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Abstract—Autonomous mobility on demand (AMOD) has
emerged as a promising solution for urban transportation.
Compared to prevailing systems, AMOD promises sustainable, af-
fordable personal mobility through the use of self-driving shared
vehicles. Our ongoing research seeks to design AMOD systems that
maximize the demand level that can be satisfactorily served with
a reasonable fleet size. In this paper, we introduce an extension for
SimMobility—a high-fidelity agent-based simulation platform—
for simulating and evaluating models for AMOD systems. As
a demonstration case study, we use this extension to explore
the effect of different fleet sizes and stations locations for a
station-based model (where cars self-return to stations) and a
free-floating model (where cars self-park anywhere). Simulation
results for evening peak hours in the Singapore Central Business
District show that the free-floating model performed better than
the station-based model with a ‘“small number” of stations;
this occurred primarily because return legs comprised ‘“‘empty”
trips that did not serve customers but contributed to road
congestion. These results suggest that making use of distributed
parking facilities to prevent congestion can improve the overall
performance of an AMOD system during peak periods.

Keywords—Automated mobility on demand, agent-based simu-
lation, fleet-sizing, facility location.

I. INTRODUCTION

According to the most recent estimates, over 7.27 billion
people inhabit the Earth [1] with more than half of the
population living in the urban areas [2]. The urban population
is expected to double by 2050 [3], tripling expected number
of cars [4], which already exceeds 1 billion [1]. This increase
will further exacerbate current problems such as road con-
gestion, parking availability and pollution. Currently, public
transportation does not allow door-to-door service and lack
schedule flexibility and personalization. Public transport, when
provisioned for peak hour demand, may result in low efficiency
as vehicles become idle in off-peak hours.

An alternative solution is Mobility on Demand (MOD)
system, which can be classified as public transportation with
flexibility of privately owned vehicles. A MOD system is a fleet
of shared vehicles that can be accessed (picked-up or dropped-
off) at specific locations in a city. A key difference factor
of MOD systems, when compared to existing transportation
modes, is demand-responsiveness. Unlike scheduled systems
like buses and trains, MOD vehicles only operate when there
is demand for the service. As such, it promises to be an
sustainable, affordable system for personal mobility in densely
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Fig. 1: The AMOD_Controller is a component linked to the
SimMobility simulator that enables the platform to simulate
an AMOD service running on the transportation network. The
AMOD service can be simulated alongside regular taxis, private
vehicles and public transportation.

populated urban environments [5], [6].

Since vehicles are shared, MOD systems typically require
smaller fleet sizes and have lower static land consumption in
comparison with systems utilizing privately owned, individu-
ally operated vehicles [5], [7], [8]. Vehicle sharing also implies
higher vehicle utilization, which increases the replacement
rate. This hastens the adoption of newer, more fuel-efficient
vehicles and results in lower vehicle emissions [5]. First
attempts at introducing an MOD system can be traced back
to 1948 in Switzerland [9]. After initial failures (mainly due
to the available technology at the time), MOD was successfully
launched in Switzerland in 1987, and Germany in 1988 [9].

Despite these prominent advantages, an unbalanced MOD
fleet can result in service availability problems for consumers,
particularly during periods of high demand. One potential
solution for this issue is to leverage on recent developments in
robotics technology and use vehicles with self-driving capabil-
ities. Through automated rebalancing, Autonomous Mobility
on Demand (AMOD) systems can redistribute cars to better
meet demand. Furthermore, through system-level coordination,
autonomous vehicles can use existing road infrastructure more
efficiently, for example, by reducing the distance headway
and by routing vehicles though less-congested roads [7]. In
addition, AMOD systems can provide mobility for people who
may be otherwise unable to drive, such as disabled individuals.

Although ongoing research in the areas of autonomous



vehicles is very active, the transportation research community
has shifted its attention to AMOD systems only recently.
Important questions related to the design of AMOD systems
still remain open. For example, what fleet sizes are required
to ensure a satisfactory level of service? What are the trade-offs
between different rebalancing and parking location policies?

