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ABSTRACT

The increased availability of detailed trajectorgtal sets from naturalistic, observational and satmmh-based
studies are a key source for potential improvemanthie development of detailed safety models thatlicitly
account for vehicle conflict interactions and tlagious driving maneuvers.

Despite the well-recognized research findings oth bzrash frequency estimation and traffic conflietsalysis
carried out over the last decades, only recenfigaschers have started to study and model thééhkeen the two.
This link is typically made by statistical assomatbetween aggregated conflicts and crashes, wdiithrelies on
crash data and ignores heterogeneity in the estimatocedure. More recently, an Extreme Value (Bpjproach
has been used to link the probability of crash oence to the frequency of conflicts estimated frobserved
variability of crash proximity, using a probabilstramework and without using crash records.

In this on-going study the Generalized Extreme ¥a@EV) distribution and the Generalized Paretdribigtion

(GPD)-based estimation, in the peak over threshplgroach, are tested and compared as EV methoulg tns
minimum time-to-collision with the opposing vehiatliring passing maneuvers. Detailed trajectory dédtéhe

passing, passed and opposite vehicles from a figsed driving simulator experiment was used in ghigly. One
hundred experienced drivers from different demolgi@ptrata participated in this experiment on luntary base.
Several two-lane rural highway layouts and traffanditions were also considered in the design efdimulator
environment. Raw data was collected at a resolwfdhl s and included the longitudinal and latp@dition, speed
and acceleration of all vehicles in the scenarionfthis raw data, the minimum time-to-collisiortiwithe opposing
vehicle at the end of the passing, maneuver wasileaéd. GEV distributions based on the Block Maxiapproach
and GPD distributions under the POT approach wested for the estimation of head-on collision phbilitées in

passing maneuvers with different results. While @&V approach achieved satisfactory fitting restute tested
POT underestimated the expected number of headbisians. Finally, the estimated GEV distributiomgere

validated using a second set of data extracted &nomdditional driving simulator experiment.

The results indicate that this is a promising apphofor safety evaluation. On-going work of thehaus will

attempt to generalize this method to other safetyasures related to passing maneuvers, test ihédetailed
analysis of the effect of demographic factors osspay maneuvers’ crash probability and for its ulsefss in a
traffic simulation environment.
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INTRODUCTION

The literature has frequently addressed the adgestaf using surrogate safety measures over crast(Tharko,
Davis, Saunier, Sayed, & Washington, 20083pecially nowadays when advanced sensing temties| which
facilitate the collection of detailed data on védéctrajectories are becoming readily availgfilarko, 2012) Crash
data suffer from underreporting and frequently pqgaality. Furthermore, the use of crash data ieactive
approach while using surrogate safety measurepisactive and time-efficient approathrcher, 2004) The use
of aggregate crash data to develop safety models dot provide insights on the crash causatiordetails on the
driver crash avoidance behavior. The use of suteogafety measures for modeling and estimatingtysage
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considered as a promising approach to achieve tlaogets. Crashes are also infrequent, the rativdssn conflicts
and actual crash frequencies, accordingéitman, Pu, Sayed, and Shelby (20@8R0000 to 1. Thus, there is a
clear advantage of using surrogate safety measwsrscrash dat&heng, Ismail, and Meng (201#idicate that the
validity of a surrogate safety measure is usuatednined by its correlation with crash frequendych is usually
assessed using regression analysis. For exa®@jed and Zein (199%)und a statistically significant relationship
between crashes and conflicts withRiin the range of 0.70 - 0.77 at signalized junctiddowever, the regression
analysis still incorporates the use of crash coutiigh are known to suffer from availability andadjty issues, and
thus this approach is limited. Besides, it is difft to insure the stability of the crash-to-suategratio and this
relationship also hardly reflects the physical natof crash occurrenc&lieng et al., 2004 Jonasson and Rootzén
(2014) concluded that comprehensive and generalized an®ae question "are near-crashes representtgive
crashes?” may be less useful. Instead careful atpanalyses for different types of situationsregeded. Recently
Songchitruksa and Tarko (20068gveloped a new and more sophisticated approastdban the Extreme Value
(EV) theory to estimate the frequency of crashesetan measured crash proximity. The field of E¥otly was
pioneered byFisher and Tippett (1928)t is a commonly applied theory in many fieldscls as in meteorology,
hydrology, and financéZheng et al., 2014However,Songchitruksa and Tarko (200)dicate that its application
in the field of transportation engineering is dtithited. According toTarko et al. (2009)he EV approach has three
considerable advantages over the traffic confecthhique in the detailed analysis of safety: (1 BV theory
abandons the assumption of a fixed coefficient edinvg the surrogate event frequency into the cfestuency;
(2) the risk of crash given the surrogate evergsismated for any condition based on the obsenraibility of
crash proximity without using crash data; (3) theest proximity measure precisely defines the sategvent. This
method has the potential to estimate the probglwfitextreme events from relatively short periodobkervations
and it proposes a single dimension to measureaherisy of surrogate events and to identify crasfié® implicit
assumption of the EV theory is that the stochasticavior of the process being modeled is suffityesnooth to
enable extrapolation to unobserved le@engchitruksa & Tarko, 2006)n the context of road safety, the more
observable traffic events are used to predict ¢lse frequent crashes, which are often unobserimlaehort time
period (Zheng et al., 2014)More recently,Songchitruksa and Tarko (2006sed an EV approach to build up
relationships between occurrence of right-anglesiuea at urban intersections and frequency of eraffinflicts
measured by using post-encroachment time. A majpravement of this study is that it links the proitity of
crash occurrence to the frequency of conflictsnemtied from observed variability of crash proximitysing a
probabilistic framework and without using crashamels. The generic formulation of the applicationedf to road
safety analysis was then proposedTayko (2012)and it was only very recently applied to othersbréypes and
data set¢Jonasson & Rootzén, 2014; Zheng et al., 2014)

