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Abstract. We are observing a disruption in the urban transportation worldwide. The number of cities offering

shared-use on-demand mobility services is increasing rapidly. They promise sustainable and affordable personal

mobility without a burden of owning a vehicle. Despite growing popularity, on-demand services, such as

carsharing, remain niche products due to small scale and rebalancing issues. We are proposing an extension to

the traditional carsharing, which is Autonomous Mobility on Demand (AMOD). AMOD provides a one-way

carsharing with self- driving electric vehicles. Autonomous vehicles can make the carsharing more attractive to

customers as they (i) reduce the operating cost, which is incurred when a manually driven system is unbalanced,

and (ii) release people from the burden of driving.

This study is built upon our previous work on Autonomous Mobility on Demand (AMOD) systems. Our

methodology is simulation-based and we make use of SimMobility, an agent-based microscopic simulation

platform. In the current work we focus on the framework for testing different rebalancing policies for the

AMOD systems. We compare three different rebalancing methods: (i) no rebalancing, (ii) offline rebalancing,

and (iii) online rebalancing. Simulation results indicate that rebalancing reduces the required fleet size and

shortens the customers’ wait time.

1 Introduction
During the post-World War II period automobiles became

more widespread, especially in the US. With large-scale

suburban areas, the commuting trend accelerated and peo-

ple became car-dependent [1]. The mass use of motor ve-

hicles led to some unforeseen consequences in terms of

congestion, pollution, safety and climate change. This

has spurred a growing interest in shared-use mobility—

particularly a one-way vehicle sharing—as a sustainable

alternative to privately owned vehicles. The challenge is

to ensure flexibility of private vehicles while removing the

need of car ownership. It is commonly known that most of

the vehicles used in urban areas are heavily underutilized,

i.e., private vehicles are parked around 22 hours daily and

their driving speed is usually five to ten times slower than

their design speed [2]. One of the hopes for shared-use

mobility is that it will reduce congestion and costly park-

ing requirements. Despite these prominent advantages, an

inadequate and unbalanced fleet of shared vehicles can re-

sult in service unavailability problems, particularly during

periods of high demand. One potential solution for this

issue is to leverage on recent developments in robotics

technology and use vehicles with self-driving capabili-

ties. Through automated rebalancing, Autonomous Mo-

bility on Demand (AMOD) can redistribute cars to better

Figure 1. The AMOD Controller handles fleet management of

autonomous vehicles and consists of five main components re-

sponsible for: (i) facility location, (ii) passenger to vehicle as-

signment, (iii) routing, (iv) empty vehicle rebalancing and (v)

ridesharing. AMOD Controller dispatches orders to SimMobili-

tyST, which performs a 0.1 second scale simulation of the vehi-

cles and returns vehicular information (e.g., speed and location)

back to the fleet management module. The AMOD trips are gen-

erated in SimMobilityMD.

meet demand. Autonomous vehicles can make the carshar-

ing more attractive to customers as they can (i) reduce the

operating cost, which is incurred when a manually driven

system is unbalanced, and (ii) release people from the bur-

den of driving.
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A main motivation for the development of AMOD sys-

tems is sustainable transportation, yet no standard method-

ology has been established to accurately and consistently

design and evaluate this new service. Existing methods for

operating as well as modeling urban transport require ex-

tensions to credibly incorporate AMOD systems as ben-

efits analysis requires controlled experiments that com-

pare transportation behavior with and without the new

mode. Breakthroughs in real-time management of the en-

tire transportation system can lead to transit models that

better optimize resources and improve efficiency.

This work is built upon our work presented in [3, 4]

and sets out to highlight importance of rebalancing for

autonomous mobility on demand system. In our previ-

ous studies, we presented the AMOD Controller, which

handles fleet management of autonomous vehicles, specif-

ically facility location, passenger to vehicle assignment,

vehicle routing, empty vehicle rebalancing and rideshar-

ing. The AMOD Controller is developed as an exten-

sion of SimMobility—an agent-based microscopic simu-

lation platform—to model and evaluate different scenarios

of AMOD systems (Fig. 1). In the current work we focus

on the framework for evaluating the impact of different re-

balancing policies on the performance of the AMOD sys-

tem. The system performance is measured in terms of the

level of service, i.e., the customers’ waiting time and travel

time (travel time is understood as an indicator of road con-

gestion).

