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ABSTRACT 
Agent-based models have gained wide acceptance in transportation planning as, with increasing 
computational power, it allows for large-scale people-centric mobility simulations. Several 
modeling efforts have been reported in the literature both on the demand side (with sophisticated 
activity-based models that focus on individual's day activity patterns) and on the supply side (with 
detailed representation of network dynamics through simulation based dynamic traffic assignment 
models). This paper proposes an extension to a state-of-the-art integrated agent-based demand and 
supply model, SimMobility, for the design and evaluation of autonomous vehicle systems. 
SimMobility integrates various mobility-sensitive behavioral models within a multiple time-scale 
structure, comprised of three simulation levels: (i) a long-term level that captures land use and 
economic activity, with special emphasis on accessibility, (ii) a mid-term level that handles agents' 
activities and travel patterns, and (iii) a short-term level, that simulates movement of agents, 
operational systems and decisions at a microscopic granularity. Within this context, this paper 
proposes several extensions at the short-term and mid-term level to model and simulate 
autonomous vehicle systems and its impacts on travel behavior. To showcase these features we 
present the first-cut results of a hypothetical on-demand service with autonomous vehicles in a 
car-restricted zone of Singapore. SimMobility was successfully used in an integrated manner to 
test and assess the performance of different autonomous vehicle fleet sizes and parking stations 
configurations and to uncover changes in individual mobility patterns specifically in terms of 
modal shares, routes and destinations. 
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1 INTRODUCTION 
Although the initial developments of autonomous vehicles (AV) technologies were carried out 
during the 80's (1), vehicle automation technology has been under the spotlight since the 2005 
DARPA's Grand Challenge (2). It is currently considered a key research effort in many car 
manufacturer and mobility/robotics research centers (3) and has recently started to be marketed for 
personal use (4, 5, 6). AVs rely on extensive technological developments in terms of software and 
hardware integration, high-level control design, sensor technology and data fusion techniques, 
motion control algorithms, and vehicle communication tasks (7). All these components keep 
evolving and being rethought for particular deployments, such as new fault-tolerance sensing 
frameworks (8), first- and last-mile targeted systems (9) or innovative communications for 
vehicular networks design (10). These developments target the change in terms of efficiency, 
safety and cost of vehicular systems. Yet, aspirations for its contributions in solving large scale 
transportation problems such as pollution, road congestion and land use are also high, but are still 
to be clarified, as they may rely on the design of the integrated service itself and the environment 
where it will be deployed (3). 

Recent studies have focused on the design and operation of specific AV systems beyond the 
private use, such as on-demand services (Autonomous Mobility on-Demand - AMOD) (11, 12, 13, 
14, 15). Zachariah and Mufti (14) modeled the implementation of a fleet of autonomous taxis in 
New Jersey, based on origin-destination trips derived from travel surveys and focusing on vehicle 
occupancy rates. The studies of Pavone et al. (11) and Smith et al. (12) show a theoretical solution 
to fleet sizing by introducing rebalancing assignments that minimize the number of empty vehicles 
traveling in the network. The introduced rebalancing policy (based on a fluidic model) has been 
tested in a low-fidelity simulation developed in Matlab and, using both theoretical and simulation 
results, it is possible to determine the minimum number of vehicles required to maintain the 
systems' stability. Note that in case of AMOD systems, fleet sizing is similar to fleet sizing of 
Mobility On-Demand (MOD) systems with human-driven vehicles, but with the advantage that the 
vehicles can redistribute themselves. Barrios and Godier (16), for example, evaluated three 
different rebalancing strategies (zero, periodic and continuous redistribution) for MOD systems. 
This evaluation was performed for both station-based (i.e. vehicles can be picked-up and 
dropped-off only at predefined stations) and free-floating (i.e. vehicle can be picked up and 
dropped off anywhere within an operating zone) system. Analysis was performed using an 
agent-based simulation approach and tested on a square grid with a random demand. Similarly, 
Brownell and Kornhauser (13) evaluated the necessary AV fleet size for two scenarios: (i) personal 
rapid transit, and (ii) smart paratransit. While the models did not account for rebalancing, they do 
give insight into the upper and lower bounds of the fleet size required for both models. 