In this study the time-to-collision or TT(Svensson & Hydén, 2006jll be used as a surrogate safety measure of
the risk to be involved in a head-on collision wille opposite vehicle while passing on two-lanalrbighways,
using the EV approach. AccordingMHTSA (2003head-on collisions constitute 2.3% of the totalsties on two-
lane highways, but they are responsible for 10.4%e total fatal crashes. Not many studies haeeiged on the
detailed analysis of the link between passing mesesuand head-on-collisions. The TTC was previousigd by
Farah, Bekhor, and Polus (2008) evaluate the risk of passing behavior on tweeleural highways. The authors
defined the minimum TTC, as the remaining gap betwie passing vehicle and the opposing vehidieeaénd of
the passing process. This measure expresses khimvived in the passing maneuver. The authoreldged a
Tobit regression model that explains the minimunCT Traffic related explanatory variables were fouachave
the most important effect on the minimum TTC, blsto the road geometric design and the driver cheniatics
were also found to have a significant contributi@ther studiegShariat-Mohaymany, Tavakoli-Kashani, Nosrati,
and Ranjbari, 2011; Hegeman, 2008 well used the TTC to as a measure for headoftiats.

There are two families of EV distributions whichléovs two different approaches to sample extrements: (1) the
Generalized Extreme Value (GEV) distribution whishused in the block maxima or minima (BM) apprqaich
which maxima over blocks of time (or space) aresabered; (2) the Generalized Pareto DistributioRDE which

is used in the peak over threshold apprd&ehier & Poter, 2011) where all values above some high level are used.
Previous studies suggested that the POT approactoiie effective in conditions of short-time obseiwas and
from the aspect of estimate accuracy and religlfiBongchitruksa & Tarko, 2006; Zheng et al., 2014)this study
both distributions will be examined and compared.
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RESEARCH METHOD

This section discusses the modeling approach, dberdtory experiments designed to collect the dtie,
characteristics of the participants in the studd a preliminary statistics of the collected data.

Modeling Details

In this study two families of extreme value disttiions are used to sample extreme events: (1) Bitekma (BM)
approach using the GEV distribution; and (2) PeakrOrhreshold (POT) approach using the GPD. Thewahg
paragraphs describe those two approaches in detail.

