of robots
- PDDL rovers domain with visibility and reachability
- Use temporal planners as search subroutine (e.g. Temporal FastDownward)
Applications: Multi-Robot Planning

- **Centralized scheduling** of a team of robots
- PDDL rovers domain with **visibility** and **reachability**
- Use **temporal planners** as search subroutine (e.g. Temporal FastDownward)
Applications: Automated Fabrication

- Plan sequence of 306 3D printing extrusions
- Collision, kinematic, **stability** and **stiffness** constraints
- Collaborators: Yijiang Huang and Caitlin Mueller
Applications: Automated Fabrication

- Plan sequence of 306 3D printing extrusions
- Collision, kinematic, **stability** and **stiffness** constraints
- Collaborators: Yijiang Huang and Caitlin Mueller
Extension: Learning to Pour

- **Learn good samplers** for dynamic skills
- **Collaborators:** Zi Wang, Alex LaGrassa, Skye Thompson

Precondition:
\[(\text{GoodPour} \ ?\text{arm} \ ?\text{bowl} \ ?\text{pose} \ ?\text{cup} \ ?\text{grasp} \ ?\text{conf} \ ?\text{traj})\]

Learner:
\[
\text{score}(w_s, h_s, w_t, h_t, c_{\text{grasp}}, c_{\text{pour}}, r_{\text{pose}}) \geq 0
\]

- **:action** pour
- **:precondition**
 \[(\text{and} \ (\text{GoodPour} \ ?\text{arm} \ ?\text{bowl} \ ?\text{pose} \ ?\text{cup} \ ?\text{grasp} \ ?\text{conf} \ ?\text{traj}))
 (\text{AtPose} \ ?\text{bowl} \ ?\text{pose}) \ (\text{AtGrasp} \ ?\text{arm} \ ?\text{cup} \ ?\text{grasp})
 (\text{AtConf} \ ?\text{arm} \ ?\text{conf}) \ (\text{HasWater} \ ?\text{cup})
 (\text{not} \ (= \ ?\text{bowl} \ ?\text{cup})) \ (\text{not} \ (\text{UnsafeControl} \ ?\text{arm} \ ?\text{traj})))
- **:effect**
 \[(\text{and} \ (\text{HasWater} \ ?\text{bowl}) \ (\text{not} \ (\text{HasWater} \ ?\text{cup}))))
\]
Sampling Good Pours

- **Learn classifier** for successful pours
- **Rejection sampling** for good pour samples

Learner: \[\{ \theta \mid \text{score}(\theta) > 0 \} \]

\[
\text{score}(w_s, h_s, w_t, h_t, c_{\text{grasp}}, c_{\text{pour}}, r_{\text{pose}}) = 0
\]
Gaussian Process (GP) Regression

- Real robot data is expensive
- GPs encode **uncertainty**
- **Active** model learning
- Sample **robust** actions

\[
\mu(\theta) \pm 2\sigma(\theta)
\]

\[
\{ \theta \mid P(g(\theta) > 0) > 0.9545 \}
\]

Real robot data is expensive
GPs encode **uncertainty**
Active model learning
Sample **robust** actions
Planning with Learned Pours
Planning with Learned Pours
Planning with Learned Pours
Planning & Execution with Uncertainty

- World is **stochastic** (MDP):
 - **Determinize** (select the effect of) action outcomes
 - Penalize **unlikely** and **costly** outcomes
 - **Replan** after execution
- World is **partially observable** (POMDP):
 - Plan on **distributions** over states
Planning & Execution with Uncertainty

- World is **stochastic** (MDP):
 - **Determinize** (select the effect of) action outcomes
 - Penalize **unlikely** and **costly** outcomes
 - **Replan** after execution
- World is **partially observable** (POMDP):
 - Plan on **distributions** over states
Takeaways

- **STRIPStream**: general-purpose planning language that supports **sampling procedures (streams)**

- **Domain-independent algorithms** that operate on **streams** as blackboxes

- **Focused algorithm** able to intelligently query only a small number of samplers

- Ongoing work involving **multi-agent** planning, **fabrication**, **learning samplers**, **cost-sensitive** planning, and **planning & execution**
Questions? (and Outtakes!)
Questions? (and Outtakes!)
Questions? (and Outtakes!)