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ABSTRACT

Currently, traffic microscopic simulation is a commtool for road system analysis. However,
only recently have attempts been carried out to its application in safety assessment; also, most
approaches still ignore causal relationships batvasferent levels of vehicle interactions or/and
crash types, lacking a valid representation ofctlash phenomena itself. In this paper, a new
generic probabilistic safety assessment framewarkr&ffic microscopic simulation tools is
proposed, as developed within the context of iiggetit urban motorway speed limit
management.

The probability of a specific crash occurrencesisuaned as estimable by a crash
propensity function, with a random component aiet@rministic safety score component. This
component depends on the type of occurrence, ddtadhicle interactions and manoeuvres, and
simulation modelling features. The generic modesliscified for no-crash events and three types
of crash events (rear-end, lane-changing, and ffuread) in a nested (logit) structure.

Artificial trajectories from a detailed calibratedcroscopic simulation tool were used
in the safety model fitting. Improved trajectorylieation was obtained by a novel detailed
comprehensive calibration effort: real trajectories were extracted from generic scenarios; the
simulation tool was calibrataging the collected trajectories; lastly, the simulation model was
re-calibrated using aggregate data from each seleeplicated event.

The final estimated safety model allowed for thenitdfication and interpretation of
several simulated vehicle interactions (only 9%edatrash alarms). The fact that these
considerations were extracted from simulated rimosvs the real potential of traffic microscopic
simulation for detailed safety assessments in desin.

Keywords Traffic microscopic simulation, Road safety, Pabllistic modelling, Driving
behaviour modelling, Surrogate safety measuresh aébn
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INTRODUCTION

Traffic microscopic simulation tools have been viydgpplied and its development has grown in
recent years. They are now accepted as main tootesigning road infrastructure operation and
for assessing transportation solutions, by reseasd@dnd practitioners. These tools incorporate
several driving behaviour models that simulate elehinovements, drivers’ decisions and road
user interactions at a very detailed levigl The level of detail considered in driving belwawi
models is particularly critical when disaggregatgéractions between vehicles are more
important than the aggregate traffic flow charastms, such as in detailed safety assessments.
Driving behaviour models typically include accet@a, lane-changing, route choice models and
even more detailed features such as courtesy peelati target gap selection models that were
estimated based on a few (typically just one) sktsajectory data.

Due to the complex nature of traffic systems anthéolevel of detail aimed at by
several traffic simulation models (and the limitkata used for its estimation), the calibration of
detailed traffic variables has gained increasingartance in the application of microscopic
simulation tools 2). The difficulty in replicating detailed trafficaviables in traffic microscopic
simulation has also hampered its application tetgadnalysis, especially when compared with
its widespread use in network traffic performanealygsis (7). There is a strong gap between
the solid research on classical accident statlstialysis 8, 4) and the most recent
developments in safety assessment using simulation.

Surrogate safety modelS)(@and a few real-time accident probability modéls/(and8)
are the two main safety research streams thatéraeeged recently with satisfactory results,
especially as regards intersections, where theiitapoe of vehicle interactions is
straightforwardly recognized. Conflicts are useddubon the assumption that the expected
number of accidents occurring on a system is ptapwl to the number of conflicts, making
them suitable for systems’ comparisofis ©One main limitation of using conflicts is therect
estimation of this proportionality. This difficultyas motivated the development of several
models to estimate accident frequency from traffioflicts countsX0). For modelling purposes,
another limitation is the lack of standardized ficat definitions and measurement procedures
(as it does not estimate the probability of andexi itself). For this purpose several time-based,
deceleration-based and dynamic-based surrogaty gefidormance indicators were proposed in
the literature 11). Despite this, these models are the most widsdgwithin microscopic
simulation studiesl@, 13, 14, 15, 16

Very recently, efforts have been made to integuateers’ interaction in probabilistic
modelling frameworksl4, 15and16). The above mentioned accident probability motgiso
link the probability of a specific accident occurce using a statistical model fitted to aggregated
data. However, probabilistic frameworks try to failiy represent cause-effect relationships
between performed driving tasks and traffic scersarelated to typical accident events. Such
approach has a higher potential in replicatingnirnsic nature of an accident mechanism and,
ultimately, would not depend on safety recorddfit€n the other hand, probabilistic
frameworks depend on much more detailed informa®the distributions and relationships
between all variables at stake are needed (e @siva/manoeuvres probabilities for different
situations or pavement conditions for differentrereos).