Only recently the mobility impacts of these systems have started to be analyzed. In (15) the 
impacts on car fleet size, volume of travel and parking requirements of shared and non-shared 
AMOD configurations are analyzed in an agent-based simulated scenario for Lisbon, Portugal. 
The study points a potential reduction of 9 out of every 10 existing cars, but noticing the increased 
fleet millage. However, the analysis did not include a dynamic traffic model which would simulate 
vehicle-level interactions (and therefore congestion) nor the impacts on individual choices. 
Fagnant and Kockelman (17) turned the spotlight to the analysis of impacts of a shared 
non-electric AMOD fleet in a simulated grid-like city with size of Austin, Texas, with around 
1,700 trip requests per day (3.5% of the original private vehicle trips), where intermediate stops for 
pick up and drop off of additional passengers are not allowed. Each vehicle would serve 31 to 41 
persons a day and would replace nearly 12 conventional vehicles; only less than 0.5% of travelers 
waited more than five minutes; 11 parking spaces per AMOD vehicle would also be freed. The 
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overall distance traveled increased by 11% compared to a traditional human-driven self-owned 
fleet. Yet, the scenario analyzed does not rely on a real urban network, ignoring heterogeneous 
patterns. Burns et al. (18) focuses on the impacts of network configuration and service cost of 
shared AMOD fleets. Three different network environments are analyzed: a mid-sized city (Ann 
Arbor, Michigan, US), a low-density suburban development (Babcock Ranch, Florida, US) and a 
large and densely-populated urban context (Manhattan, New York, US). Using queuing theory and 
network models, travel patterns, cost estimates and vehicle requirements are computed for each 
scenario. For Manhattan, for example, where the demand considered was the one for the existing 
taxicab service, a significant reduction of average waiting time (from 5 to less than a minute) and 
fleet size (from 13,000+ to 9,000) was estimated. 

In terms of simulation tools, agent-based approaches have shown to capture and reproduce 
different transportation-related phenomena, at different levels of details (from traffic 
micro-simulation to long-term land use models) (19). Using agent-based models for 
decision-making offers many advantages: agents (individuals, households, vehicles, etc) can be 
modeled in detail, with heterogeneous characteristics and preferences and their behavior can be 
validated at the individual level, leading to new possibilities for studying and evaluation policies, 
including AV. In (15, 17), the benefits of using agent-based approaches were demonstrated, in 
terms of the flexibility in assessing different AV scenarios, the potential comprehensiveness in the 
assessment of different impacts and the detailed level of the outputs obtained. Agent-based models 
have reached a level of integration and complexity that elevate the potential of such methods for 
the analysis of mobility-targeted disruptive technologies. 

It is clear that the first steps in simulating AV have been successfully carried out and 
provided important insights on which research, modeling and simulation efforts must be taken. 
The extension of impact assessment to individual behavioral decision making is necessary. The 
design and optimization of AV solutions should be carried out together with integrated behavioral 
simulation models to account for more realistic changes in demand and supply of the overall 
transportation system. In this paper we present our most recent efforts in using an integrated 
simulation framework for the analysis of AV systems in urban environments. As a pioneer exercise 
we showcase the capabilities of using both state-of-the-art behavioral and mobility models to 
investigate the impacts of AV scenarios. In Section 2 we describe how integrated and multi-level 
demand and supply can be modeled together. In Section 3 the set-up and the results of the specific 
simulation scenario of an AMOD service in Singapore are presented. Finally in the last Section, we 
describe the main conclusions and limitations of our study, list the on-going work and point to 
future research directions. 
 
2 INTEGRATED SIMULATION OF AMOD DEMAND AND SUPPLY 

The generic approach to model multi-level demand and supply is through loose coupling of 
different simulators, each one specialized on a specific component (20). The typical interface 
between models consists of exchanging files or API (Application Programming Interface) calls. 
For example, travel simulators such as Transcad (21), which runs a 4-step model, or TRANSIMS 
(22) and MATSim (23), which run an activity-based models, can generate vehicle and passenger 
trips that can be loaded in microscopic simulators for the computation of accurate network 
performance measures. In (24) MATSim and SUMO were combined by means of file exchange 
and a SUMO call from MATSim API to account for detailed traffic light control in agent's travel 
plans for a toy network. Yet, the consistency in terms of agents characteristics (e.g. individual 
preferences), model formulation (e.g. consistent route-choice models) and time resolution (e.g. trip 
time attributes) remained at stake. A similar reasoning can be established between land use models 
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and travel simulators, for accessibility computation. 

