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 1 
ABSTRACT 2 
Currently, traffic microscopic simulation is a common tool for road system analysis. However, 3 
only recently have attempts been carried out to its application in safety assessment; also, most 4 
approaches still ignore causal relationships between different levels of vehicle interactions or/and 5 
crash types, lacking a valid representation of the crash phenomena itself. In this paper, a new 6 
generic probabilistic safety assessment framework for traffic microscopic simulation tools is 7 
proposed, as developed within the context of intelligent urban motorway speed limit 8 
management. 9 

The probability of a specific crash occurrence is assumed as estimable by a crash 10 
propensity function, with a random component and a deterministic safety score component. This 11 
component depends on the type of occurrence, detailed vehicle interactions and manoeuvres, and 12 
simulation modelling features. The generic model is specified for no-crash events and three types 13 
of crash events (rear-end, lane-changing, and run-off-road) in a nested (logit) structure. 14 

Artificial trajectories from a detailed calibrated microscopic simulation tool were used 15 
in the safety model fitting. Improved trajectory replication was obtained by a novel detailed 16 
comprehensive calibration effort: real trajectories were extracted from generic scenarios; the 17 
simulation tool was calibrated using the collected trajectories; lastly, the simulation model was 18 
re-calibrated using aggregate data from each selected replicated event. 19 

The final estimated safety model allowed for the identification and interpretation of 20 
several simulated vehicle interactions (only 9% false crash alarms). The fact that these 21 
considerations were extracted from simulated runs shows the real potential of traffic microscopic 22 
simulation for detailed safety assessments in road design.  23 
 24 
 25 
 26 
 27 
Keywords: Traffic microscopic simulation, Road safety, Probabilistic modelling, Driving 28 

behaviour modelling, Surrogate safety measures, Calibration 29 
  30 
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INTRODUCTION  1 
Traffic microscopic simulation tools have been widely applied and its development has grown in 2 
recent years. They are now accepted as main tools for designing road infrastructure operation and 3 
for assessing transportation solutions, by researchers and practitioners. These tools incorporate 4 
several driving behaviour models that simulate vehicle movements, drivers’ decisions and road 5 
user interactions at a very detailed level (1). The level of detail considered in driving behaviour 6 
models is particularly critical when disaggregated interactions between vehicles are more 7 
important than the aggregate traffic flow characteristics, such as in detailed safety assessments. 8 
Driving behaviour models typically include acceleration, lane-changing, route choice models and 9 
even more detailed features such as courtesy yielding or target gap selection models that were 10 
estimated based on a few (typically just one) sets of trajectory data.  11 

Due to the complex nature of traffic systems and to the level of detail aimed at by 12 
several traffic simulation models (and the limited data used for its estimation), the calibration of 13 
detailed traffic variables has gained increasing importance in the application of microscopic 14 
simulation tools (2). The difficulty in replicating detailed traffic variables in traffic microscopic 15 
simulation has also hampered its application to safety analysis, especially when compared with 16 
its widespread use in network traffic performance analysis (17). There is a strong gap between 17 
the solid research on classical accident statistical analysis (3, 4) and the most recent 18 
developments in safety assessment using simulation. 19 

Surrogate safety models (5) and a few real-time accident probability models (6, 7 and 8) 20 
are the two main safety research streams that have emerged recently with satisfactory results, 21 
especially as regards intersections, where the importance of vehicle interactions is 22 
straightforwardly recognized. Conflicts are used based on the assumption that the expected 23 
number of accidents occurring on a system is proportional to the number of conflicts, making 24 
them suitable for systems’ comparisons (9). One main limitation of using conflicts is the correct 25 
estimation of this proportionality. This difficulty has motivated the development of several 26 
models to estimate accident frequency from traffic conflicts counts (10). For modelling purposes, 27 
another limitation is the lack of standardized practical definitions and measurement procedures 28 
(as it does not estimate the probability of an accident itself). For this purpose several time-based, 29 
deceleration-based and dynamic-based surrogate safety performance indicators were proposed in 30 
the literature (11). Despite this, these models are the most widely used within microscopic 31 
simulation studies (12, 13, 14, 15, 16). 32 

Very recently, efforts have been made to integrate drivers’ interaction in probabilistic 33 
modelling frameworks (14, 15 and 16). The above mentioned accident probability models try to 34 
link the probability of a specific accident occurrence using a statistical model fitted to aggregated 35 
data. However, probabilistic frameworks try to formally represent cause-effect relationships 36 
between performed driving tasks and traffic scenarios related to typical accident events. Such 37 
approach has a higher potential in replicating the intrinsic nature of an accident mechanism and, 38 
ultimately, would not depend on safety records itself. On the other hand, probabilistic 39 
frameworks depend on much more detailed information as the distributions and relationships 40 
between all variables at stake are needed (e.g.: evasive manoeuvres probabilities for different 41 
situations or pavement conditions for different scenarios). 42 