The objective of this study was to understand haerascopic simulation models can
replicate detailed traffic data and how the redntisy simulated driver interactions may be used
to calculate probabilistic safety scores to asgesifluence on safety of key geometric design
features, such as configuration and length of weasections, horizontal curve radius and lane
width.
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THE PROBABILISTIC SAFETY MODEL

Overall formulation

A generic framework for modelling cause-effect natbhms between detailed vehicle
interactions from simulated motorway environmemig he accident occurrence probability was
developed. It is assumed that the state of a \eshiat any given timeis represented by a
discrete variable whose state outcdameay take one of four values: no accident or onirefe
types of accident (rear-end, lane change or rumeaftl — the three prevalent accidents on
motorways). This is represented in Figure 1.

occurrence ¢

N

non-accident accident
NA
run-off-road rear-end collision side collision
ROR RE LC

FIGURE 1 Model structure for motorway accident occurence

An individual outcome among all possible outcomKss considered to be predicted if
its probabilityP,, . (k) is maximum. This probability is assumed to berecfion of specific
observed variables characterizing the interactetwben vehicled?7. Such considerations step
away from the assumption of a fixed coefficient mlozbnverting the surrogate event frequency
into accident frequency, typically used in theficatonflicts technique. The probability for a
specific accident involving vehiclketo occur at time is assumed to be estimable by a specific
accident propensity (or proximity) measu2a);

P, (k)~U, 1)

In this model, each accident propensity funciign has a (deterministic) safety score
(Vi) component and a random componeit (

Up =V (X, ) + ¢ (2)

WhereX is the vector of explanatory variablgsis the vector of unknown parameters
to be estimated andis the random term (the termsandt were omitted for simplicity). The
assumption of the deterministic safety score corapbagrees with a recent research stream
where detailed interaction variables directly affiye accident occurrence probability itself (see
21 and32). The random componeatepresents the unobserved effects involved in the
determination of the outcome; these may be deffirged a random process in the occurrence of
a specific event or correspond to insufficient kiexnlge of this process.

The accident phenomenon results from many diffdgeatvn factors (variables):
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Vi(n,t) = fi (Xn,t’an,t; Xp,t» XS) ®)

Where thek accident-type specific scoring functig;pndepends on:
Xn¢, the driver-vehicle unit specific variables at timg
Xn ¢, the variables at timefor the interaction betweenand a conflicting driver-vehicle
unitn’;
Xp,t, the dynamic environmental variables at time.g.: weather, variable speed limit,
lighting conditions, etc.);
X, the static environmental variables (e.g.: geolegtroad signs, etc).

Note that driver characteristics are typically cobsidered in traffic simulation tools,
which substantially limits the number of availabndidate explanatory variabl&s,.

This general formulation was applied to a speaétof accidents that typically occur
on busy urban motorways: rear-end accidents, silfisions during lane-change manoeuvres
and run-of-road accidents (Figure 2). These thierent outcomes correspond to very distinct
phenomena. However, it is arguable that these thwemmes are independent, namely if one
considers accident outcomes following an evasitieraérom different risky interactions.

In the presented model we framed the formulatioeaah functiory;, to represent a
cause-effect relationship, to simultaneously da#i different non-independent types of
accident outcomes and to consider a disaggregabddlplity for any vehicle stateu(t)
observation. This is a departure from the existiggregate formulation used in real-time
accident probability models.

e Ax Glag (n,t) Giead (n,l‘)
Xn Xn-1 4
]
T T L e o (o]
[ S . T e
In In-1
a) Rear-end (RE) b) Lane-changing (LC)
°
R

alat (t)

e

¢) Run-off-road (ROR)

FIGURE 2 Accident outcome types
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General descriptions of the systematic safety siworeach accident type are presented
below. More detailed descriptions of these funciand comprehensive discussion of its
assumptions are presented in refereBee (

Rear-end (RE) conflicts
The probability of a collision due to in-lane irdetions is assumed dependent on: the subject
vehicle braking requirements to avoid a &Hision; and the maximum available braking power.