Block Maxima (BM) Approach Using the Generalized Extreme Value (GEV)

In the GEV distribution the extreme events are dathpased on the block maxima (BM) approach. Fatlgvthis
approach the observations are aggregated into finemivals over time and space, and then the eeseare
extracted from each block by identifying the maximaeach single block. Mathematically, the stand&@V
function is as followsZheng et cl., 2004

-1
X — U\1T
G(x)—exp( [1+E( e )] ) (eq. 9
where, {X;,X,, ..., X, } is a set of independently and identically distréalirandom observations with unknown
distribution function F(x) = Pr(X; < x), the maximumM, = max{X;, X,,...,X,} will converge to a GEV
distribution whenn — co. Three parameters identify this distribution: tbeation parameter;-o < u < oo; the
scale parameterg > 0; and the shape parametereo < & < 0. If the shape parametef, is positive, then his
would yield the Frechet cdf with a finite lower griht, (u — o /§), if & is negative, this will yield the (reversed)
Weibull cdf with finite upper endpoirfx + o/|¢]), and ifé = 0 this yields the Gumbel cdf.

The BM method can also be used to study minimadnsidering the maxima of the negated values instéad
minima of the original values. This is how the minim TTC will be handled in this study.

For the BM approach, and in the case that mostkblbave enough observations, the r-largest or@gistts is
recommended, it enables the incorporation of mbam tone extreme from each interval in order togase the
confidence of parameter estimates. It is usuatpmemended to have at least a sample of 30 maximaif@ma).

The size of the chosen interval should be largeighso that there are enough observations fromhadoimaxima
is chosen in which it is truly an extreme valuej amall enough to provide a sample larger than 30.

Peak Over Threshold Using the Generalized Pareto Distribution (GPD)

According to the GPD an observation is identified aan extreme if it exceeds a predetermined thrdsiidie
distribution function of exceedancésover a thresholg: for a set of independently and identically disttéx
random observation$X;, X5, ..., X} is: E,(x) = Pr(X —u < x|X > u). With a high enough threshold, the
conditional distributiorF, (x) can be approximated by a GPD. The function of GP@ven as follows:

-1

Gx)=1- [1 + (%)F (eq. 9

whereo > 0 is the scale andoo < & < o is the shape parameter, respectively.

Similarly to the BM approach, the determinationttoé threshold in the POT approach determines timplgasize.
Therefore, an optimal threshold should be choserthab the observations that exceed the threshaidreal
extremes, but still constitute a reasonable samjtterelatively small variance. Choosing a smatkthold will bias
the results by considering normal observationsxeremes, while choosing a high threshold would Itesith a few
observations as extremes and thus large variabihiigh also would bias the estimation results efdistribution.

In this study, both models’ parameters were esgohatsing the maximum likelihood method (ML) in RB@.3)
using theexTremes andevd packagegGilleland & Katz, 2011) Details on the statistical properties of the GEV
and GPD can be found i@oles (2001)and on the theoretical background of its applidgbior surrogate safety
analysis inTarko (2012)
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Examination of the Criteria for Using EV Theory

When using the EV approach there are three maierierithat should be examined and addressed. Hiessample
size, serial dependency, and non-stationgiiyeng et al., 2014)With respect to the sample size, in the BM
approach the interval size determines the sampéewhile in the POT approach, the chosen threstieldrmines
the sample size. In both approaches the targetdstiieve a balance between bias and varianceassdied above.
In the case of passing maneuvers, it is possiblassume that the different TTCs resulting from epahsing
maneuver is independent from each other since dbesset included cases where a single vehicle dwernother
single vehicle. However, since these maneuversnarestationary, and various factors (road desigaffi¢
conditions, driver characteristics) might affea theasured TTCs and increase the heterogenaitiyest not hold to
assume that the TTCs are identically distributeml sdlve this problem several covariates will besidered in the
estimation procedure.

Estimation of the Risk of Passing Maneuvers

A passing maneuver is considered to be a risky masreas it requires from a fast driver who wantpass a slow
driver to search and decide on an appropriate igaipel traffic on the opposite direction and exe¢hte maneuver
while maintaining safe distances from all the sunding vehicles. Therefore, a driver failure torectly estimate
the safe distances from the surrounding vehicleghimiead for several potential types of collisiossch as a
collision with the opposing vehicle, the passediaehor run of the way crashes. This paper witiuis on the risk
of head-on collisions.

A quite often used measure for estimating the dfla head-on collision is the TTC. The TTC is definby
Hayward (1972)as the time left to collision between two vehidfethey remain on their paths and continue with
constant speeddlinderhoud and Bovy (200Defined two TTC indicators for risk. The firsttise Time Exposed
Time to Collision which is the total sum of the &mthat a driver spent with sub-critical TTC. Tleeand is the
Time integrated Time to Collision which is the tinéegration of the difference between the critimatl actual TTC
during the time spent with sub-critical TTC. Inglstudy, the minimum TTC to the front vehicle ie thpposite lane
at the end of the passing maneuver will be used head-on collision proximity measuf®vensson & Hydén,
2006) This is actually the most critical time-to-coltia in a passing maneuver. This measure has besh hys
several previous studiggarah et al., 2009; Hegeman, Tapani, & Hoogendoa2009; Kiefer, Flannagan, &
Jerome, 2006)and proved to be a valuable measure for riskeafiron collisions.