The objective of this study was to understand how microscopic simulation models can 43 
replicate detailed traffic data and how the results from simulated driver interactions may be used 44 
to calculate probabilistic safety scores to assess the influence on safety of key geometric design 45 
features, such as configuration and length of weaving sections, horizontal curve radius and lane 46 
width. 47 
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THE PROBABILISTIC SAFETY MODEL 1 
 2 
Overall formulation 3 
A generic framework for modelling cause-effect mechanisms between detailed vehicle 4 
interactions from simulated motorway environments and the accident occurrence probability was 5 
developed. It is assumed that the state of a vehicle n at any given time t is represented by a 6 
discrete variable whose state outcome k may take one of four values: no accident or one of three 7 
types of accident (rear-end, lane change or run-off-road – the three prevalent accidents on 8 
motorways). This is represented in Figure 1. 9 
 10 

 11 
 12 
FIGURE 1 Model structure for motorway accident occurrence 13 
 14 

An individual outcome k among all possible outcomes K is considered to be predicted if 15 
its probability ��,���� is maximum. This probability is assumed to be a function of specific 16 
observed variables characterizing the interaction between vehicles 17. Such considerations step 17 
away from the assumption of a fixed coefficient model converting the surrogate event frequency 18 
into accident frequency, typically used in the traffic conflicts technique. The probability for a 19 
specific accident involving vehicle n to occur at time � is assumed to be estimable by a specific 20 
accident propensity (or proximity) measure (21): 21 
 22 
��,����~
�         (1) 23 
 24 

In this model, each accident propensity function 
�, has a (deterministic) safety score 25 
(��) component and a random component (
): 26 
 27 


� = ����, �� + 
        (2) 28 

 29 
Where X is the vector of explanatory variables, � is the vector of unknown parameters 30 

to be estimated and 
	is the random term (the terms �	and �	were omitted for simplicity). The 31 
assumption of the deterministic safety score component agrees with a recent research stream 32 
where detailed interaction variables directly affect the accident occurrence probability itself (see 33 
21 and 32). The random component 
	represents the unobserved effects involved in the 34 
determination of the outcome; these may be derived from a random process in the occurrence of 35 
a specific event or correspond to insufficient knowledge of this process. 36 

The accident phenomenon results from many different known factors (variables): 37 
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 1 
����, �� = �����,�, ���,�, ��,�, ���       (3) 2 
 3 
Where the � accident-type specific scoring function �� depends on: 4 

��,�, the driver-vehicle unit � specific variables at time �; 5 
���,�, the variables at time � for the interaction between � and a conflicting driver-vehicle 6 

unit �′; 7 
��,�, the dynamic environmental variables at time t (e.g.: weather, variable speed limit, 8 

lighting conditions, etc.); 9 
��, the static environmental variables (e.g.: geometrics, road signs, etc). 10 
Note that driver characteristics are typically not considered in traffic simulation tools, 11 

which substantially limits the number of available candidate explanatory variables ��,�. 12 
This general formulation was applied to a specific set of accidents that typically occur 13 

on busy urban motorways: rear-end accidents, side collisions during lane-change manoeuvres 14 
and run-of-road accidents (Figure 2). These three different outcomes correspond to very distinct 15 
phenomena. However, it is arguable that these three outcomes are independent, namely if one 16 
considers accident outcomes following an evasive action from different risky interactions. 17 

In the presented model we framed the formulation of each function �� to represent a 18 
cause-effect relationship, to simultaneously deal with different non-independent types of 19 
accident outcomes and to consider a disaggregated probability for any vehicle state (�, �) 20 
observation. This is a departure from the existing aggregate formulation used in real-time 21 
accident probability models. 22 

 23 

  
a) Rear-end (RE) b) Lane-changing (LC) 

 
c) Run-off-road (ROR) 

 24 
 25 
FIGURE 2 Accident outcome types 26 
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General descriptions of the systematic safety score for each accident type are presented 1 
below. More detailed descriptions of these functions and comprehensive discussion of its 2 
assumptions are presented in reference (32). 3 
 4 
Rear-end (RE) conflicts 5 
The probability of a collision due to in-lane interactions is assumed dependent on: the subject 6 
vehicle braking requirements to avoid a RE collision; and the maximum available braking power. 7 