The first corresponds to the difference betweeratieal relative acceleration of the
subject vehiclen to the leadern{ — 1) and the deceleration rate required to avoid acras
(DRAQ estimated using Newtonian physics applied tcsgheed, longitudinal position and
length of the subject and precedent vehicles (fped-2a).

We further split of the needed deceleration rate*¢¢?) into its positive,

Aa*®(n,t) > 0, and negativeAa™®?(n,t) < 0, components, allowing for the consideration
of separate modelling parameters, with the advantdgonsidering the current acceleration
state as well. Componeat™©¢? represents safer situations, as the vehicle éaajr applying a
deceleration rate greater thaRAC.

We further improve this formulation by dividing thequired deceleration by the time-
to-collision,TTC, thus considering also how long the driver hasteethe potential collision.
The RE safety score function will then depend on the labée time for adjustment, resulting in a
relative needed deceleration raa™®?(n,t) = Aa™®®d(n,t)/TTC(n,t).

The measure of the maximum available deceleratitmis similar to th€PI surrogate
safety measure described in 9. The formulation ataslthe influence of the vehicle speed itself
and allows for heterogeneous safety conditionstduifferent vehicle categories (e.qg.
cars/heavy vehicles) and pavement conditions (@rg/wet) affecting the deceleration
performance. This simple formulation of the fricticoefficient results from the small number of
variables typically available in simulated enviramts. The rat@ A" (n,t) =
Aa'"™(n,t)/TTC(n,t) is used in the safety score function to accounT L.

The systematic safety score RE collisions is formulated by the following equation

Vg (0, ©) = BE + BEERATC (n, 1) + BEPRATE (n, 1) + BEERAI™ (n, 1) (4)

whereRA¢? andRA™*? are the positive and negative components of tlaéive needed
deceleration ratio computed using?°¢® andAa™®®“respectively; RAY™ is the maximum
available deceleration ratio; and B&E, BRE | BRE andpBREare the estimable parameters.

Lane-changing (LC) conflicts

Lane change decisions are typically modelled bynmaed gap acceptance modeg)(or,
alternatively, by acceleration variation mod&8)( One would expect the probability of lane-
change collisions to be dependent on vehicle lateoaements. However, most current micro-
simulation tools do not provide this modelling ig&t Therefore, surrogate measures depending
on lateral movements, such as Time-To-Lane-Crossingroposed inZ4) and thePost-
Encroachment-Timased in 25), are not easily integrated.

The probability of d.C collision is based on gap acceptance models anaufated in
terms of gap variation. The gap acceptance is gépenodelled separately regarding the lead
and the lag gaps on the target lane (Figure 2hb$. dikaggregation is of special interest as
different parameters may be computed for diffegags 26). It is known that the lane-changing
process becomes increasingly difficult as the sjpiféerences increase between the subject
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vehicle and the lead and lag vehicles in the tdegets 27). Thus, in the proposed formulation
the safety score of theC event is specified in terms of relative gap vaoizt (R°9%° (1), which
are a function of both the gap and the speed diffex between the subject vehicle and the lead
or lag vehicles.

Two specific variables are used to represent gaptian: when positiveRGY“? takes a
positive value an®G9%Pis nul; and the reciprocal, when the gap variation is negative. This
allows for associating specific parameters to dffe safety conditions, i.e. for gaps that are
either increasing or decreasing, respectively.

Following the above formulation, a gap with a highedative shrinking rate should have
a higher impact on theC conflict probability, and therefore its paramegstimate should be
negative.

The following equation represents the systematmgpmnent for.C collisions:

Vie(n, ©) = BE€ + BECRGI (n, ©) + BLCRGI9 (n, ©) + BLCRGI (n, 1) + BECRG% (n, ) (5)

whereRAJ*? andRAI are the positive and negative components (gdth= {lead, lag}) and

L6, BEC, BEC, BEC andBfCare the estimable parameters.