Laboratory experiment

A laboratory experiment using a driving simulataeyously developed byarah et al. (2009)for modelling
drivers' passing behavior on two-lane highways used in order to collect data on the time-to-cfiswith the
opposing vehicle. The simulator used in this experit, STISIM(Rosenthal, 1999)is a fixed-base interactive
driving simulator, which has a 60 horizontal andv4@tical display. The driving scene was projeaatb a screen
in front of the driver. The simulator updates theages at a rate of 30 frames per second. The isitgathat
participants encountered were defined by the vekishown in

FIGURE 1. The subject vehicle is passing an impgdiehicle (front vehicle) while another vehicleaigproaching
from the opposite direction. This paper focusest@nminimum TTC surrogate safety measure while ipgssn
two-lane rural highways. Mathematically, the TTQ#&culated by the division of the distance betwienfronts of
the subject vehicle and the opposing vehicle bystira of their speeds. The minimum TTC is the TT@i@at the
end of a successful passing maneuver.

|

I vehicle

|
I
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]
Lead 70 i Time-To-Collision (TTC) 7 - Opposing
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o I £ .| Front

———n -1
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FIGURE 1 - TTC with the Opposing Vehicle
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To understand how various infrastructure and taffictors affect the TTC when passing, a numbesiroflator
scenarios were designed. Each scenario include&ni.bf two-lane rural highway section with no irgections.
The road sections were on a level terrain and wiktime and good weather conditions, which allowgedd
visibility. However, each scenario design variedading to four main factors of two levels eacheTchoice of
these factors was based on previous studies thateshtheir impact on passing decisions. Two lewalse used for
each factor. These factors are: speed of the frehicle (60 or 80 km/h); speed of the opposite eleh{65 or 85
km/h); opposite lane traffic volume (200 or 400 Aghand road curvature (300-400 m or 1500-2500 Thjs
produces (916 different scenarios. The partial confoundinghod (Hicks and Turner, 1999)as used to allocate
for each driver 4 scenarios out of the 16 scenabesailed information on this experiment can benft in Farah et
al. (2009)

Participants

One hundred drivers (64 males and 36 females) atitbast 5 years of driving experience participatetthe driving
simulator experiment on a voluntary base. The dsivage ranged between 22 and 70 years old. Drivere
instructed to drive as they would normally do ie tieal world. An advertisement on the experimerg pablished
at the Technion campus in Israel and drivers wheweerested to participate contacted the resessch

The data

The data set from the driving simulator experinresulted in 1287 completed passing maneuvers, ichithended
with a front-front collision (these observationsreeemoved from the estimation data sets). Talideldw present a
summary statistics of passing maneuvers relatadhlas.

TABLE 1- Data summary statistics

Variable mean median 15" percentile 85" percentile
Accepted passing gap (s) 21.47 20.75 17.39 28.79
Passing duration (s) 4.98 4.83 3.50 6.48
Passing vehicle speed (m/s) 22.21 21.29 17.27 27.39
Front vehicle speed (m/s) 66.20 60.00 60.00 80.00
Opposing vehicle speed (m/s) 76.28 85.00 65.00 85.00

Following distance from front vehicle

; 15.47 12.80 8.39 22.92
when starting to pass (m)
Minimum TTC (s) 2.37 1.98 0.76 4.10
Gap from passed front vehicle at end 244 294 1.49 342

of the passing maneuver (s)

Passing gaps were defined as the gap between twessive opposite vehicles at the time the leaitleehbn the

opposite lane is at the same line with the subjebicle. The passing duration is measured fromntbenent the

subject vehicle left front wheel crosses the celiner (as shown in Figure 1) until the passing nuaee ends when
the rear left wheel crosses the centerline. Vesichpeeds as summarized in the Table 1 are meastirdte

beginning of the passing maneuver. The followirggatice from front vehicle when starting to passiéasured as
the distance between the front of the subject Wehaad the end of the front vehicle as illustrated-igure 1.