The rest of this paper is structured as follows. Sec-

tion 2 provides a literature review of fleet management

of mobility on demand systems. Section 3 discusses our

methodology to test different rebalancing policies. Results

are presented in Section 4. Conclusion and future direc-

tions are highlighted in Section 5.

2 Background and literature review

Automated mobility on demand systems attempt to pro-

vide a one-way carsharing with self-driving electric ve-

hicles. AMOD vehicles hold great promise for mobility

on demand systems because they can cooperate with each

other and rebalance themselves. Through the system-level

coordination, autonomous vehicles can use existing roads

more efficiently i.e. by reducing the distance headway to

the autonomous vehicle in front or by routing vehicles via

not heavily congested roads [5]. To the consumer, AMOD

offers an alternative transportation mode to the private ve-

hicles. AMOD vehicles are demand-responsive, which

means that they do not operate on a regular schedule like

buses or trains, but rather only run when there is a request

for the service. This allows for a long- term environmen-

tal sustainability and potential cost savings for customers,

while relieving people from the burden of driving. Au-

tonomy could also potentially increase safety as the road

accidents are mainly caused by the human errors.

The system of autonomous shared vehicles combines

benefits of both, standard carsharing systems and taxis. In

general, carsharing system might be seen as not as attrac-

tive as taxis because the customers might not be able to

find a free vehicle close to their position. On the contrary,

taxi can pick them up from any location, but with the cost

of hiring people to drive the vehicles. AMOD reduces the

need of hiring drivers while ensuring vehicles’ availability

not only within a walking distance to parking lots. Despite

these advantages, an unbalanced and inappropriately sized

fleet of AMOD vehicles can result in service unavailability

problems, particularly during periods of high demand. To

address these problems, a few directions in the literature

have been established.

To estimate the minimum required fleet size of shared-

use vehicles, many researchers have focused on rebalanc-

ing strategies for both station-based and free-floating car-

sharing system [6–8]. Some studies attempt to estimate the

fleet size of autonomous shared-use vehicles [3–5, 9–11].

[9] shows a theoretical solution to fleet sizing by intro-

ducing rebalancing assignments that minimize the number

of empty vehicles traveling in the network and the num-

ber of rebalancing drivers needed, while ensuring stabil-

ity. The introduced rebalancing policy (based on a fluid

model) was tested in a simulation framework developed in

Matlab. Following on this work, [5] discusses a thought

experiment of replacing all vehicles in Singapore with a

fleet of autonomous and on demand cars to serve for the

personal mobility of the entire population. The authors

investigate the potential benefits of the AMOD system.

Their work shows that the AMOD system requires a num-

ber of robotic vehicles equal about 1/3 of the current num-

ber of passenger vehicles in Singapore. [11] proposes a

queuing-theoretical model for autonomous mobility on de-

mand systems, which minimizes the number of rebalanc-

ing vehicles by solving a linear program. The model is ap-

plied to the New York City. Their case study shows that the

current taxi demand in Manhattan can be met with about

60% of the size of the current taxi fleet.

[12] presents algorithms for dynamic vehicle routing

(DVR) for autonomous transportation-on-demand. In each

specific DVR scenario the author adopts the methods from

queuing theory, combinatorial optimization, and stochas-

tic geometry for the automatic planning of optimal multi-

vehicle routes to provide service to demands. Similarly,

[13] and [14] consider routing of shared-use autonomous

vehicles. The authors design a routing policy that mini-

mizes the average steady-state time delay between the gen-

eration of an origin-destination pair and the time the trip is

completed. [2] reviews modeling, control and evaluation

of AMOD systems presented in [5, 11–14].

An overview of the modeling, control and evaluation

of AMOD systems is presented in [2]. The review is built

upon work discussed in [5, 11–14].

[3, 4] is published in continuance of [2, 5, 9, 11]. These

two studies make use of SimMobility, a microscopic sim-

ulation tool, which allows mode choice and congestion

to be taken into account while performing evaluation of

the AMOD system. One of their findings for a specific

policy indicates that introducing the AMOD impacts the

mode choice of commuters as some of them switch to the

new service. The authors also show that the rebalancing

has a positive effect on system performance (when com-
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pared to the system without rebalancing model), however,

the empty vehicle trips increased vehicle miles traveled

(VMT) and road congestion. In this paper we extend the

work on rebalancing by introducing the model which di-

rectly estimates the fleet size of AMOD system.