The first corresponds to the difference between the actual relative acceleration of the 8 
subject vehicle	� to the leader (� − 1� and the deceleration rate required to avoid a crash 9 
(DRAC) estimated using Newtonian physics applied to the speed, longitudinal position and 10 
length of the subject and precedent vehicles (see Figure 2a). 11 

We further split of the needed deceleration rate (∆���� ) into its positive, 12 
∆�!��� ��, �� ≥ 0, and negative, ∆�$��� ��, �� ≤ 0, components, allowing for the consideration 13 
of separate modelling parameters, with the advantage of considering the current acceleration 14 
state as well. Component ∆�$���  represents safer situations, as the vehicle is already applying a 15 
deceleration rate greater than	&'(). 16 

We further improve this formulation by dividing the required deceleration by the time-17 
to-collision, **), thus considering also how long the driver has before the potential collision. 18 
The RE safety score function will then depend on the available time for adjustment, resulting in a 19 
relative needed deceleration ratio:	'(��� �n, t� 	= 	∆a.//0�n, t�/**)�n, t�. 20 

The measure of the maximum available deceleration rate is similar to the CPI surrogate 21 
safety measure described in 9. The formulation emulates the influence of the vehicle speed itself 22 
and allows for heterogeneous safety conditions due to different vehicle categories (e.g. 23 
cars/heavy vehicles) and pavement conditions (e.g.: dry/wet) affecting the deceleration 24 
performance. This simple formulation of the friction coefficient results from the small number of 25 
variables typically available in simulated environments. The rate '(234�n, t� 	=26 
	∆a567�n, t�/**)�n, t� is used in the safety score function to account for **). 27 

The systematic safety score for RE collisions is formulated by the following equation: 28 
 29 
�89�n, t� = β;

<= + β>
<='(!��� �n, t� + β?

<='($��� �n, t� + β@
<='(234�n, t�  (4) 30 

 31 
where '(!���  and '($���  are the positive and negative components of the relative needed 32 
deceleration ratio computed using ∆�!���  and ∆�$��� respectively; '(234 is the maximum 33 
available deceleration ratio; and �;89, �>89 , �?89 and �@89are the estimable parameters. 34 
 35 
Lane-changing (LC) conflicts 36 
Lane change decisions are typically modelled by means of gap acceptance models (22) or, 37 
alternatively, by acceleration variation models (23). One would expect the probability of lane-38 
change collisions to be dependent on vehicle lateral movements. However, most current micro-39 
simulation tools do not provide this modelling feature. Therefore, surrogate measures depending 40 
on lateral movements, such as the Time-To-Lane-Crossing proposed in (24) and the Post-41 
Encroachment-Time used in (25), are not easily integrated.  42 

The probability of a LC collision is based on gap acceptance models and formulated in 43 
terms of gap variation. The gap acceptance is generally modelled separately regarding the lead 44 
and the lag gaps on the target lane (Figure 2b). This disaggregation is of special interest as 45 
different parameters may be computed for different gaps (26). It is known that the lane-changing 46 
process becomes increasingly difficult as the speed differences increase between the subject 47 
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vehicle and the lead and lag vehicles in the target lanes (27). Thus, in the proposed formulation 1 
the safety score of the A) event is specified in terms of relative gap variations (RGgap

 (n,t)), which 2 
are a function of both the gap and the speed difference between the subject vehicle and the lead 3 
or lag vehicles.  4 

Two specific variables are used to represent gap variation: when positive, 'B!
CDE takes a 5 

positive value and 'B$CDEis nul; and the reciprocal, when the gap variation is negative. This 6 
allows for associating specific parameters to different safety conditions, i.e. for gaps that are 7 
either increasing or decreasing, respectively. 8 

Following the above formulation, a gap with a higher relative shrinking rate should have 9 
a higher impact on the A) conflict probability, and therefore its parameter estimate should be 10 
negative. 11 

The following equation represents the systematic component for A) collisions: 12 
 13 

�FG��, �� = �;
FG + �>

FG'B!
2DC��, �� + �?

FG'B$2DC��, �� + �@
FG'B!2�D ��, �� + �HFG'B$2�D ��, ��			(5) 14 

 15 
where	'(!