Finally, the minimum TTC and the gap from passathtfrvehicle are both measured at the end of theimas
maneuver and reflect the risk to collide with thgosing vehicle, and the front vehicle, respeciivel

RESULTS AND ANALYSIS

This section presents the results of the analpdieviing the research method described above.,Rhrstestimation
results of the BM using the GEV model is preserittidwed by the estimation results according to F@T using
the GPD, and a comparison and discussion of thdtses
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Block M axima Approach (BM) Results

A Generalized Extreme Value (GEV) distribution itefd to the 1287 passing maneuvers and the réspect
minimum TTC measurements. For the block intervaés uge the annotated time that contain the entissipg
maneuver. Both the chosen block interval and tlseltieag number of observations in each block anéabte. In
this case, the calculated probability represergsptiobability of a head-on collision for a singkesping maneuver.
Furthermore, past studies concluded that with mimmrTC smaller than a low limit (typically, 1 to5ls) are
useful as crash surrogat@$yden, 1987; Jonasson and Rootzén, 20A4)a first test, the filtered data according to
this approach, and choosing a limit of 1.5 s, tesuin 463 maxima. FIGURE Z2eft) presents the Cumulative
Distribution Function (CDF) of the minimum TTGn{r{TTC}) for the full data set, while FIGURE 2right)
presents the CDF of thein{TTC} for the filtered data. For the full data set, 5084h@ observations were less than
a TTC of about 2 s, while in the filtered data, 568the observations were less than a TTC of abdus.
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FIGURE 2 — CDF of minTTC (s) for the full datadeft) and filtered data (right)

Similarly to the approach proposed bgnasson and Rootzén (201dje first estimate a stationary block maxima
model for the maxima of the negated values instéagiinima of the original values, i.eax-TTC}. The fitted
distribution resulted in the following parametersf dhe GEV cumulative distribution function:
A =—0.993 (0.0212), 6 = 0.383 (0.0163) and§ = —0.236 (0.0500). FIGURE 3 [eft) presents the probability
density function of the empirical and modeled nedaf TC, and FIGURE Fight) presents the simulated QQ plot.
From these figures it can be concluded that theeteddGEV distribution has satisfactory fitting risuto the
empirical data since the points fall close to tb& khe in the simulated QQ plot.
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FIGURE 3 — Probability Density plot (left) and sitated QQ plot (right) for the stationary Block Maxk model

With this stationary model using the fitted GEVtdlsution, the estimated probability afaX-TTC} >0 is 0.0179
with 95% confidence interval (0.0177,0.0182). Thafdence intervals of estimations were computediaéng the
normal distribution under regularity conditions the parameters, a simulation experiment size of01ahd its
simulated distribution quantiles. Out of the 46&mieead-on collisions in the driving simulator (gsthe threshold
of 1.5 s), 9 maneuvers ended with actual collisibm®ther words, the probability for a head-onlis@n assuming
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a near head-on collision in a passing maneuvedig3®: 0.0194, with a 95% binomial confidence in&r®.00893,
0.0366). This value is comparable to the estimegalting from the fitted GEV distribution.

However, the process of passing maneuver may betaff by the detailed conditions of each specHigsmg, such
as the relative gaps and speeds between the &higl®unding the subject vehicle. To accountterfact that the
TTCs at the end of the passing maneuvers are @abinfsiry observations and are affected by sevadbfs, we
tested the inclusion of different covariates tharevcollected during the driving simulation expegimhin the
location parameter of the BM model:

Several linear combinations of these variables viested during model estimation task. To test redumodel
structures and the inclusion of variables, theliliad ratio test was usdoles, 2001) The final model was also
tested against the stationary one, resulting irvalpe (3.741x18) significantly smaller thaalpha = 0.05

TABLE 2 - List of covariates considered in the RBIdMaxima (BM) Approach

Acronym Description

passinggap The time gap between two opposite vehicles atithe the subject meet the lead opposite vehicle (s)
speedopposing The speed of the opposite vehicle at the momesitaof passing (m/s)

speedfront The speed of the front vehicle at the momentatt tassing (m/s)

tailgatetp The time gap between the subject vehicle and the frehicle at the moment of start passing (s)
passduration The passing duration (s)

curvature The road curvature (1/m)