To tackle these challenges SimMobility, a new simulation platform that integrates various 
mobility-sensitive behavioral models within a multi-scale framework that considers land-use, 
transportation and communication interactions, was recently proposed (20, 25). 

 
2.1 SimMobility 
The high-level architecture of SimMobility is shown in Figure 1 (20). SimMobility is composed of 
three main modules differentiated by the time-frame in which we model the behavior of an urban 
system. The Short-Term (ST) simulator works at the operational level: it simulates movement of 
agents at a microscopic granularity (i.e. less than a second). It synthesizes driving and travel 
behavior in detail. The Mid-Term (MT) simulator handles transportation demand and supply at the 
day level; it simulates agents' behavior in terms of their activities and daily travel patterns. The MT 
represents moving vehicles at an aggregate level, and routes are generated by behavior-based 
demand models. The Long-Term (LT) simulator captures land use and economic activity on a 
year-to-year scale, with special emphasis on accessibility. It predicts the evolution of land use, 
models property development, determines the associated life cycle decisions of agents, and 
accounts for interactions among individuals and firms. Roughly speaking, SimMobility Short-, 
Mid- and Long-Term correspond to the traditional micro and meson of transportation modeling 
and land-use analysis. 

SimMobility's framework is fully modular such that each level can run independently and 
only interact with the other level when necessary. The key to multi-scale integration in 
SimMobility is a single database model and a single code base that is shared across all levels. 
Every agent exists and is recognized by all levels, and information is used according to each level's 
needs. In this way, an agent's behavior and characteristics will remain consistent in the three 
simulators. Similarly, the code structure and functions are shared by the three levels, assuring 
consistency among sub-models. Further details on SimMobility, in terms of modeling details, 
consistency and integration, can be found in (20, 25). In the next section we describe the proposed 
extensions to the ST and MT level for simulating AVs. Impacts at LT level were not considered in 
the present study as AV-related behavioral aspects such as car-ownership and individual/firm 
location decisions are still being integrated. 

 
2.2 Integrating Autonomous Mobility On-Demand in SimMobility 
To analyze the impacts of specific AV technologies on travel patterns, SimMobility demand and 
supply simulation components were extended to account for dedicated AMOD service and vehicle 
access restrictions. For this case study, we limit the analysis to the ST and MT simulators; the 
inclusion of LT (both by using a LT-generated synthetic population and analyzing the LT effects of 
AMOD) is still in progress. 

 
Short-Term Model 
SimMobility ST is responsible for advancing agents on the transportation network according to 
their respective behavioral and decision models. It is based on the open-source microscopic traffic 
simulation application MITSIM (26). In MITSIM, a probabilistic model is used to capture drivers' 
route choice decisions and driving behavior parameters and vehicle characteristics are randomly 
assigned to each driver-vehicle unit. Vehicles are moved according to route choice, acceleration 
and lane changing models. The acceleration model captures drivers' response to neighboring 
conditions as a function of surrounding vehicles motion parameters. The lane changing model 
integrates mandatory and discretionary lane-changes in a single structure. MITSIM includes also 
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merging behavior through courtesy and yielding, and drivers' responses to traffic signals, 
information, speed limits and incidents. The detailed driving behavior model formulation and 
parameters implemented in SimMobility ST are those estimated and documented by Yang and 
Koutsopoulos (26), Ahmed (27) and Toledo et al. (28) for MITSIM. Additional enhancements 
were then made in SimMobility ST, such as: an enhanced reaction and perception time formulation 
(29), the lateral movement during lane-change and an intersection behavior driving based on the 
conflicts technique. 

While MITSIM includes a well-defined structure for simulating traffic management (26), a 
more flexible Control and Operation system module that can also simulate fleet control was 
implemented in SimMobility. For this study, we extended the Control and Operation system 
module with a dedicated AMOD controller for managing AV operation. This is a comprehensive 
change on the supply capabilities of SimMobility ST. Our AMOD Controller is an integrated, but 
detachable, module composed of: an initialization, a fleet management and a vehicle tracking 
component (see Figure 2). The detailed description of its components can be found in (30). 