CDE and '($CDE are the positive and negative components (with gap = {lead, lag}� and 16 
�;
FG, �>

FG, �?
FG, �@

FG and �HFGare the estimable parameters. 17 
 18 
Run-off-road (ROR) events 19 
'P'	events are assumed as being primarily related to individual vehicle dynamics rather than to 20 
interactions with others. This assumption is especially true under free-flow scenarios. However, 21 
ROR events may also result from evasive manoeuvres due to dangerous lane-changing or car-22 
following interactions. 23 

Vehicle dynamics in traffic simulation models are represented in a much simplified 24 
manner, when compared with the detailed movements’ description of real events currently 25 
achieved with accident reconstruction software. Generally, detailed vehicle lateral movement 26 
descriptions, true road geometric characteristics (such as transition curves), pavement surface 27 
characteristics features, and detailed vehicle geometric and mechanical specifications are missing 28 
from micro-simulation tools. This significantly limits the current potential for a 'P' micro-29 
simulation modelling framework. However, relevant variables are already available, such as 30 
vehicle speed, overall description of road geometrics and generic vehicle type specifications. 31 

In the proposed framework, the safety score of 'P' events is assumed to depend on the 32 
difference between the current lateral acceleration of a vehicle and a site specific critical lateral 33 
acceleration. On horizontal curves the vehicle is assumed to follow a simple circular path, its 34 
yaw being equal to the curve bearing (Figure 2.c).The lateral acceleration of a vehicle, alat, is 35 
therefore derived from its current speed and the curve radius ' using Newton mechanics. As 36 
mentioned, it is expected that lane change manoeuvres may also affect the 'P' event 37 
probability. Using test track data, Chovan et al. (26) considered peak lateral acceleration values 38 
of 0.4g, 0.55g and 0.7g for mild, moderate, and aggressive steering manoeuvres, respectively. 39 
Since detailed lane change models are typically not available in microscopic traffic simulation 40 
platforms, a generic 0.5g peak acceleration add-on for lane change was incorporated in the 41 
centripetal acceleration equation, to account for a potentially higher 'P' probability in road 42 
sections with high lane change frequency. 43 

The maximum allowed lateral acceleration (�QR2D���, ��) depends on the critical lateral 44 
friction coefficient, the road superelevation, the vehicle class and speed, and on the pavement 45 
condition (wet/dry). 46 

The safety score function is formulated in terms of the positive (unsafe) and negative 47 
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(safe) components of the difference between the current and the critical lateral accelerations: 1 
 2 
�8S8��, �� = �;

8S8 + �>
8S8∆�!2D���, �� + �?

8S8∆�$2D���, ��    (6) 3 
 4 
where	∆�!2D�  and ∆�$2D�  are the positive and negative components of ∆�2D� = �2D� − �QR2D� , 5 
respectively, and �;

8S8, �>
8S8 and �?

8S8 are the estimable parameters. 6 
 7 
Estimation framework 8 
As previously stated, the explanatory variables of one type of accident may influence the 9 
occurrence of others and evasive manoeuvres may create correlations between different accident 10 
outcomes. When modelling multiple discrete outcomes, the multinomial nested logit model 11 
proposed by Ben-Akiva, (28), has advantages over the simple multinomial logit model, because 12 
it can simultaneously estimate the influence of independent variables while allowing for the error 13 
terms to be correlated – formulation details may be found in (29). 14 

To directly estimate the proposed model, a large set of all types of model outcomes and 15 
its vehicle interaction data is needed. Unfortunately, a large data allowing for the direct 16 
association between trajectories and accident occurrence is still not available. Furthermore, 17 
although the proposed model is specified individually for any vehicle n at every time t, the 18 
philosophy of microscopic simulation applications is to replicate aggregate measurements (even 19 
for such detailed values as accelerations, headways and TTC). Thus, to estimate the above model 20 
the use of artificial (simulated) trajectories from a microscopic simulation tool is proposed. This 21 
artificial data is then used with accident historical data in the model estimation process. Yet, a set 22 
of critical assumptions must be considered: 23 

• The microscopic simulation model must be appropriately calibrated to replicate statistical 24 
distributions of detailed traffic variables. To achieve appropriate calibration, we assume 25 
that both aggregated data, such as loop sensor-based speeds and traffic counts, and a 26 
sample of disaggregated data, such as detailed vehicle trajectories are needed. Indeed, as 27 
it was concluded in a previous work that disaggregated calibration improves significantly 28 
the accuracy of simulated trajectories and spot-speeds, which are important for adequate 29 
representation of vehicle interactions in safety studies (36). 30 