Run-off-road (ROR) events

ROR events are assumed as being primarily relateddigidual vehicle dynamics rather than to
interactions with others. This assumption is esglcirue under free-flow scenarios. However,
ROR events may also result from evasive manoeuwlureso dangerous lane-changing or car-
following interactions.

Vehicle dynamics in traffic simulation models aepresented in a much simplified
manner, when compared with the detailed movemdatgription of real events currently
achieved with accident reconstruction software. &ealty, detailed vehicle lateral movement
descriptions, true road geometric characterissasl{ as transition curves), pavement surface
characteristics features, and detailed vehicle g&aerand mechanical specifications are missing
from micro-simulation tools. This significantly lits the current potential for ROR micro-
simulation modelling framework. However, relevaatigbles are already available, such as
vehicle speed, overall description of road georogtand generic vehicle type specifications.

In the proposed framework, the safety scorB@R events is assumed to depend on the
difference between the current lateral acceleragfcavehicle and a site specific critical lateral
acceleration. On horizontal curves the vehiclessuaned to follow a simple circular path, its
yaw being equal to the curve bearing (Figure 2hw).lhteral acceleration of a vehici!, is
therefore derived from its current speed and theectadiusk using Newton mechanics. As
mentioned, it is expected that lane change manesuway also affect tiROR event
probability. Using test track data, Chovan et 26) Considered peak lateral acceleration values
of 0.4g, 0.5% and 0. for mild, moderate, and aggressive steering marresurespectively.
Since detailed lane change models are typicallyamatiable in microscopic traffic simulation
platforms, a generic 0.5g peak acceleration adfbolane change was incorporated in the
centripetal acceleration equation, to account fpotentially highelROR probability in road
sections with high lane change frequency.

The maximum allowed lateral acceleratiofff (n, t)) depends on the critical lateral
friction coefficient, the road superelevation, ttehicle class and speed, and on the pavement
condition (wet/dry).

The safety score function is formulated in termghef positive (unsafe) and negative
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(safe) components of the difference between theeotiand the critical lateral accelerations:
Veor(m, t) = BEOR + BRORAGLAt (n, t) + BRORAG' (n, t) (6)

where Aal® and Aa'** are the positive and negative componentsA@ft = glet — glat |
respectively, angX°k BROR andpX°k are the estimable parameters.

Estimation framework

As previously stated, the explanatory variablesref type of accident may influence the
occurrence of others and evasive manoeuvres matearerrelations between different accident
outcomes. When modelling multiple discrete outcarties multinomial nested logit model
proposed by Ben-Akivazg), has advantages over the simple multinomial logitiel, because

it can simultaneously estimate the influence oepehdent variables while allowing for the error
terms to be correlated — formulation details maydomd in 9).

To directly estimate the proposed model, a largefsall types of model outcomes and
its vehicle interaction data is needed. Unfortulyatelarge data allowing for the direct
association between trajectories and accident ceece is still not available. Furthermore,
although the proposed model is specified indiviui@r any vehiclen at every timd, the
philosophy of microscopic simulation applicatioego replicate aggregate measurements (even
for such detailed values as accelerations, headaryETC). Thus, to estimate the above model
the use of artificial (simulated) trajectories fr@amicroscopic simulation tods proposed. This
artificial data is then used with accident histafidata in the model estimation process. Yet, a set
of critical assumptions must be considered:

» The microscopic simulation model must be approplyatalibrated to replicate statistical
distributions of detailed traffic variables. To a&okre appropriate calibration, we assume
that both aggregated data, such as loop sensod-bpseds and traffic counts, and a
sample of disaggregated data, such as detailedlgdhajectories are needed. Indeed, as
it was concluded in a previous work that disaggiedjaalibration improves significantly
the accuracy of simulated trajectories and spoedgewnhich are important for adequate
representation of vehicle interactions in safetigigts 86).

» Trajectories extracted in a generic day represengéeneral driving behaviour of traffic.
Confidence on this assumption depends on the anamahbreath of information
available for treatment. Other factors (such astierqinfluence general driving
behaviour parameters; part of this variability nb@yassessed by means of a dedicated
calibration, carried out for each specific evesing readily available data sets (eg.: from
loop sensors).