3 Methodology
This work is built upon the studies presented in [3, 4]. A

long-term goal of our analysis is to establish a complete

and comprehensive research that compares transportation

efficiency with and without autonomous mobility system.

The research seeks to answer the following questions: (i)

What fleet sizes and vehicles distribution are necessary to

serve a given demand? (ii) What vehicles assignment and

route choice policies are likely to improve system perfor-

mance? (iii) How to perform rebalancing of the vehicles?

(iv) How the ride-sharing should be incorporated into the

system?

To better capture the behavior and dynamics of travel

patterns, we use a multi-agent modeling approach in a mi-

croscopic simulation framework (Fig. 1). We extended

SimMobility with a dedicated controller for managing au-

tonomous vehicles. As shown in Figure 1, SimMobil-

ity is made up of three pillars: (i) the Short-Term (ST)

simulator, which simulates movement of agents at a mi-

croscopic granularity, (ii) the Mid-Term (MT) simulator,

which simulates agents’ behavior in terms of their activi-

ties and travel patterns, and (iii) the Long-Term (LT) sim-

ulator, which captures land use and economic activity on a

year-to-year scale. SimMobility’s framework is fully mod-

ular in a way that each level can run independently and

only interact with the other level when necessary. Every

agent exists and at all levels and in this way agent’s be-

havior and characteristics are consistent across the three

pillars. More details on SimMobility can be found in [15].

As presented in our previous papers, the fleet manage-

ment problem is divided into five sub-problems: (i) facil-

ity location, which attempts to find the best locations of

the stations to park and recharge the vehicles, (ii) passen-

ger to vehicle assignment, which is to find the best vehicle

for each customer, (iii) routing, which aims to find an opti-

mal assignment of a vehicle to the route between the origin

and destination, (iv) empty vehicles rebalancing, which is

to redistribute vehicles to better meet the demand, and (v)

ride-sharing, which attempts to match more than one pas-

senger to one vehicle.

The current work sets out to highlight the importance

of rebalancing for autonomous mobility on demand sys-

tem. In our methodology we distinguish three rebalancing

methods: (i) no rebalancing, (ii) offline, and (iii) online re-

balancing. In (i) vehicles are only moved when assigned to

customers and parked at the destination of the trip. This is

our baseline scenario for the analysis. (ii) is run based on

the historical data and the rebalancing counts are decided

before starting the simulation, while (iii) is run during the

simulation time and the rebalancing counts are optimized

based on the predicted requests at the time of invoking

the rebalancing function. From the perspective of sys-

tem manager, the offline model solves problem of strategic

planning and long-term operation, specifically what is the

number of vehicles needed and how to distribute them be-

tween stations. The online model solves for the short-term

operating decisions, specificalljmy how to move vehicles

based on the current situation on the network. This study

aims to analyze and compare the three models.

3.1 Offline rebalancing

The offline rebalancing model developed in this study ex-

tends the linear program introduced in [9]. The objective

of our model is to find the minimum number of vehicles

at each station at the beginning of the day (Fig. 2). As

proven in [9] this is equivalent to minimizing the rebal-

ancing effort. This policy requires a priori knowledge of

the demand di j(t). We assume that this knowledge is avail-

able through the historical data and we obtained it from

the simulation in SimMobility MT.

The model is formulated as follows. Let Ni(t) and dwi (t)
be the number of vehicles owned by station i at time t
and anticipated number of customers waiting at station i
at time t such that dwi (t) =

∑
j[di j(t)− d ji(t − τ ji)]. Two de-

cision variables are the number of empty (rebalancing) ve-

hicles to send from station i to station j at each rebalancing

period, ri j(t), and the number of vehicles idling at station

i at time t, vi(t). Note, that Ni(t) is the sum of vehicles de-

parted for i plus vehicles idling at i. Therefore, at any time

t, Ni(t) = vi(t)+
∑

j

[
d ji(t−τ ji)−di j(t)

]
+
∑

j

[
r ji(t−τ ji)−ri j(t)

]

for all i,t. The number of vehicles departed for station i,
but not available for assignment yet, is depi(t). Then, the

total number of vehicles N =
∑

i Ni(t) +
∑

i depi(t); N is

constant over time. We define vreb
i (t) =

∑
j

[
r ji(t − τ ji) −

ri j(t)
]

and assume that the travel time from station i to sta-

tion j is known and given as τi j; τi j is constant over time

for any i and j, i � j. Length of the rebalancing interval is

Δt; τi j is aggregated based on Δt.
The objective of this problem is to minimize the num-

ber of rebalancing trips at all times t.