The fleet management module is responsible for facility location, vehicle assignment and 
routing and vehicle rebalancing. The facility location model estimates the best locations to place 
distribution centers (parking stations) of AMOD vehicles. Stations aim to provide charging and 
maintenance facilities for vehicles, assuming an electric mobility solution and stand-by space 
when on-street parking is not available. The vehicle assignment and routing model decides how 
vehicles should be assigned to customers and routed to their destinations, minimizing distance 
traveled on the network. The rebalancing aims to move vehicles to where they are (or will be) 
needed. Due to asymmetries in travel patterns the AMOD system tends to become unbalanced 
mainly due to home-work commuting patterns. Rebalancing mechanisms are therefore required to 
realign the supply of vehicles with the expected demand (12, 31). The AMOD Controller uses a 
Gaussian process to predict the demand for each station that is then fed to rebalancing model (30). 

Finally, the AV decision making models should, preferably, be based on the motion control 
algorithms used by the AV manufacturers. For this first-cut implementation, the existing 
acceleration and lane-changing models in the vehicle flow model of SimMobility ST (see Figure 2) 
were adjusted to exclude human (driver's) heterogeneity factors and individual behavior 
stochasticity. All AV behave the same way, and the safety margins in terms of gap acceptance, 
safety headway and reaction time were reduced (to 1.0s, 1.0s and 0.5s, respectively). 
 
Mid-Term Model 
SimMobility MT simulates daily activities and travels at the individual level. It combines 
activity-based microscopic simulation on the demand side with mesoscopic simulation on the 
supply side (25). The demand side comprises two groups of behavioral models: pre-day models 
and within-day models. The pre-day models follow an enhanced version of econometric Day 
Activity Schedule approach that has been evolved from (32), predicting: (i) the activity sequence 
(including home-based tours, work-based sub-tours, and intermediate stops), (ii) the trip 
destinations and modes, and (iii) the departure times (on half-hour slots). This is based on a 
sequential application of hierarchical discrete choice models using a Monte Carlo simulation. 
Readers are directed to (25) to get details of the pre-day modeling framework. 

At the pre-day level, an implementation of a car-restricted area with AMOD service was 
assumed to affect directly the destination and mode choice. Mode availability for trips involving 
origins and/or destinations within this area changed, leading to multimodal trips that combine 
private vehicles (in the case those are the modes restricted) outside the implementation area, and 
AMOD inside the implementation area. As transferring between modes is forced for these trips, it 
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is necessary to properly model the agents' behavioral response. Transfers were therefore 
considered and the utility specification of the AMOD mode was based on the individual 
preferences towards taxi due to the lack of AMOD-specific data for model estimation. For 
mandatory activities with fixed destination (such as going to work or school) the agents were only 
able to change modes, while for non-mandatory activities (such as shopping) they also had the 
possibility of changing destination. The structure of the pre-day is such that mode choice (for 
mandatory activities) and mode/destination choice (for non-mandatory activities) models passes 
accessibility measures to the day pattern model. For the AMOD scenario, accessibility measures 
may change, which in turn may induce changes in day pattern choices for an individual (i.e. 2nd 
order effect of the AMOD). For example, an agent may select a more complex tour pattern, 
skipping shopping or including a shopping stop within a home-based tour instead of performing 
two separate tours, one for work and another for shopping. 

Once the daily activity schedules are obtained for all agents, the within-day models predict 
the routes for planned trips, transforming the activity schedule into actual trips. Depending on the 
traffic conditions and effective travel times, the agents could reschedule the remainder of the day, 
cancel an activity, re-route while traveling (including alighting a bus to change route), or run an 
opportunistic activity, like shopping while waiting (25). On the within-day level, the 
implementation of the restricted area with AMOD service affected the route choice, i.e., private 
vehicles had a smaller number of available paths which may lead to a change in congestion on 
alternative paths. 