» Simulated descriptions of detailed traffic variab&an be linked to the accident
probability, even though simulation models are latfase. This is supported by previous
studies {2, 6).

» ltis typically expected that both the loop-basadables used for calibration and the
accident occurrence reported variables are deforegiven time and spatial units.
Occasionally, such aggregated intervals maybeaigelto capture short-term variations;
nevertheless several autho?3,(2) have successfully used aggregated periods up to 5
min intervals to perform accident occurrence prdaigl@analyses. With the absence of
true trajectory variables for each vehicle involweeach observed event, the
characterization of the detailed traffic varialdiesa specific accident occurrence must be
linked by means of spatial and temporal aggregafaiditionally, it is well known that
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safety records have time and spatial errors. Thegefor estimation one needs to
aggregate all vehicle state outcome probabil®iggk) by standardized intervals of
spaces, and time periods:

Pop(k) = =Sy P () (7)

whereP, . (k) is the probability of occurrendefor any relevant observation of vehicie
at timet, traveling in spatial interval and time periogp and defined by the proposed
nested logit modely is the total number of observations for all vedscihat travelled in
the intervals, p. According to this formulation, the model is basedmean values and
not on extreme values. This follows the traffic misimulation specification philosophy,
where the replication of averaged variables is etque However, it is possible to push
the use of extreme formulations and rely on dedaskdibration methods of extreme
values. Such formulation was not tested for thegmedocument.

* Finally, if one considers a large historical obsgian period typically needed for the
observation of a significant number of accidentuseences, it is expected that the loop
sensors will fail for some instances. Furthermtive,computational memory and
processing resources needed to generate and usientilated trajectory data for a large
set of no-accident occurrence units during the ‘mregul” observation period is
impractical. Therefore, an outcome (choice)-basadom sampling was assumed to
select the events to be simulated, and the weightedenous sample maximum
likelihood function proposed ir8() was used, to account for this biased sampling
process.

THE URBAN MOTORWAY CASE AND TESTING DATASET

The proposed model was estimated with data cotleantel simulated for the A44 urban
motorway near Porto, in Portugal. This road wasdel as case study due to its dense traffic,
unusually high number of lane changes, short sgdoétween interchanges and high percentage
of heavy goods vehicles. A44 is a 3,940m long daaliageway urban motorway with 5 major
interchanges, two 3.50m wide lanes and 2.00m wadkeg shoulders in each direction (see
Figure 4 for overall layout). There are acceleradod deceleration lanes at all interchanges,
although several as short as 150m. On and off-raxopsect to local roads, which generally
have tight horizontal curves, intersections or gétkn crossings, features that tend to impose
significant reductions in vehicle speeds.

Three different traffic data sets were specificaltylected for the present study: a
dynamic seed origin-destination (OD) matrix base@ample of license plate matching and
vehicle counts ; 5 min loop sensor average speeds and counts for the existing eight traffic
stations (4 in each direction), between 2007 afi® B2 and vehicle trajectories collected for a
generic morning (with and without congestion) byi@eaemote sensing for the entire length and
access links of the A44 motorwa3d). Finally, incident records were also collectedtfee same
period of 2007 to 2009 including a total of 144esmbllisions, rear-end collisions and run-off-
road accidents.

In Table 1 the distribution of the collected vatesbare presented (ordinates are the
number of observations). During the period of asiglpne fatality, seven serious injuries and 98
slight injuries were registered in the concessicered.
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From Table 1 a few particular observations destern®e mentioned:

» Variable 3 (event location of occurrence, in kildare) shows that the edging
interchanges and adjacent sections have a big shaoeident records. This is due to the
motorway layout, with frequent lane changes an@dp@riations during dense traffic
conditions due to route choice manoeuvres.

TABLE 1 Accident Data Statistics.