TABLE 3 - Estimation results of best models for &roach

Parameter Estimated value  Standard error
a B -1.06 0.139

fi, (speedfront) 0.0245 0.00644

A, (tailgatetp) 0.00274 0.00179

i, (passinggap) -0.0212 0.00445

L, (curvature) -38.1 135

é 0.369 0.0145

é -0.225 0.0412

N 463

Neg. loglikelihood 215.54

The results in TABLE 3 indicate that as the spefetthe front vehicle increases the negated TTC emes, and the
TTC decreases which is logical since it is eastgrthe subject vehicle to pass the front vehicleisTis also
according to the conclusions by previous studiesah et al., 2009; Llorca and Garcia, 20113imilarly, as the
passing gap that is accepted is larger, the nedal€ldecreases, and the TTC increases. On the b#ret, as
drivers start their passing maneuver from a lagggy from the front vehicle, the negated TTC inogsaand the
TTC decreases. This is because it take the drivager to pass the front vehicle, and during timeetthe opposing
vehicle has become closer, resulting in a shorfe€.TThe road design as well impacts the TTC. As rivexd
curvature is higher, the negated TTC is lower, e TTC is higher. This indicates an adaptationabih by
drivers who compensate for the difficulty of thespimg maneuver on complex roads by increasing gsadety
margin. Previous results arah and Toledo (201(pund that on roads with larger curvature, drivessept larger
critical gaps, which supports the results and agich of this study. The speed of the opposingatehivas not
found to be significant at the 95% confidence letaelwever, this variable is indirectly includeddabgh the passing
gap which is measured in time.

FIGURE 4 (eft) presents the probability density function of #mapirical and modeled standardizedaximum
negated TTC, and FIGURE 4idht) presents the simulated QQ plot for the non-statip model. The results

Y For non-stationary models, it is common practicdrémsform the data to a density function that deesdepend on the
covariates, using the following functidh = — log(1 + (§/0 = (X; — w))*(—1/§) (Gilleland and Katz, 2091

7
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indicate a good fit between the modeled GEV distidn and the empirical data, and a better fit carag to the
results of the stationary model presented in FIGUBREIso, the negative log-likelihood has improvieam 229.5
to 215.5, maintaining § > —0.5 that assures the regular asymptotic propertieshef maximum likelihood
estimatorgColes, 2001)

To estimate the probability of a head-on-collisiduring the passing maneuvemdX-TTC}>0) for the non-
stationary model, simulated covariates or diretigation parameters have to be generated. Fronedtimated
location parameters for the estimation datasetrmal distribution was fitted with satisfactory véts with mean of
-0.996, standard deviation of 0.115 and a Kolmog@mirnov test statistic of 0.0452he simulated probability of
max-TTC} >0 is 0.0190 with 95% confidence interval (0.01881@3), resulting in a better estimate than the
stationary model.
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FIGURE 4 — Probability density function (left) asimnulated QQ-Plot (right) for the non-stationaryoBk Maxima
model

Peak Over Threshold Results

In this section the estimation results of the GRDofving the POT approach are presented. This aighyas
conducted in order to compare with the BM approashults, as previous studies concluded that the &ipfoach
performs better than the BM approach especiallsituations of short-time observatio(gheng et al., 2014As a
first step for estimating the GPD, a threshold setdbe determined and selected from the obsensdnmam
negated TTC. To determine the optimal thresholdassessment of mean residual life and stabilityspletre
carried out followingColes (2001)A threshold can be determined when the meanuakiifle plot is almost linear
and the modified scale and shape estimates beconstant. In FIGURE 5I€ft) the mean residual life plot of the
maximum negated TTC thresholds is linear from ashold of -2.0 seconds, where the line becomes stalze.
FIGURE 5 ¢ight) presents the mean residual life plot of the redydtTC thresholds larger than -2.0 seconds. This
figure clearly shows the linearity of the plot.

The stability of GPD modified scale and shape paters were also analyzed. FIGURE 6 shows stalplitys
considering a range between -2.5 and -0.25 sec@utbh. parameters seem to be relatively stable enrdnge
between -1.1 and -0.6 seconds, suggesting a thdeahmund -1.0 seconds. Considering the low magde#wf the
variability of the modified scale parameter oves fhll range of tested threshold values, two stetig models were
fitted using the full dataset and a thresholdief —1.0 s andu = —1.5 s, both with the ML method.