The supply simulator follows the dynamic traffic assignment (DTA) paradigm as in (33). 
The DTA is run for private and public transport modes. Public transportation supply in MT model 
allows bus lines to follow headway based operations. On-road bus stops and bus bays with 
appropriate estimated average dwell and clearance time are also modeled. Furthermore, it also 
allows for the accurate estimation of impacts of the bus operations on the road traffic. The updated 
network performance measures were then transferred back to pre-day as a learning mechanism, for 
the individual choices re-estimation. Through an iterative process, consistency can be achieved 
between the demand and supply models of MT simulator. 

The MT simulator takes as input a multimodal network and a population (which may come 
from the LT simulator or other population data sets) that contains detailed characteristics of each 
agent. As an output, it passes accessibility measures (in the form of Logsums) from the pre-day 
component of MT simulator to the LT simulator. The MT simulator provides the ST simulator with 
trip chains as input demand to simulate smaller network regions in more detail. 
 
3 CASE STUDY ON THE CENTRAL BUSINESS DISTRICT (CBD) IN SINGAPORE 
To test the above implementation a case study of a specific AMOD system in Singapore is used. In 
our case study private vehicles are not allowed to access a 14 Km2 restricted zone in the CBD (see 
green area in Figure 3) and a smart-phone based AMOD service is introduced as an alternative 
mode, which operates only within the zone. Access to this area was granted to the existing bus 
lines, Mass Rapid Transit (MRT) trains and taxis. 

The AMOD system uses autonomous mid-size sedans without car-pooling services. The 
cost of the AMOD service was assumed as 40% less than the regular taxi service in Singapore, 
resulting in an average cost of about $3 SGD within the CBD area. The other modes were assumed 
to remain unchanged (i.e. buses and MRT kept their frequencies, fares and capacities and the taxi 
fleet and cost remained the same) using the year 2012 configuration as reference. Similarly, no 
changes in the road network and traffic control systems were assumed for this case study. 
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The simulated population was the one estimated for 2012 (see section 3.1). The impacts of 
AMOD parking locations within the CDB on land-use were ignored and residents of the CBD area 
were not given any privilege of driving their own vehicle within the restricted area. These strong 
assumptions allowed us to test the models and prove that the simulator gives us expected results. 
As the simulator is still under development, we are planning to relax some of these assumptions in 
the future. 

To showcase the framework capabilities, a set of performance measures for the AMOD and 
overall transportation systems were assessed and compared to the existing supply, namely: service 
performance levels (waiting and travel times), route choice indicators (path splits), and mode 
shares (Section 3.4). 

 
3.1 Data 
For the calibration of SimMobility the following data sets from Singapore were used: 
 

1. Land-use data, including residential buildings, firm and school locations and its 
respective characteristics; 

2. Household interview travel survey (HITS) for 2008 and 2012; 
3. 4.5 months of detailed GPS traces from a taxi fleet of about 15,000 vehicles; 
4. 3 months of public transport smart-card data (EZ-link card) with tap-ins and tap-outs 

for buses and MRT. 
5. Google transit network data for the buses routes and schedules; 
6. SCATS traffic light configuration data; 
7. Detailed road network configuration from multiple sources. 

A synthetic population of 4.06 million individual travelers was generated for the entire 
island and validated for the year 2012 (for further details on the population generation process see 
(25, 34). The HITS data allowed the estimation and validation of all MT pre-day choice models, 
resulting in activity-schedules for the full synthetic population. On the supply side, the road and 
public transportation network were coded using information from the Land Transport Authority 
(LTA), the Google transit and the NAVTEQ databases. Despite the fact that all levels of 
SimMobility use the same network database, the level-specific supply models use it differently 
(e.g., while ST lane change models need detailed lane attributes, MT uses them to compute 
segment capacities for speed-density functions). The traffic lights used in SimMobility ST were 
simulated according to the specific configurations of each intersection using LTA's SCATS. 
Driver's route-choice was estimated using the taxi GPS data while public transit route-choice used 
the EZ-link card data set (34). 