min
∑

i

ri j(t)

s.t. N(t) = N(t − Δt) ∀t

vi(t) + vreb
i (t) ≥ dwi (t) ∀i, t

vi(t + Δt) = vi(t) + vreb
i (t) − dwi (t) ∀i, t

vi(t = 0) = vi(t = Tp) ∀i

ri j(t = 0) = ri j(t = Tp) ∀i, j

ri j(t), vi(t) ≥ 0 ∀i, j, t

(1)

The first constraint is set to ensure that the number of

vehicles in the system is constant over time. The second

constraint tells us that the number of available vehicles at

station i has to be sufficient to serve the demand. The third

constraint describes a flow conservation at each node. The

fourth and fifth are the periodicity constraints. The sixth

are the non-negativity constraints.

The model solves for the number of vehicles required

to service given booking requests and the rebalancing
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Figure 2. A simple example of an unbalanced AMOD system,

i.e., we can observe that the top right station is heavily under-

served, while there are vehicles available at the bottom right sta-

tion. The rebalancing aims to align the demand with the supply.

counts between different intervals. The number of vehi-

cles at the beginning of the simulation and the rebalancing

counts resulted from the model were fed to the simula-

tor and later compared against the solutions of the online

model.

3.2 Online rebalancing

The online model used in this study is based on the fluid

model first introduced in [5, 9]. The model repeatedly

solves the optimization formulated in [4] and it finds the

rebalancing counts to match the anticipated demand at all

stations.

In the online model, the number of excess demand at

station i, d̂i, is the number of customers that cannot be

served using only the vehicles available at station i, i.e.,

d̂i = vi − di. A negative d̂i indicates that there are vehi-

cles available to send. We assume that the cost of sending

one vehicle from station i to station j is equivalent to the

travel time between the i and j and given as ci j, which is

constantly being updated by SimMobility (travel time is

time-varying). Our decision variable ri j is the number of

empty (rebalancing) vehicles to send from station i to sta-

tion j. Note, that for simplification, t is omitted in this for-

mulation (the model can be understood as a time invariant

model). The objective function minimizes the rebalancing

effort.

min
∑

i j

ci jri j

s.t.
∑

j

(r ji − ri j) ≥ d̂i ∀i, j

∑

j

ri j ≤ vi ∀i

ri j ≥ 0 ∀i, j

(2)

The first constraint ensures that the number of rebalanc-

ing counts is greater or equal to the excess demand. The

second constraint prevents us from sending more vehicles

than we have available in at station i. The third constraint

is the non-negativity constraint.

The online model is implemented such that the AMOD

controller executes it at every time t = nΔt, where n is

the number of intervals and Δt is the length of the interval,

i.e., in this study we focus on online rebalancing every one

hour, which is explained in Section 4.1.

4 Results

In this section we study the relation between the rebal-

ancing models, number of vehicles in the simulation and

customers’ waiting times (Fig. 3). The waiting time is de-

fined as the time difference between the trip request time

and the pick-up time.

4.1 Simulation setup

To evaluate performance of the three rebalancing policies,

we use a 56km2 network of the Central Business District

in Singapore. The network consists on 1229 nodes, 14948

lanes and 313 traffic signals.

The demand generation process for AMOD is based

on integration of SimMobility MT with SimMobility ST.

The simulated population in SimMobility MT was esti-

mated based on the Household Interview Travel Survey

for 2012 (for more details please refer to [4]). Given the

output from SimMobility MT, we replaced all transport

modes except of the Mass Rapid Transit (subway) and

public buses with the AMOD service. If only a part of the

trip was inside CBD, then we cut the trip and simulated

it from or to the border of the network. We run the sim-

ulation for the period of 3am-12pm. The total number of

AMOD trips for this period was 363,859. Customers do

not drop the booking requests and leave the system only

when they finish their trips.

Locations of the stations are optimized based on the

maximum coverage model (detailed description in [4]). In

this study, we assumed that the coverage radius of a station

is 1000 meters, which is equivalent to 2-3 minute ride at

the average speed of 30 km/h (based on the Land Transport

Authority’s data, the average speed for arterial roads dur-

ing peak hours in Singapore is 28.9 km/h [16]). Solution

of the model is 34 stations within the analyzed zone. In

the online model, we initialized stations with equal num-

ber of vehicles across the stations. We simulated fleet sizes

of 10,000 to 40,000 vehicles. In the offline version the sta-

tions were initialized with the number of vehicles based on

the optimization output (to recall, the offline model gives

a unique solution for the fleet size, vehicle distribution be-

tween the stations and the number of rebalancing trips,

while the online model is solved during the simulation for

the rebalancing counts).