• Trajectories extracted in a generic day represent the general driving behaviour of traffic. 31 
Confidence on this assumption depends on the amount and breath of information 32 
available for treatment. Other factors (such as weather) influence general driving 33 
behaviour parameters; part of this variability may be assessed by means of a dedicated 34 
calibration, carried out for each specific event, using readily available data sets (eg.: from 35 
loop sensors). 36 

• Simulated descriptions of detailed traffic variables can be linked to the accident 37 
probability, even though simulation models are crash-free. This is supported by previous 38 
studies (12, 6). 39 

• It is typically expected that both the loop-based variables used for calibration and the 40 
accident occurrence reported variables are defined for given time and spatial units. 41 
Occasionally, such aggregated intervals maybe too large to capture short-term variations; 42 
nevertheless several authors (27, 2) have successfully used aggregated periods up to 5 43 
min intervals to perform accident occurrence probability analyses. With the absence of 44 
true trajectory variables for each vehicle involved in each observed event, the 45 
characterization of the detailed traffic variables for a specific accident occurrence must be 46 
linked by means of spatial and temporal aggregation. Additionally, it is well known that 47 
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safety records have time and spatial errors. Therefore, for estimation one needs to 1 
aggregate all vehicle state outcome probabilities ��,���� by standardized intervals of 2 
space, T, and time periods, U: 3 

 4 

�V,E��� =
>

W
∑ ��,����W        (7) 5 

 6 
where ��,���� is the probability of occurrence � for any relevant observation of vehicle � 7 
at time �, traveling in spatial interval T and time period U and defined by the proposed 8 
nested logit model;	Y is the total number of observations for all vehicles that travelled in 9 
the interval T, U. According to this formulation, the model is based on mean values and 10 
not on extreme values. This follows the traffic micro-simulation specification philosophy, 11 
where the replication of averaged variables is expected. However, it is possible to push 12 
the use of extreme formulations and rely on detailed calibration methods of extreme 13 
values. Such formulation was not tested for the present document. 14 

• Finally, if one considers a large historical observation period typically needed for the 15 
observation of a significant number of accident occurrences, it is expected that the loop 16 
sensors will fail for some instances. Furthermore, the computational memory and 17 
processing resources needed to generate and use the simulated trajectory data for a large 18 
set of no-accident occurrence units during the “meaningful” observation period is 19 
impractical. Therefore, an outcome (choice)-based random sampling was assumed to 20 
select the events to be simulated, and the weighted exogenous sample maximum 21 
likelihood function proposed in (31) was used, to account for this biased sampling 22 
process. 23 

 24 
THE URBAN MOTORWAY CASE AND TESTING DATASET 25 
The proposed model was estimated with data collected and simulated for the A44 urban 26 
motorway near Porto, in Portugal. This road was selected as case study due to its dense traffic, 27 
unusually high number of lane changes, short spacing between interchanges and high percentage 28 
of heavy goods vehicles. A44 is a 3,940m long dual carriageway urban motorway with 5 major 29 
interchanges, two 3.50m wide lanes and 2.00m wide paved shoulders in each direction (see 30 
Figure 4 for overall layout). There are acceleration and deceleration lanes at all interchanges, 31 
although several as short as 150m. On and off-ramps connect to local roads, which generally 32 
have tight horizontal curves, intersections or pedestrian crossings, features that tend to impose 33 
significant reductions in vehicle speeds. 34 

Three different traffic data sets were specifically collected for the present study: a 35 
dynamic seed origin-destination (OD) matrix based on a sample of license plate matching and 36 
vehicle counts ; 5 min loop sensor average speeds and counts for the existing eight traffic 37 
stations (4 in each direction), between 2007 and 2009 32; and vehicle trajectories collected for a 38 
generic morning (with and without congestion) by aerial remote sensing for the entire length and 39 
access links of the A44 motorway (33). Finally, incident records were also collected for the same 40 
period of 2007 to 2009 including a total of 144 side-collisions, rear-end collisions and run-off-41 
road accidents. 42 

In Table 1 the distribution of the collected variables are presented (ordinates are the 43 
number of observations). During the period of analysis one fatality, seven serious injuries and 98 44 
slight injuries were registered in the concessioned area. 45 
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From Table 1 a few particular observations deserve to be mentioned: 1 
• Variable 3 (event location of occurrence, in kilometers) shows that the edging 2 

interchanges and adjacent sections have a big share of accident records. This is due to the 3 
motorway layout, with frequent lane changes and speed variations during dense traffic 4 
conditions due to route choice manoeuvres. 5 

TABLE 1 Accident Data Statistics. 6 
 7 

1. 
Direction 

 

7.            
Accident

Type 

 