TABLE 4 - Estimation results for two stationary P@ddels

Parameter u=-10s u=-—15s

6 0.757 (0.0495)  1.164 (0.00430)
g -0.753 (0.0520) -0.774 (2xTp

N 278 463
Neg. log likelihood -8.78 175
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Since the estimated shape parametef s —0.5 the estimators from the MLE are not relial{&mith, 1985)
FIGURE 7 (left) presents the probability density function of thepémal and modeled negated TTC, while

FIGURE 7 (right) presents the simulated QQ plot. Both figures ingica good fit between the modeled GPD
distribution and the empirical data.
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FIGURE 5 — Mean residual life for the full data ¢ketft) and for negated TTC > -2.0 s (right)
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TTC thresholds

With these stationary models using the fitted GRdridhution, the estimated probability of head-ailision given
that a near crasim{n{TTC}<=1s) happened is 0.000916 with 95% confidemuerval (0.000858, 0.000977) and
0.000453 (0.000412, 0.000497) for a 1.5 thresh@drsrash. If we account for the ratio of nearlteasthe
estimated frequency of head-on collisions for plhassing maneuvers empirical set can be estimate@l G30195
and 0.000158 fon = —1.0 andu = —1.5, respectively. Both values are far from the engpirD.00699 (with a 95%
binomial confidence of 0.00320, 0.0132). This digaintly lower probability results from the shogper tail for the
estimated distribution of excesses and its lownestied upper bound:(— 6/¢). Furthermore, the test proposed by
Coles (2001Yor the GPD distribution where both the excesdes thresholds, and those of a higher threshald
should follow a generalized Pareto distribution hwtimilar re-parameterized shape parameter, aléedfaA
possible explanation for this lower performance hhige the fact that the entire time series of cwuus

observations of TTC was not used in the analysig jisst themin{TTC}). This data will be used in subsequent
studies by the authors.

Since in the estimation of the stationary model $ihape parameter was< —0.5 which indicates that the
estimators from the MLE are not reliable, a nonistery model was not expected to results with aensignificant
results. Indeed, the attempt to estimate such naideiot result in significant results.

2 Modified by subtracting the shape multiplied by theeshold.
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Validation

This section compares the results from the GEV @ggr and its fithess to be used for the specifige caf
estimating the probability for a head-one collision

Data for the validation was obtained from a secexgeriment. In this experiment different 100 dr&/é89 males
and 31 females) participated. Their age ranged deiw21 and 61 years old. The instructions and @rpetal
conditions were identical to the first experimehhe simulator scenarios included as well rural tamme road
sections each with a total length of 7.5 km. Thae&wo-level four factors as in the first experimemre used to
generate the scenarios. However, the values in lkeaeh were not fixed but randomly drawn from a Gfied
distribution. Speeds were drawn from truncated armif distributions, while the passing gaps were drdmm
truncated negative exponential distributions. Mdetails on the design of the scenarios can be faufdrah and
Toledo (2010)To check the consistency among covariate dasa thet CDF for each of the variables considered in
the non-stationary BM model were computed (see RE8). The data was filtered again for min{TTC}<&.%
can be noticed the resulting CDFs are similar exémpthe front speed which largely differ. Thiests from the
fact that driving speeds in the first experimentevéixed to certain values while in the second expent were
drawn randomly from truncated uniform distributions
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FIGURE 8 — CDF of the minimum TTC and the covasatensidered in the non-stationary BM model fohlibe
estimation and the validation data sets

From the estimated stationary model, the probghifitmnaxX-TTC} >0 is 0.0179 (0.0177,0.0182). For the validation
data set, out of the 562 maneuvers, 166 were cemesichear head-on collisions (using the threshbldoseconds)
and 8 maneuvers ended with actual collisions. hemwotvords, the probability for a head-on collisiora near head-
on collision in a passing maneuver is 8/166= 0.04%ith a 95% binomial confidence interval (0.02000927).
This value is significantly higher than the oneutésg from the fitted GEV distribution. The resaly expected
number of head-on collisions is 2.98. FIGURE 9 engs the probability density function and QQ pléttlee
validation and previously (stationary) modeled neda TCs.
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The same test was carried out for the non-statjomaxdel. The simulated probability afaX-TTC} >0 is 0.0201
with 95% confidence interval (0.0199,0.0204), résglin an estimated number of head-on collisioh3.844 — still
far from the observed frequency (see FIGURE 10).
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FIGURE 9 — Probability Density plot (left) and Q@p(right) for the Validation Set and the statiopdlock
Maxima model
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FIGURE 10 — Probability Density plot (left) and Qupt (right) for the Validation Set and the nonigtaary Block
Maxima model

No validation attempt was conducted for the POTrapgh as estimation results did not yield religideameters.