Both models are sensitive to the rebalancing interval.

Therefore, the interval for the offline model is 15 minutes,

while for the online model is 1 hour. The reason of this

difference is the following: too long interval in the of-

fline model results in overestimation of the fleet size (as

the travel time is discretized based on the interval size);

too short interval in the online model results in rebalanc-

ing during the peak period (especially if there is a booking

queue).

All simulations were run in SimMobility ST, which

simulates the individual decisions and the transportation
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Figure 3. The performance of the three different rebalancing

policies expressed in terms of the waiting time across different

fleet sizes. The no-rebalancing policy (the blue line) performs

quite poorly compared to the online and offline rebalancing meth-

ods. Both rebalancing methods help in reducing the fleet size,

i.e., we need 35,000 vehicles without rebalancing for the average

waiting time to be below 10 minutes and only 25,000 if we per-

form rebalancing. This finding translates to significant savings in

the number of required parking lots.

network at the sub-second level (microscopic level). Our

AMOD Controller is an integrated, but detachable, com-

ponent that imbues SimMobilityST with the capability to

simulate an AMOD system (Figure 1).

4.2 Policy comparison

Figure 3 summarizes the performance of the three rebal-

ancing methods introduced in Section 3. It shows the av-

erage customer waiting time (with upper and lower quar-

tiles) for different rebalancing policies as a function of the

fleet size. We observe a decrease in waiting time with the

increase in the fleet size. The trend lines for the no re-

balancing model (the blue line) and the online rebalanc-

ing model (the red line) are nonlinear. The no rebalancing

policy performs quite poorly in terms of the waiting time.

Given the level of service we want to achieve, it requires

the biggest fleet size for the AMOD operation, e.g., per-

formance curve for the online model indicates that for the

fleet size of 25,000 vehicles and more the average wait-

ing time falls below 10 minutes. If we do not perform

rebalancing we need as many as 35,000 vehicles, which

translates to 28% increase in the required fleet size. Our

finding that rebalancing reduces the fleet size is consistent

with [2, 4, 5, 11].

The offline model (the grey cross) optimizes the fleet

size and rebalancing effort by providing 24,216 vehicles.

For this fleet size the average waiting time is 11.62 min-

utes, which is almost 2 minutes longer than for a similar

fleet size under online rebalancing model. With the fleet

size of 24,216 (offline model) and 25,000 (online model)

we could serve 93% and 89% of the trips, respectively.

Note that not all the generated trips were served because a

proportion of the passengers had not yet arrived by the end

of the simulation.

The differences in the results can be explained as fol-

lows: (i) Time-invariant travel time in the offline model re-

sults in underestimation of the fleet size. The online model

performs assignment and rebalancing based on the cur-

rent travel time on the network (taken from Simmobility),

while the offline model does it based on the average travel-

time, which does not account for congestion. (ii) In the

offline model all booking requests are served immediately

causing overestimation of the fleet. In the online model

the customers are waiting for service a queue. The queue

is always taken into account during rebalancing. (iii) The

simulation of the offline model accounts for the optimized

initial vehicle distribution, while in the online model vehi-

cles are distributed evenly across the stations.

5 Conclusion and future work

The work described in this paper has been concerned with

the development of algorithms for rebalancing of mobility

on demand systems in Singapore. Three rebalancing mod-

els were proposed: (i) no rebalancing, (ii) offline rebalanc-

ing, and (iii) online rebalancing; (i) is our baseline model.

In this configuration, vehicles are only moved when as-

signed to customers and parked at the destination of the

trip. The results show that this model requires the biggest

fleet size for the average waiting time to fall below 10 min-

utes. In (ii) and (iii) for the same level of service, we need

about 28% and 23% less vehicles, respectively. We ob-

served that the offline model gives a reasonable estimation

of the fleet size, however further analysis has to be done

to reduce the gap between online and offline model. For

the future work we are planning to enrich rebalancing by

combining the benefits of both models into one robust re-

balancing policy. We have also an interest in incorporat-

ing the demand management policies in our AMOD Con-

troller, e.g., dynamic pricing.
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