200 T T 100 T T T
1 7.
T 100 Accident | °
Direction
Type
0 0
REC SC ROR
60 T T T T 200 T T . .
2. 40 - 8.
Road | | Accident | 107
Stretch Severity
0 0 DO LI HI F
30 T T T 100 T T T
3 20 9.
" Vehicles | 50
Location | 10
Involved
0
1 2 3 4 5
200
4, 10. 100 F
Lane Ramp
left  right acc  dec single 0 main ramp
200
11. 100 b
Bulge
0 1,020 102,00 [0] 10,02] 10.2,[
20 T .
12.
Month 10
0 and Year
00:00 06:00 12:00 18:00 00:00 9007 2008 2009 2010

» From variable 7 (type of accident), 44% of the dents are rear-end-collisiorREQ),
32% are run-of-roadROR and 24% are lateral collisionS@. Variable 9 (humber of
vehicles involved in an accident) also indicates tlehicle interactions have a clear
impact in A44 safety records.

* Variable 8 (severity) represents the consequenfdd® @ccurrence, withDO’ as
damage-only accidentd,l’, ‘HI’ and ‘FI’ as light injury, severe injury and fatality.

» From variable 10 (type of section), 12% of the denis occurred on entry or exit links.

* Variable 11 (bulge) is defined as the tangent 4fdf/the included angle of the arc
between the curve vertex edges. A negative bullyeevadicates that the arc goes
clockwise from the selected vertex to the nexteserA bulge of O indicates a straight
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segment. Bulge is directly linked to the curve uadind is a proxy of spiral curves. It is
commonly used in simulation software and was kestueh for easier simulation
modelling. The road curvature affects accidentdesgy, but the impact of this variable
is significantly smaller under denser traffic camahs such as the generic A44 daylight
traffic scenario. This partially explains the lovetrare of run-of-road accidents, when
compared with the typical share of run-of-road dents on dual carriageway.

» Variable 5 (grade) had an important impact, duia¢osteep grade on the North-South
direction near the southern interchange, slowingrdall vehicles considerably,
especially the heavy vehicles, and resulting iml@ongestion and high&ECrates.

» Both variables 5 and 11 (bulge and grade) wereamddaafter a manual georreferencing
of all road accidents.

Along with the 5 min intervals for the observedficadata, the above accident location
records required spatial observation units of 50 Ihese units are those considered for
aggregation of individual probabilities. Using teasnits, more than 180x480-accidentA)
events were observed during the three years pdfiaduding the days with bad sensor data, a
random sampling technique was used to select 6\#0&vents, resulting in a total of 6,544
events to be calibrated and simulated for artifidata generation.

The integrated driver behaviour mod2R)implemented iMITSIMLab(34) was used
to simulate trajectories for each observed evems. global multi-step sensitivity-analysis based
calibration proposed irBg) was used for the calibration of every samplechevEhe method
was then coupled with a meta-model based calibratay calibrating the simulator with
trajectory data, and with a powerful simultaneoesdnd-supply calibration method for the
calibration of the large set of accident and notielent events using aggregated data. The
microscopic simulation tool is calibrated once gsanpre-estimated seed OD matrix estimated
from historical license plate matching, and botgragate (loop sensor-based speeds and counts)
and disaggregate (observed vehicle trajectorieg) ddlected for a specific generic day. The
demand and a sub-set of the overall microscopialsiion model parameters are then re-
calibrated for each of the sampled events usingveat specific loop sensor data. After this, the
calibrated set of parameters for each event is ttsgdnerate a set of event specific (artificial)
detailed traffic variables.

The artificial data generated by the calibrated edhowed a clear divergence
between accident and non-accident event simulatguts typically used in safety assessment -
see detailed methods and results3id).(

RESULTS

Modeling assumptions
Computing theRE andRORmModel components requires that both longitudindl lateral skid
resistance are specified. On-site measured valaes not availabtehence, generic values were
adopted 87): a linear variation from 0.85 at Okm/h to 0.79.80km/h for dry pavementsnd
from 0.70 at Okm/h to 0.20 at 130km/h for wet paeais. An increase factor of 1.10 was
considered for the lateral skid resistance. Funtioee, heavy vehicles’ longitudinal and lateral
values were decreased by a factor of 0.70 undecaglitions.