2.       
Road 

Stretch 

 

8.         
Accident 
Severity 

 

3. 
Location 

 

9.       
Vehicles 
Involved 

 

4.       
Lane 

 

10.          
Ramp 

 

5.    
Grade 
(m/m) 

 

11.        
Bulge 

 

6.      
Time 

 

12.   
Month 

and Year    

 

 
 8 

• From variable 7 (type of accident), 44% of the accidents are rear-end-collisions (REC), 9 
32% are run-of-road (ROR) and 24% are lateral collisions (SC). Variable 9 (number of 10 
vehicles involved in an accident) also indicates that vehicle interactions have a clear 11 
impact in A44 safety records. 12 

• Variable 8 (severity) represents the consequences of the occurrence, with ’DO’ as 13 
damage-only accidents, ‘LI’, ‘ HI’ and ‘FI ’ as light injury, severe injury and fatality. 14 

• From variable 10 (type of section), 12% of the accidents occurred on entry or exit links. 15 
• Variable 11 (bulge) is defined as the tangent of 1/4 of the included angle of the arc 16 

between the curve vertex edges. A negative bulge value indicates that the arc goes 17 
clockwise from the selected vertex to the next vertex. A bulge of 0 indicates a straight 18 
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segment. Bulge is directly linked to the curve radius and is a proxy of spiral curves. It is 1 
commonly used in simulation software and was kept as such for easier simulation 2 
modelling. The road curvature affects accident frequency, but the impact of this variable 3 
is significantly smaller under denser traffic conditions such as the generic A44 daylight 4 
traffic scenario. This partially explains the lower share of run-of-road accidents, when 5 
compared with the typical share of run-of-road accidents on dual carriageway. 6 

• Variable 5 (grade) had an important impact, due to the steep grade on the North-South 7 
direction near the southern interchange, slowing down all vehicles considerably, 8 
especially the heavy vehicles, and resulting in local congestion and higher REC rates. 9 

• Both variables 5 and 11 (bulge and grade) were obtained after a manual georreferencing 10 
of all road accidents. 11 

Along with the 5 min intervals for the observed traffic data, the above accident location 12 
records required spatial observation units of 50 m. These units are those considered for 13 
aggregation of individual probabilities. Using those units, more than 180×106 no-accident (Y() 14 
events were observed during the three years period. Excluding the days with bad sensor data, a 15 
random sampling technique was used to select 6,400 NA events, resulting in a total of 6,544 16 
events to be calibrated and simulated for artificial data generation. 17 

The integrated driver behaviour model (22) implemented in MITSIMLab (34) was used 18 
to simulate trajectories for each observed event. The global multi-step sensitivity-analysis based 19 
calibration proposed in (35) was used for the calibration of every sampled event. The method 20 
was then coupled with a meta-model based calibration, for calibrating the simulator with 21 
trajectory data, and with a powerful simultaneous demand-supply calibration method for the 22 
calibration of the large set of accident and non-accident events using aggregated data. The 23 
microscopic simulation tool is calibrated once using a pre-estimated seed OD matrix estimated 24 
from historical license plate matching, and both aggregate (loop sensor-based speeds and counts) 25 
and disaggregate (observed vehicle trajectories) data collected for a specific generic day. The 26 
demand and a sub-set of the overall microscopic simulation model parameters are then re-27 
calibrated for each of the sampled events using the event specific loop sensor data. After this, the 28 
calibrated set of parameters for each event is used to generate a set of event specific (artificial) 29 
detailed traffic variables. 30 

The artificial data generated by the calibrated models showed a clear divergence 31 
between accident and non-accident event simulated outputs typically used in safety assessment - 32 
see detailed methods and results in (36). 33 
 34 
RESULTS 35 
 36 
Modeling assumptions 37 
Computing the RE and ROR model components requires that both longitudinal and lateral skid 38 
resistance are specified. On-site measured values were not available; hence, generic values were 39 
adopted (37): a linear variation from 0.85 at 0km/h to 0.75 at 130km/h for dry pavements; and 40 
from 0.70 at 0km/h to 0.20 at 130km/h for wet pavements. An increase factor of 1.10 was 41 
considered for the lateral skid resistance. Furthermore, heavy vehicles’ longitudinal and lateral 42 
values were decreased by a factor of 0.70 under dry conditions. 43 

The availability of each occurrence alternative was included in the specification of the 44 
likelihood function. For each observation: 45 

• RE conflicts are possible whenever the subject vehicle is in car-following state; 46 
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• LC conflicts are possible if the road carriageway has two or more lanes and the subject 1 
vehicle wants to change lanes; 2 