This paper presents AMOD Controller developed as an
extension of SimMobility (Fig. 1), a micro-simulation platform
that allows users to test models and hypotheses related to
the management and deployment of AMOD systems. Current
research on mobility on demand systems often relies on coarse-
grained simulators where gross approximations are made, e.g.,
vehicles are “teleported” between different locations [6], [10],
[11] or, due to computational reasons, scenarios are run using
scaled samples [8]. This work builds on and extends SimMo-
bility [12], a high-fidelity agent-based simulator, which scales
to millions of agents and can provide fine-grained metrics
such as individual car locations and road-segment congestion
throughout the simulation.

We demonstrate the utility of our platform by evaluating
a policy where private cars are restricted from entering the
high-traffic Central Business District of Singapore. Instead,
travelers have access to an AMOD system (in addition to taxis
and public transport). We study the effects of different fleet
sizes on customer waiting times for two models: (1) a station-
based where cars self-drive back to stations and (2) a free-
floating model where cars self-park at drop-off locations.

The reminder of this paper is organized as follows. In
Section II the literature review on recent work on studies
related to fleet sizing for autonomous mobility on demand
systems is presented. Section III describes our methodology
and the proposed AMOD controller. Our case study is presented
in Section IV, with simulation results in Section V. Finally, we
conclude this work with a summary and a description of future
work in Section VI.

II. BACKGROUND AND RELATED WORK

In this section, we review recent work related to fleet-
sizing for MOD systems. From an operational perspective, MOD
can be implemented in three ways: (a) station-based, (b) free-
floating and (c) peer-to-peer system (also known as a person-
to-person system). In (a) and (b), vehicles are owned by a
company, while in (c) existing car owners make their vehicles
available to others. Furthermore, in (a) and (c) customer can
pick-up/return vehicle only at designated stations (also called
distribution centers or car parks), while in (b) there is no
stations and users can pick-up and drop off vehicles freely
within an operating area [8], [9].

In this study we focus on station-based and free-floating
models for an AMOD system. The flexibility of MOD and
AMOD systems comes at a cost of having no guarantee to
find a car resulting in longer waiting time when a vehicle
is not yet available. To maximize the likelihood of finding
a car, the fleet of AMOD vehicles should be appropriately
sized and managed. The problem of fleet sizing of mobility
on demand systems is an actively researched topic [6], [8],
[13]-[15], with several studies assessing optimal fleet sizes
for AMOD systems [7], [10], [16]. In brief, fleet size largely
depends on five crucial factors: (a) the size and configuration
of operating network (which is related to the distance of trips),
(b) the average demand for service, (c) the level of service that
the system provider wants to achieve, (d) the routing policy,

(e) the rebalancing policy and (f) the facility (car distribution
centres/parking) locations. When designing MOD systems, (a),
(b) and (c) are very often fixed in our model, while (d), (e)
and (f) can be selected in different ways, what can influence
the fleet size and waiting times of passengers.

To estimate the minimum required fleet size, many re-
searchers have focused on rebalancing strategies for both
station-based and free-floating carsharing system [6], [8]—
[11], [16]. One of these studies [11] shows a theoretical
solution to fleet sizing by introducing rebalancing assignments
that minimize the number of empty vehicles traveling in the
network and the number of rebalancing drivers needed, while
ensuring stability. In case of AMOD systems, fleet sizing is
similar to fleet sizing of MOD systems with human-driven ve-
hicles, but with the advantage that the vehicles can redistribute
themselves. The introduced rebalancing policy (based on a
fluidic model) was tested in a low-fidelity simulation developed
in Matlab. Using both theoretical and simulation results, the
authors determined the minimum number of vehicles required
to maintain system stability.