The results from (MT) pre-day validation for the population of the year 2012 are shown in 
Figure 4. These predicted results are based on model estimation using HITS 2008 and validation 
with HITS 2012. %validation is done for HITS 2012. They cover all levels of decisions modeled in 
pre-day: (i) daily activity patters in terms of tours and intermediate stops, (ii) mode choice for all 
tours, and (iii) time of the day for all individual trips in the entire Singapore. This population 
corresponds to the baseline simulation (i.e., without AMOD) of our study case, and reproduces the 
mobility and activity patterns observed in practice for most of the scheduling dimensions except in 
some instances on time-of-day model. A full and integrated demand-supply calibration of the MT 
model should ideally include multiple data sources of network performance (such as traffic 
volumes or public transportation ticketing data); however this was still not considered in this study. 
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Our estimations are consistent with HITS showing that about 57% of the motorized trips are 
performed in public transport, while 41% correspond to private modes including walk and the 
remaining 3% to taxi. 
 
3.2 Optimizing the AMOD system 
The configuration of the AMOD system was carried out by defining individual optimization 
algorithms for the facility location, vehicle assignment, routing and rebalancing. 

The algorithm solving Facility Location Problem is selected based on the literature review 
presented in (35) and is formulated as the classical covering problem in a graph. Facilities (or 
stations) can be understood as distribution centers of AV. The objective function is to minimize the 
number of required stations covering all demand points (Eq. 1). 

 

minimize 𝑥'
(

')*

subject	to 𝑥' ≥ 1
'∈67

, 𝑖 = 1,… ,𝑚

𝑥' ∈ 0,1
where		𝑁B = {𝑗|𝑑B' ≤ 𝑆}

  (Eq.1)    

 
The objective function minimizes over a binary variable xj indicating whether a station 

should be located at j network node or not. The first constraint shows the service requirement for 
the node i in the network that has at least one trip request. We assumed that i is covered by station 
j if distance dij ≤ S = 1000m, resulting eventually in a set of servicing nodes 𝑁B. The second 
constraint is the integrity constraint. 

There are two methods implemented for the Vehicle-Passenger Assignment: (i) a greedy 
assignment, and (ii) a minimum weight bipartite matching. In (i) for each new request we assign 
the nearest -in terms of the travel time- vehicle. In (ii) a cost-based matching is performed every 
time interval t (e.g., t = 30 secs). Let P and V define the number of passengers in the waiting queue 
(anywhere on the network) and the number of available vehicles (either parked or returning to 
stations), respectively. For every t we solve an optimization problem which minimizes the the cost 
of picking up passengers. The cost function includes the travel distance to picking up the passenger 
and the waiting time of the customer in the following way: 

 
𝑐KL = 𝑓N ∙ 𝑐KLN + 𝑓Q ∙ 𝑐KLQ      (Eq. 2) 

 
where fd is the distance-cost factor; 𝑐KLN  is the distance from current position of the vehicle to the 
customer location, in meters; ft is the waiting time cost factor; and 𝑐KLQ  is the expected waiting time 
of the customer, in seconds. Currently both fd and ft are set to 1.0. The binary variable xpv describes 
whether or not vehicle v is assigned to passenger p; xpv = 1 if vehicle v is assigned to passenger p, 0 
otherwise. The minimization problem is formulated as follows: 
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minimize 𝑐KL ∙ 𝑥KL − 𝑅T,K

subject	to 𝑥KL ≤ 1L , 𝑝 ∈ 𝑃

𝑥KL ≤ 1K , 𝑣 ∈ 𝑉
𝑥KL ≥ 0,	integer

    (Eq. 3) 

 
where R = max (cpv) + 1 is the maximum cost of assignment plus one. The first two constraints 
ensure that each passenger is assigned to at most one vehicle and each vehicle is assigned to at 
most one passenger, respectively. The third constraint is the integrity constraint. We state that the 
problem always terminates with the best solution, i.e., we always want to add another client in the 
objective function -which makes our objective function to decrease- and passengers and vehicles 
are restricted to single assignments. 

Rebalancing decides when and where to move empty vehicles to by minimizing demand 
looses. However, we should avoid having too many empty trips, because they serve no customers, 
increase operating cost and contribute to congestion. It is implemented as a discrete-time function 
and different rebalancing scenarios were tested: every 0.5, 1, 2 and 3 hour(s). We found out that the 
best performance in term of the shortest average waiting time is every 1 hour rebalancing. 
Therefore, for the rest of this study we show the results for rebalancing every hour. 