• ROR event are possible if the road section is a curve or the subject vehicle is changing 3 
lanes. 4 
Multiple replications should be used directly in the estimation phase within a Monte 5 

Carlo process. The main burden in such an approach is the computer memory and processing 6 
resources needed during the estimation phase. In the current study, the estimation process was 7 
carried using only three replications and considering each of them independent. Finally, the 8 
maximum likelihood estimates of the model parameters are calculated by maximizing this 9 
function:  10 
 11 
ℒ = ∑ ∑ [�,V,E\�]�^�V,E���_�V,E        (8) 12 
 13 
where k are all possible outcomes considered for the proposed model, �V,E��� is the probability 14 
of outcome k for spatial interval s and time period p (given by equation 8), \� is the outcome �-15 
specific sampling ratio, [�,V,E is 1 if � is the observed outcome for the observation pair T, U and 0 16 
otherwise. In this study, the PythonBIOGEME open source software was used 38. For numerical 17 
reasons, it is good practice to scale the data so that the absolute values of the parameters are 18 
between 0 and 1; thus, all relative gap variation variables were divided by 10 and the lateral 19 
acceleration differences specified in 0.1m/s2. 20 
 21 
Model Estimation Results 22 
The estimation results are presented in Table 2. 23 

When the positive '(���  component is close to zero, the relative deceleration is close 24 
to &'() and thus closer to a safe situation. When '(!���  increases the probability for a RE 25 
accident is higher, as the difference between the vehicle relative deceleration rate and its &'() 26 
gets higher. �>89 	has a higher absolute magnitude than �?89, penalizing much more any safety 27 
decay in the unsafe domain ('(��� > 0) rather than in the safe one ('(��� < 0). Regarding the 28 
negative component, i.e. when the follower has already adjusted its acceleration, lower '($���  29 
results in higher '` probabilities, due to lower **). The positive sign of �@89and its statistical 30 
significance make the consideration of different exogenous safety conditions non-negligible. 31 
Both the vehicle category (car/truck or bus) and the pavement (wet/dry) conditions were 32 
considered. 33 

The parameters of the negative components of the lead and lag gap variation during A) 34 
events (�?

FGand �HFG� are also significant: largest absolute values of its independent variables 35 
('B$2DC and 'B$2�D ) represent significantly shrinking gaps. As both parameters are negative, any 36 
'B$2DC or 'B$2�D will increase the probability of A) accidents. The lead relative gap variation 37 
came out as the most statistically significant regarding LC events and its higher magnitude is due 38 
to the much smaller simulated lead gaps during lane-change not only when compared to lag gaps 39 
but also when comparing accident events with no-accidents. 40 

 41 
 42 
 43 
 44 
 45 

 46 
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TABLE 2 Estimation results. 1 
 2 

Event Parameter Value Standard 
deviation 

t-stat p-val 

     

Rear-end conflict     

'` constant �;
89 -13.09* 0.608 -5.08 <0.01 

Positive relative needed deceleration �>
89  2.917 0.917 3.18 0.01 

Negative relative needed deceleration �?
89  -1.92 0.784 -2.45 0.03 

Maximum available deceleration ratio �@
89  2.03 1.034 1.96 0.07 

     

Lane-change conflict     

A) constant �;
FG  -7.08* 0.457 6.32 <0.01 

Positive relative lag gap variation �>
FG  -0.011 0.012 -0.92 0.38 

Negative relative lag gap variation �?
FG  -0.568 0.338 -1.68 0.12 

Positive relative lead gap variation �@
FG  -0.311 0.255 -1.22 0.25 

Negative relative lead gap variation �H
FG -0.628 0.315 -1.99 0.07 

     

Run-off-road event     

ROR constant �;
8S8 -12.45* 0.367 -6.68 <0.01 

Positive lateral acceleration difference �>
8S8 0.023 0.013 1.77 0.10 

Negative lateral acceleration difference �?
8S8 1.775 0.965 1.84 0.09 

     
Scale parameter for the accident nest  µ 1.622 0.567 2.86 0.01 

Number of parameters 13 (* are parameters affected by weights) 

Sample size: 10733084 (3 replications) 

Initial log-likelihood: -9636.49 
Final log-likelihood: -2047.53 

ρ?: 0.787 

ρ�?: 0.786 

 3 
Regarding 'P' events, when ∆�2D� is positive, the simulated lateral acceleration is 4 

higher than the critical lateral acceleration and the vehicle is under unsafe conditions. Thus, 5 
when �>

8S8>  0 there is a higher probability of ROR events. Similarly, when ∆a5�� is negative, 6 
larger absolute values are related to safer conditions, as the simulated lateral acceleration is much 7 
smaller than the critical one (�?