In [6], three different redistribution strategies (zero, peri-
odic and continuous redistribution) for station-based and free-
floating carsharing were analysed. Analysis was performed
using an agent-based simulation approach and tested on a
square grid with a random demand. The authors showed that
without changes in percentage of satisfactorily served demand,
continuous redistribution of vehicles results in a reduction in
the required fleet size as compared to zero-redistribution and
periodical redistribution strategies.

Another recent study [16] evaluated fleet sizing for an
autonomous Taxi (aZaxi) system. The paper evaluated two
models: (a) personal rapid transit, in which customers were
served by the same vehicle if they arrived at a station within a
time window and their origin and destination stations were the
same, and (b) smart paratransit, where vehicles were re-routed
to pick-up additional customers. For both models, stations were
established in a grid. The authors presented upper and lower
bounds for the fleet size required for both models.

An important factor in the overall performance of MOD
and AMOD systems is facility location. Intuitively, the spatial
distribution of demand in a city is non-uniform and hence,
strategically placed facilities can reduce customer waiting
times and required fleet size. In traditional MOD systems,
accessibility to the stations (in terms of distance from your
location to the station) is a critical factor, because people
must walk to get a vehicle. In station-based AMOD systems,
customers do not have to walk, however proper car park
locations can influence the waiting time of passengers.

Strategically locating stations for AMOD systems is inti-
mately related to the problem of optimally placing stations in
bike-sharing programs [17]-[19], charging stations for electric
vehicles [20]-[22] and bus stops for public transportation [23].
It is also closely related to similar problems in communication
networks, logistics and distribution systems [23]. Unfortu-
nately, the facility location problem is NP-hard and most
existing work rely on approximation algorithms [24]. In the
related problems [17]-[21], [23], [25], facility locations are
optimized based on the expected demand for the service.
Two of the most common approaches are: (1) minimizing
impedance and (2) maximizing coverage. The first approach
allocates stations such that the sum of all of the weighted
costs between demand points and stations is minimized. The



Initialization
(loading configuration file,
trips data and
car parks location)

Dispatch - )
Fleet Management [ orders Receiving Information

(Agent-Vehicle Assignment
Vehicle Routing ¢
Vehicle Rebalancing)

Decision Making Behavioral Model

¥

Agent Movement Behavioral Model

Vehicle tracking
(collecting data from SimMobility
about the vehicles current status, ¢

position and speed) Vehicles location
[€"" and speed

Agent Update Phase ‘

AMOD_Controller Traffic Simulator of SimMobilityST

Fig. 2: The AMOD_Controller consists of three main compo-
nents which handle initialization, fleet management and vehicle
tracking. In particular, the fleet management module is re-
sponsible for assigning, routing and rebalancing. It dispatches
orders to SimMobilityST, which performs a 0.1 second scale
simulation of the vehicles and returns vehicular information
(e.g., speed and location) to the vehicle tracking component
that captures and logs the results.

second approach allocates stations such that as many demand
points as possible is within the impedance cut-off (e.g., time,
distance) from stations. Based on the results shown in [17],
[19] the maximum coverage approach shows a better efficiency
in terms of minimizing waiting time of customers.

III. METHODOLOGY

A long-term goal of our research is to determine how
different fleet sizes and facility locations influence the perfor-
mance of an AMOD system. To better capture the behavior and
dynamics of travel patterns, we used a multi-agent modeling
approach in a microscopic simulation framework. In contrast
to fluid-dynamic and queuing theory models, multi-agent sim-
ulation allows for more detailed and complex behaviors to
be represented. In this work, we extended SimMobility—an
agent-based simulation platform—with a dedicated controller
for managing autonomous vehicles.