The availability of each occurrence alternative watuded in the specification of the
likelihood function. For each observation:

» REconflicts are possible whenever the subject vehgln car-following state;
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» LC conflicts are possible if the road carriagewaytiasor more lanes and the subject
vehicle wants to change lanes;
* RORevent are possible if the road section is a cantle subject vehicle is changing
lanes.
Multiple replications should be used directly i thstimation phase within a Monte
Carlo process. The main burden in such an apprisatle computer memory and processing
resources needed during the estimation phasee loutnent study, the estimation process was
carried using only three replications and considgdaach of them independent. Finally, the
maximum likelihood estimates of the model paransetee calculated by maximizing this
function:

L= Zs,p Zk Yk, s,pWk ln[Psp (k)] (8)

wherek are all possible outcomes considered for the megaonodelP; ,, (k) is the probability

of outcomek for spatial intervas and time periog (given by equation 8)y, is the outcomé-
specific sampling ratioy, s ,, is 1 if k is the observed outcome for the observationpaiand 0
otherwise. In this study, tifeythonBIOGEMEbpen source software was used 38. For numerical
reasons, it is good practice to scale the dathadhe absolute values of the parameters are
between @nd 1; thus, all relative gap variation variables were divided by 10 and the lateral
acceleration differences specified in 0.1/s

Model Estimation Results
The estimation results are presented in Table 2.

When the positivR A™*¢¢ component is close to zero, the relative decéteras close
to DRAC and thus closer to a safe situation. WRé¢¢ increases the probability forRE
accident is higher, as the difference between éingcle relative deceleration rate andit®AC
gets higherBRE has a higher absolute magnitude tj§&A, penalizing much more any safety
decay in the unsafe domaiR4™¢¢¢> 0) rather than in the safe orA(**¢“< 0). Regarding the
negative component, i.e. when the follower hasaalyeadjusted its acceleration, lowA™¢e4
results in higheRE probabilities, due to loweéfTC. The positive sign ofXEand its statistical
significance make the consideration of differemgenous safety conditions non-negligible.
Both the vehicle category (car/truck or bus) arelghvement (wet/dry) conditions were
considered.

The parameters of the negative components of dtedad lag gap variation durihg
events gL¢andpL¢) are also significant: largest absolute valuessahidependent variables
(RG'*9 andRG!e*4) represent significantly shrinking gaps. As bosingmeters are negative, any
RG'9 or RG'**will increase the probability afC accidents. The lead relative gap variation
came out as the most statistically significant rdopg LC events and its higher magnitude is due
to the much smaller simulated lead gaps during-n@age not only when compared to lag gaps
but also when comparing accident events with nidaots.
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TABLE 2 Estimation results.

Event Parameter Value Standz;rd t-stat | p-val
eviation
Rear-end conflict
RE constant S&F -13.09% 0.608 -5.08 | <0.01
Positive relative needed deceleration ¢ | 2.917 0.917 3.18 | 0.01
Negative relative needed deceleration S5 | -1.92 0.784 -2.45 | 0.03
Maximum available deceleration ratio SX¢ | 2.03 1.034 1.96 | 0.07
Lane-change conflict
LC constant B¢ -7.08* 0.457 6.32 | <0.01
Positive relative lag gap variation SL¢ -0.011 0.012 -0.92 | 0.38
Negative relative lag gap variation f4¢ -0.568 0.338 -1.68 | 0.12
Positive relative lead gap variation B¢ -0.311 0.255 -1.22 | 0.25
Negative relative lead gap variation 5¢ -0.628 0.315 -1.99 | 0.07
Run-off-road event
ROR constanpXor -12.45° 0.367 -6.68 | <0.01
Positive lateral acceleration differeng’? | 0.02¢ 0.013 1.77 0.10
Negative lateral acceleration differen@g’® | 1.77¢ 0.965 1.84 0.09
Scale parameter for the accident n 1.622 0.56% 2.8¢ 0.01

Number of parameters 13 (* are parameters affected by weights)
Sample size: 10733084 (3 replications)
Initial log-likelihood: -9636.49
Final log-likelihood: -2047.53
p?: 0.787
p%: 0.786

RegardingROR events, whera'® is positive, the simulated lateral acceleration is
higher than the critical lateral acceleration dmel\tehicle is under unsafe conditions. Thus,
whenBROR> 0 there is a higher probability BDR events. Similarly, whena'® is negative,
larger absolute values are related to safer camditias the simulated lateral acceleration is much
smaller than the critical on@f°k< 0). Yet, one would expect a higher absolute ntageifor
BROR, but these results may be due to the small nunfbalservations witiha'@t > 0.