8S8< 0). Yet, one would expect a higher absolute magnitude for 8 
�>

8S8; but these results may be due to the small number of observations with ∆�2D� > 0. 9 
The estimated scale parameter of the accidents nest µ was also significant, revealing a 10 

non-negligible effect of shared unobserved attributes of the different types of accident analysed. 11 
 12 
Model Application 13 
In Figure 4 an example of a simple use of the proposed model is presented. The model was run 14 
for a new set of artificial trajectories for the same sampled events on the A44. The values of the 15 
estimated probabilities shown in this Figure represent the average probability of observing a 16 
specific type of accident for 50m and 5min units:  17 

• The probability of RE and SC events is larger in sections close to weaving areas. This is 18 

due to the dense traffic and to short interchange spacing in A44. High accelerations and 19 

decelerations along with short lateral gaps are associated with such probabilities. 20 
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• The upper half sections of the A44 close to entry and exit ramps have a higher probability 1 

of SC, mainly due to the absence of dedicated slip roads and sub-standard acceleration 2 

and deceleration lane lengths. These factors affect drivers gap acceptance, forcing lower 3 

than normal critical gaps in lane-changing manoeuvres, for vehicles to keep their routes. 4 

• Similarly, link sections following short entry ramps have higher RE event probabilities.  5 

• A few curved elements clearly show an increased probability of ROR events, revealing 6 

inadequate (simulated) speed choices in those locations. 7 

 8 

 9 
 10 
FIGURE 3 Average probabilities for RE (left), SC (center) and ROR (right) accidents 11 
estimated by 50m and 5 min (in 10-6) 12 
 13 
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The analysis of possible safety levels or thresholds requires further research and is not 1 
discussed in this paper. Yet, the potential of such method is easily envisaged as the simple 2 
application shown in Figure 4 can be extended to simulation integration and used for testing and 3 
comparing alternative design and operational scenarios. That is the case for adding extra lanes to 4 
diverging and weaving sections; locating variable speed limit signs and automatic enforcement 5 
systems; locating additional direccional signing; and setting speed limit strategies attending to 6 
both atmospheric and traffic prevailing conditions.  7 
 8 
CONCLUSIONS 9 
A generic framework for modelling cause-effect mechanisms between detailed traffic variables 10 
and accident occurrence probability in traffic microscopic simulation tools was proposed and 11 
tested in a real road environment. Detailed variables of vehicle motion and interactions were 12 
found to be linked to diversity in accident probabilities. The nested structured allowed to capture 13 
existing trade-offs between different types of accidents. The fact that all these considerations 14 
were extracted from simulated analysis shows the real potential of advanced traffic microscopic 15 
simulation regarding detailed safety assessments, as long as detailed calibration is successfully 16 
carried out. The interaction between vehicle gaps and relative motions has been proved as a key 17 
factor for accident occurrence in previous safety related studies. Yet, no probabilistic formulation 18 
accommodating such interaction and integrated in traffic simulation models had previously been 19 
reported in the literature. 20 

Several enhancements regarding the specific formulation of the proposed probabilistic 21 
safety model for urban motorways may be introduced. The inclusion of further components in 22 
the safety scoring function (e.g.: driver related variables), the formulation of non-linear safety 23 
score functions, the specification of additional accident types and the definition of more powerful 24 
modelling structures, such as the mixed logit, or estimation methods, such as a panel data 25 
estimation based on multiple replications, may be tested.  26 

At this stage, MITSIMLab and the presented probabilistic safety models may be used for 27 
testing and benchmarking alternative design layouts and operational scenarios on Portuguese 28 
urban motorways. Safety and mobility consequences of decisions regarding safety 29 
countermeasures (such as those described in 39) may be evaluated at the design stage. Starting 30 
from the detailed calibrated base scenario, the microsimulation may be used for detecting 31 
dangerous sections for each accident type, and afterwards for evaluating the changes in the road 32 
safety scores due to alternative scenarios (ex.: adding an extra lane at a dangerous diverging 33 
sections; changing lane assignment before an exit; changing variable speed limit AADT ranges; 34 
and suiting speed limits to rainfall conditions). The fact that these safety score benchmarkings 35 
are carried out for each type of accident also allows for an indirect consideraction of accident 36 
severity in the scenario comparisons. 37 

 38 
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