A. Extending SimMobility with the AMOD Controller

SimMobility is a multi-scale simulator that considers land-
use, transportation and communication networks along with
individual choices and decisions at different levels of reso-
lutions: from detailed traveler movements to day-to-day and
year-to-year travel decisions. It handles transportation demand
for passengers and goods, simulates agents’ activity and travel
patterns and captures land-use and economic activity, with spe-
cial emphasis on accessibility. The individual travel behavior
is modeled under an activity-based formulation, where each
agent’s daily activities and its impact on the transportation
systems are simulated [12]. The core traffic simulation model
of SimMobilityST is based on the microscopic simulation tool
MITSIM [26]. SimMobility is under ongoing development
and it is an open-source software based on a distributed C++
implementation. As mentioned, its behavioral models rely in
different temporal resolutions and, for the purposes of this
study, we focus primarily on the SimMobility Short-Term
(SimMobility ST) simulator, which simulates the individual
decisions and the transportation network at the sub-second
level.
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Fig. 3: Left: Implementation of a FIFO-based service in the
AMOD_Controller (t represents the time). In this model, new
requests are first tested for feasibility (if a path exists from
any vehicle to the request pick-up point and from the source
to the destination nodes). Feasible requests are then serviced
by assigning a free vehicle to service the trip. The vehicle is
dispatched with a pre-defined route (the shortest driving path).
As the vehicle is in service, data is continually collected and
logged by AMOD_Controller for later analysis. Right: The case
study area in Singapore (highlighted in green), encompassing
the Central Business District (CBD).

Our AMOD_Controller is an integrated, but detachable,
component that imbues SimMobilityST with the capabil-
ity to simulate an AMOD system (Fig. 1 and 2). The
AMOD_Controller was implemented in C++ for fast execution,
however there are plans for Python and Julia plugins to enable
rapid prototyping.

In essence, the AMOD_Controller (together with Simmobil-
ity) is an experimental research tool to test hypothesized mod-
els and algorithms for autonomous vehicle routing, dispatching
and scheduling. The models and algorithms are organized into
three main components: initialization, fleet management and
vehicle tracking modules (Fig. 2). The principal component
is fleet management, which assigns, dispatches and routes
vehicles. This component is typically reconfigured depending
on the model being evaluated. As a simple example that has
been implemented, consider a first-in-first-out (FIFO) service
that assigns to each customer the nearest available vehicle
(in terms of shortest-path distance). The AMOD vehicles are
routed with the least cost path between two different locations,
where the cost is proportional to the traversed distance. After
dropping off passengers, vehicles can either return to the
originating station, the closest station or simply wait at the
drop-off location for a service request. The implemented model
of AMOD_Controller is summarized in Fig. 3.

More complex assignment and routing mechanisms can
be accommodated within the existing controller framework
by substituting the relevant sub-components; this allows for
proposed algorithms to be quickly prototyped, incorporated
and tested within SimMobilityST. Throughout the simulation,
the fleet is monitored by the vehicle-tracking component,
which also records relevant information (vehicle positions
and events such as customer pick-ups) for later analysis. For
example, in our preliminary experiments, the obtained logs
were post-processed to obtain distributions of customer waiting
and travel durations.

B. AMOD Post-Service Routing Models
In this study, we evaluated two post-service routing alter-
natives, that is, how the autonomous vehicles behaved after
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Fig. 5: Case-study modeling framework. The demand genera-
tion process of AMOD is based on integration of SimMobility
Mid-Term (MT) simulator with SimMobility Short-Term (ST)
simulator. The mid-term (day-to-day) simulator handles trans-
portation demand for passengers and goods, while SimMobility
ST simulates network on the operational level.

dropping-off passengers:

1)  In station-based model, after servicing a trip, AMOD
vehicles always drove back to the nearest station and
waited for new requests (and re-charge if necessary).

2) In free-floating model, AMOD vehicles self-parked
at drop-off locations, where they waited for new
requests. It is assumed that all drop-off locations
contained parking facilities where the vehicles could
wait and optionally recharge.

Both models assume that customers make reservations in real
time (no advance booking is allowed) and that AMOD vehicles
pick up and drop off passengers at any node in the road
network. We also only considered individual rides, where each
trip was served by a single vehicle.