The problem of rebalancing is formulated as follows: Let V be a total number of vehicles in 
the system and vi and di be the number of vehicles and anticipated demand at station i. Excess 
demand at each station is defined as the number of customers who cannot be serviced only by 
vehicles at station i, i.e., e

i i id v d= . The cost of sending one vehicle from station i to station j is 
represented by dij and measured as a shortest travel time distance between i and j. Decision 
variable rij describes the number of vehicles to send from i to j. The objective is to minimize total 
cost of rebalancing trips. 
 

minimize dij ⋅ rij
ij
∑

subject to di
e ≤ rji − rij( )

j
∑ ,∀i, j

rij
j
∑ ≤ vi ,∀i

rij ≥ 0

     (Eq. 4) 

 
The first constraint is the flow conservation at each node. The second constraint prevents 

us from sending more vehicles than we have available. The third constraint is the integrity 
constraint. 
 
3.3 Assessing the impacts of the AMOD system 
For the assessment of the AMOD system and its impacts on travel behavior, SimMobility ST and 
MT were used together, exchanging trip chains from the top-down and supply performance 
measures bottom-up. SimMobility MT simulated the entire island while ST simulated the CBD 
car-restricted area and the AMOD system operation in detail. The limitation of the AMOD case 
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study to the small zone allowed for this initial tractable computational time in SimMobility ST. 
However, larger networks have already been successfully simulated (see red area in Figure 3). 

SimMobility ST was used to test different fleet sizes of the AMOD system, different 
configurations of stations and different rebalancing policies. These simulations were run using the 
MT trip chains as demand. We classified the trips into 3 categories: (i) trips which had neither 
origin nor destination within the restricted zone, (ii) trips which had either origin or destination 
within the restricted zone, and (iii) trips which had both origin and destination within the restricted 
zone. Trips in (i) were simulated only within the within-day MT; trips in (ii) were divided into 
inside-CDB and outside-CBD sub-trips and the outside-CDB trips were simulated using MT only 
while the inside-CBD trips were simulated in both, ST and MT; trips in (iii) were simulated using 
both simulators. This allowed us to reach a high level of detail when simulating the operation of 
the AMOD system and its integration with the existing (and, eventually, future) control systems. 

This process was carried out in an iterative fashion, with the trip chains generated first by 
MT and being passed to ST, where ST computed its performance measures (waiting times, travel 
times, costs, etc) and fed it back to MT. The feedback from ST was used again to generate a new set 
of individual choices. In the present case study, this loop was executed once. 
 
3.4 Results 
Figure 5 shows mean waiting times of customers across different AMOD fleet sizes for a 12 hours 
simulation (3am to 3pm) using 10 parking stations and with rebalancing. This half day simulation 
was carried out for fast computation within ST and when analyzing all considered AMOD 
configurations. For the characteristics (demand/network) of this case study, this configuration 
outperformed those with no rebalancing or with more stations. For simplicity, we present here the 
analysis for fleet size, but the reader may refer to (30) for the detailed rebalancing and stations 
analysis of the larger red area in Figure 3. It can be seen from Figure 5 that the average waiting 
time decreases when we increase the fleet size, and it is close to 5 minutes (including boarding) 
when AMOD fleet size is around 2400 vehicles. Further increase in the fleet size is not able to 
significantly decrease the waiting time (average and variance). A similar finding was obtained for 
an increasing number of stations. Furthermore, each vehicle serves in average 16.7 requests during 
the 12 hour simulation, which, although close to the lower values obtained by Fagnant and 
Kockelman (17) for different scenarios, is sensitive to the detailed traffic representation (including 
congestion and traffic lights which increase travel times) and the case-specific increased number 
of requests to the CBD during the morning peak hour when compared to the off-peak period. 