The estimated scale parameter of the accidents:vess$ also significant, revealing a
non-negligible effect of shared unobserved attabuif the different types of accident analysed.

Model Application
In Figure 4 an example of a simple use of the pgedanodel is presented. The model was run
for a new set of artificial trajectories for theneasampled events on the A44. The values of the
estimated probabilities shown in this Figure repnéshe average probability of observing a
specific type of accident for 50m and 5min units:
» The probability oREandSCevents is larger in sections close to weaving afgas is
due to the dense traffic and to short interchapgeiag in A44. High accelerations and

decelerations along with short lateral gaps arecated with such probabilities.
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» The upper half sections of the A44 close to entry @xit ramps have a higher probability
of SC mainly due to the absence of dedicated slip readssub-standard acceleration
and deceleration lane lengths. These factors affiéars gap acceptance, forcing lower
than normal critical gaps in lane-changing manoesivior vehicles to keep their routes.

« Similarly, link sections following short entry rasmpave higheRE event probabilities.

« A few curved elements clearly show an increasebaiibity of RORevents, revealing

inadequate (simulated) speed choices in thoseidosat

0.000 - 0.101
0.101-0.212

0.212-0.349
s (),349 - 0.520

e (),520) - 0,884 ||

0.068 - 0.203
0.203 - 0.261

0.261 - 0.389
s ().389 - 0.602
e ().602 - 0.860

FIGURE 3 Average probabilities for RE (left), SC (center) and ROR (right) accidents

estimated by 50m and 5 min (in 10-)
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The analysis of possible safety levels or threshaddjuires further research and is not
discussed in this paper. Yet, the potential of suelthod is easily envisaged as the simple
application shown in Figure 4 can be extendedrtwkition integration and used for testing and
comparing alternative design and operational seemarhat is the case for adding extra lanes to
diverging and weaving sections; locating variable speed limit signs and automatic enforcement
systems; locating additional direccional signing; and setting speed limit strategies attending to
both atmospheric and traffic prevailing conditions.

CONCLUSIONS

A generic framework for modelling cause-effect meahms between detailed traffic variables
and accident occurrence probability in traffic rogropic simulation tools was proposed and
tested in a real road environment. Detailed vaeslbof vehicle motion and interactions were
found to be linked to diversity in accident probieis. The nested structured allowed to capture
existing trade-offs between different types of deaits. The fact that all these considerations
were extracted from simulated analysis shows takep@tential of advanced traffic microscopic
simulation regarding detailed safety assessmesieng as detailed calibration is successfully
carried out. The interaction between vehicle gagbkralative motions has been proved as a key
factor for accident occurrence in previous safetsted studies. Yet, no probabilistic formulation
accommodating such interaction and integratedaiffi¢rsimulation models had previously been
reported in the literature.

Several enhancements regarding the specific fotioalaf the proposed probabilistic
safety model for urban motorways may be introdu@ée. inclusion of further components in
the safety scoring function (e.g.: driver relatediables), the formulation of non-linear safety
score functions, the specification of additionatident types and the definition of more powerful
modelling structures, such as the mixed logit,stingation methods, such as a panel data
estimation based on multiple replications, maydstetd.

At this stageMITSIMLaband the presented probabilistic safety models beaysed for
testing and benchmarking alternative design layantsoperational scenarios on Portuguese
urban motorways. Safety and mobility consequentdgdadsions regarding safety
countermeasures (such as those describ&d) imay be evaluated at the design stage. Starting
from the detailed calibrated base scenario, theasiimulation may be used for detecting
dangerous sections for each accident type, anohaiteés for evaluating the changes in the road
safety scores due to alternative scenarios (egingdin extra lane at a dangerous diverging
sections; changing lane assignment before an exit; changing variable speed limiAADT ranges;
and suiting speed limits to rainfall conditionshelfact that these safety score benchmarkings
are carried out for each type of accident alsonalfor an indirect consideraction of accident
severity in the scenario comparisons.
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