For non-autonomous MOD systems, the free-floating
scheme is arguably more preferable for the consumer since
it alleviates him/her from the costs associated with returning
the vehicle. For autonomous systems, vehicles can self-return
to station, but this return leg constitutes an empty trip (which
may increase road congestion and fuel-use). Furthermore, if
the station is further away from the next requested service, the
vehicle would be making an unnecessary trip. On the other
hand, in the free-floating model, vehicles can become severely
unbalanced leading to longer waiting times for consumers.
The station-based model requires use of car-parks, which
contributes to increased land-use. Our study seeks to evaluate
the effects of both models in the densely-population island
nation of Singapore during a peak travel period.

IV. CASE STUDY — CENTRAL BUSINESS DISTRICT IN
SINGAPORE

In this section, we describe preliminary case-study simula-
tions designed to evaluate the effect of a new policy restricting
private vehicle usage within in the high-traffic Central Business
District (CBD) in Singapore (Fig. 3). In this scenario, private
vehicles were not allowed to access a 14km? restricted zone in
the CBD and AMOD was introduced as an alternative mode of
transport. In other words, only taxis, public transportation and
AMOD vehicles were permitted to enter the analysed area. The
simulations were run for the period of 2 hours during evening
peak (5:00pM to 7:00PM).

A. Demand Generation
The demand generation process of AMOD is based on
integration of SimMobility MT simulator with SimMobility

ST simulator. Description on midterm simulator can be found
in [12], in general it simulate agents mobility decisions that
includes their activity and travel patterns along with mode,
time-of-day and route choices. For this study the SimMobility
MT model assumes all private vehicle trips as a combined
modal trip (i.e., Private vehicle + AMOD) if part of the trip
is inside CBD. The mode choice model in SimMobilityMT is
modified by making it sensitive to AMOD waiting time and
additional cost terms, which actually fed back by SimMobility
ST in an iterative framework to bring consistency. Further
parking prices for private vehicle is reduced as now they have
been parked outside the CBD region. For the base case, the
total number of AMOD trips for the simulated period was
28,525 trips.

B. Facility Location and Fleet Sizes

In the station-based model, 4 different sets of facility
locations were analyzed (Fig. 4). The first set consisted of
10 nodes, which were selected based on the highest frequency
of originating trips (high-demand nodes). The remaining three
sets consisted of the top 20, 30 and 40 high-demand nodes,
respectively. There was no capacity constraint on the facilities,
i.e., the facility could hold as many cars as required. In
the free-floating model, initial stations were assumed in the
same manner as for the station-based model; however, in the
free-floating model, cars were not required to return to these
stations. Twelve different fleet sizes were simulated, i.e., from
2000 to 7500 AMOD vehicles in the system. At the beginning
of the simulation, vehicles were uniformly distributed over the
facilities.

V. RESULTS
This section discusses the outcomes of our simulations,
specifically number of customers served and customer waiting
times for each of the different scenarios. We compared the free-
floating model against the station-based model with a varying
number of facilities and assessed effect of different fleet sizes
on the performance of AMOD system.

A. Number of Customers Served

Figure 6 shows the percentage of customers served versus
the AMOD fleet size in the system under (a) free-floating and
(b) station-based models. Note that not all the generated trips
were served because a proportion of the passengers had not
yet arrived by the end of the simulation.

In both models, increasing the vehicle fleet size resulted
in a linear increase in the number of passengers served,
with gradient coefficients of 0.037 for the free-floating model
and 0.022 for the station-based model. In other words, every
additional 100 cars provisioned increased the average demand
served by 3.7 percent (1055 people-trips) in the free floating
scheme. For the station-based model, this increase was smaller
at 2.2 percent (627.55 people-trips).