The ST obtained performance measures for the 2400 vehicles, were fed back to 
SimMobility MT. Within SimMobility MT, the travel times, waiting times and cost for all sub-trips 
performed inside CBD were combined with outside CBD sub-trip attributes (from the supply of 
SimMobility MT). The combined performance measures were used in the re-simulation of 
individual choices for the entire population, within the pre-day of SimMobility MT. The 
implementation of the AMOD system affects agents' behavior in several ways: as the mode 
availability for trips to/through the CBD changes, travelers (mainly those choosing private modes 
in the base case) can change their travel modes, either transferring to AMOD in the periphery or 
changing to public transport, taxi or walking. Within the framework of activity-based simulation, 
the change in accessibility can affect other travel decisions, such as destination, time-of-day, or the 
decision to travel itself. For the simulated AMOD implementation, trips going into CBD decrease 
1.5% (mostly for non-mandatory purposes, such as shopping), while the overall trips remain 
almost unchanged. 
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In Figure 6 the combined effect of the restricted zone and the changes in the transportation 
system performance on route choice decisions is shown for the agents driving a specific 
origin-destination pair. This impact on through traffic will inevitably affect the performance of the 
road network in terms of travel times and congestion levels in the periphery of the CBD. However, 
within the CBD, private trips (either by private cars, taxis or AV) are reduced by 7%. 

In Figure 7 the changes in mode shares re-computed by the pre-day model are represented 
for all the trips having the origin and/or the destination within the CBD. AMOD incentivized the 
use of public transport, taxi and walking. Such analysis allows the assessment of increased demand 
for the other modes, and eventually test potential measures to mitigate undesirable impacts. Trips 
going into CBD in 7AM and 9AM increased 8.2%, which can have an impact on comfort levels 
and increase the number of denied boardings due to crowdedness. 

Some of the above mentioned scenario assumptions are being relaxed in on-going 
simulations. Indeed, testing the proposed framework in other settings will most likely pose 
different challenges. Larger areas, such as area in red in Figure 3, have already been simulated and 
computational times were tested successfully. 
 
4 DISCUSSION AND CONCLUSIONS 
In this paper, we presented an extension to SimMobility for modeling and simulating AMOD 
systems. The benefits of using an integrated agent-based simulator in both demand and supply, for 
the design and assessment of disruptive technologies, was shown through a specific case study. 
The modular approach allows for different models to be integrated and evaluated within the 
SimMobility framework. As shown in this paper, AV systems features can be optimized and 
assessed together with other transportation related policies, having in mind changes in individual 
choices. The considered AMOD scenario was only optimized in terms of fleet size, stations 
locations and rebalancing strategy. Within this study, we did not target the full system design 
optimization nor the recommendation of specific operational details. Instead, we turned the 
spotlight to multiple capabilities of integrated microscopic simulation models for the analysis of 
AV technologies. The flexibility of using such framework will allow for integrating AV-specific 
solutions that may improve significantly the systems' performance (such as intersection 
management for AV or V2X communications). 

Similarly, additional behaviors such as ride-sharing, need to be integrated in the simulation 
platform for its consideration in shared AMOD system design. Stated preferences surveys are 
typically used to collect such behavioral data, as revealed preferences for AMOD are not yet 
feasible. However, one must not ignore the possibility of biased results from such data collection 
procedure, as the AMOD experience might be totally different from the expectations that a 
respondent might currently have. This issue can be minimized by collecting stated preferences in 
simulator or pilot experiments. In fact, our research center in Singapore will continue to carry out 
public (controlled) experiments with a small fleet of AV, forming an excellent environment for 
such data collection. 

We are currently working on extending our calibration framework using other existing data 
sources. It is known that the outputs of both ST and MT supply simulators can be improved using 
additional detailed traffic datasets.  

Finally, the on-going work on extending the research to SimMobility LT will bring another 
set of powerful instruments and it will allow for the integrated simulation of the three levels of 
decision making. AMOD impacts on car-ownership decisions, land pricing and individual and 
firm location decisions along with its combined effects with long-term targeted policies represent 
our main on-going research effort. 
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FIGURE 1  SimMobility Framework 
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FIGURE 2  AMOD controller integration in SimMobility 
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FIGURE 3  Singapore network and the car-restricted area with AMOD system (in green) 
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FIGURE 4  Base case validation 
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FIGURE 5  Average waiting time (left) and utilization rate (right) vs. fleet size (number of 
vehicles), during a 12 hours simulation (3am to 3pm) using 10 parking stations and with 
rebalancing 
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FIGURE 6  Effects on through traffic: path attributes for the two most selected paths from A 
to B, without (left) and with (right) the car-restricted area with AMOD 
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FIGURE 7  Car-restricted area with AMOD impact on mode choice 
 