SUMMARY AND CONCLUSIONS

In this on-going study an Extreme Value (EV) appiowas applied for the estimation of the probapiit head-on
collisions that result from unsuccessful passingi@o@ers on two-lane rural highways. Both, the Bld&xima
(BM) approach using the Generalized Extreme VaE\() distribution and the Peak Over Threshold (PQSing
Generalized Pareto Distribution (GPD), were tesied compared using the minimum time-to-collisioriwthe
opposing vehicle during passing maneuvers.

The estimation showed that the BM approach yieldetter results compared to the POT approdtieng et al.
(2014) who conducted a comparative study for the casesifg post encroachment time measure for predicting
lane-changing maneuver related crashes, reachedpasite findings, that the POT approach perforimetter than
the BM approach. This difference might stem from thct that the data set in the studyzZteng et al. (2014yas
relatively limited, and for limited data sets th®@Pis known to be a more efficient approach thanBM approach.
Zheng et al. (20145¥ite two studiegCaires, 2009; JaruSkova & Hanek, 200@ho concluded that “the BM
approach would work well if the number of observas is large, while the POT approach would haveoar p
performance”. However, definitive conclusion regagdwhich method is supreme can not yet be madefatiuer
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comparative studies are needed in order to reditmaconclusion. It can also be that the poor perfance of the
POT approach resulted from the fact that we didusa the full range of the TTC data but only tha{fi C}.
Nevertheless, it was found that the non-statiori&vly model performed better than the stationary BMdelp but
still, both resulted in a satisfactory level oftfitthe empirical data. This is expected sinceintreduced covariates
significantly affect the TTC and were found to bgbrtant explanatory variables in previous studiesah et al.,
2009; Llorca & Garcia, 2011) Furthermore, the predicted probability of heademtlisions based on the BM
approach was sufficiently close to the probabititynead-on collisions based on the empirical datenfthe driving
simulator. This also indicates that for passing eusers the TTC is a good surrogate safety measuredar-
crashes of head-on collisions. This is differenonfrthe conclusion reached Bgnasson and Rootzén (20Mho
found severe discrepancy between the rear-strikingr-crashes (using the TTC) and rear-striking hasss
However, this can be explained by the mechanisnara$h occurrence and the state of the driver. bsipg
maneuvers drivers are completely aware and consauheir actions and therefore head-on collisioesally
result from an error in drivers’ judgment of thatahility of the passing gap. On the other handraar-striking
collisions, the state of the driver in these calis might vary a lot. It can result, similarly passing collisions,
from drivers’ errors in judging their gap and spéexn the front vehicle but can also result frona tiriver being
distracted. In the first case, it is most likelydieserve an evasive action of the driver to preteatcollision but in
the second case no evasive action will be obserVhik causes, agonasson and Rootzén (20lidficate, a
selection bias, and therefore, careful selectiomeair-crashes is a crucial issue in preventingtthecur.

Despite these promising results, future researcthéyauthors will attempt to expand this work inesal possible
directions as follows: (1) testing alternative sgate measures of head-on collisions such as time Exposed
Time to Collision or Time integrated Time to Caitie (Minderhoud and Bovy, 2001)J2) developing a more
sophisticated measure of risk which accounts fer ¢omplexity of the passing maneuver and consitless
probability to collide not only with the oppositehicle but also with the passed vehicle. One pdigiis, similarly
to Jonasson and Rootzén (20.1#) use a bivariate GEV which is built from twonggonents of the Block Maxima
vectors and which considers the TTC and the headwawyeen the passing and passed vehicle at thefetig
passing maneuver; (3) extending the non-statiomergtels by including other covariates related tardasign (this
study accounted for only the road curvature) andeds’ characteristics, such as socio-demographit driving
styles; (4) examining the transferability of sucldual and validation of the results with other datasspecially
from field studies; (6) applying the developed niede traffic microscopic simulation environmentsr fsafety
assessmerftima de Azevedo et al., 2014; Gettman and Hea@d320
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