The free-floating model was able to serve 90% of the
demand, significantly more than the station-based model (68%
of the requested trips). The low service rate in station-based
model was likely caused by heavier traffic due to empty vehicle
rides. This is consistent with the average travel time (which
can be seen as a proxy metric for road congestion) of both
models. The average travel time in the station-based model
was higher on average, e.g., with 40 stations and 7500 vehicles
the average travel time for the station-based model was 14.17
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Fig. 6: Percentage of customers served versus the AMOD fleet
size in the system for: a) Free-floating model, b) Station-based
model. Using the free-floating model we could serve as much
as 90% of the demand (with 7000 vehicles and more), while
using station-based model we could only serve up to 68% of
the demand.

minutes, ~ 30% higher than in the free-floating model (10.59
minutes).

B. Customer Waiting Time Analysis

In this section, we analyze the waiting times, defined as the
time difference between the trip request time and the pick-up
time (the time taken to pick-up the customer was not included).
Figure 7 shows the median customer waiting times (with upper
and lower quartiles) versus the number of AMOD vehicles
under the free-floating model.

As expected, increasing the AMOD fleet size resulted in
a fall in waiting times, since more vehicles were available
to service the requested trips. For example, with 20 initial
stations, the median waiting time decreased from 20.74 to 1.80
minutes as the fleet size grew from 2000 to 7500 (similarly,
the variance in the waiting times decreased from 31.38 to
6.09). Unlike the effect on total demand served, this waiting
time change is non-linear and shows diminishing returns—the
rate of improvement decreases with increasing fleet size and

Wit Time (mins

N

S w0 a0 G 10000 1200 1400 76000 T (T
Nurber o ANOD Vericles Nurber o ANOD Vericles

S0 L

(a) 10 initial stations. (b) 20 initial stations.

N

‘Z ’\\\,\L—LHE i MHJA

e R T = T T SR = S wm  Tem  mm mo ww er o
Number orANOD Vericles Number orANOD Vericles

(c) 30 initial stations. (d) 40 initial stations.

40 car parks
30 car parks
2 20 car parks
10 car parks

0

waiting Time (mins;

o L L L L .
2000 3000 4000 5000 6000 7000 8000
Mumber of AMOD Vehicles

(e) 10, 20, 30 and 40 initial stations.

Fig. 7: Average customer waiting time (minutes) versus the
AMOD fleet size for the free-floating model with: a) 10 initial
stations, b) 20 initial stations, c¢) 30 initial stations, and d) 40
initial stations, e) 10, 20, 30 and 40 initial stations. All sets of
stations were located at high-demand nodes.

appears minimal beyond 6000 vehicles.

The initial distribution of vehicles (i.e. at the beginning
of the day) also influenced the performance of the system;
increasing the number of initial stations decreased passenger
waiting times. The biggest difference is between 10 and
20 stations, where we observed an average improvement of



approximately 4 minutes across fleet sizes. However, further
increases in the number of stations resulted in only minimal
decreases in waiting times (< 1.5 minutes).

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an extension to SimMobility,
a multi-agent micro-simulator, for modeling and simulating
AMOD systems. The modular approach taken in our extension
allows for different models to be integrated and evaluated
within the SimMobility framework. As a demonstration, we
used this extension to evaluate a policy restricting the use of
private vehicles in the Central Business District in Singapore.
Our preliminary results show that unnecessary (empty) trips
contribute to congestion and therefore they should be min-
imised and performed only when necessarily.

This work sets the stage for future research in AMOD
systems. We are currently developing the AMOD Controller to
encompass more sophisticated models, particularly for routing
and rebalancing vehicles. Indeed, proper rebalancing has been
shown to have a positive effect on system performance, result-
ing in smaller fleet sizes [10]. However, our work suggests that
rebalancing has to be done at minimum required level as empty
vehicle trips increase road congestion. In addition, parking
facilities can be placed strategically to reduce the number of
on-road vehicles, at the cost of additional land use.

Taking a broader outlook, we believe that SimMobility,
coupled with the AMOD controller, is a valuable tool for
studying the effects of introducing autonomous vehicles on
city streets. As shown in this paper, policies incorporating a
mix of transportation modes and models can be evaluated to
better design and engineer future urban mobility systems.
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