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Abstract— This paper tests the Generalized Extreme Value 
(GEV) distribution as an EV method using the minimum time-to-
collision with the opposing vehicle during passing maneuvers. 
Detailed trajectory data of the passing, passed and opposite 
vehicles from a fixed-based driving simulator experiment were 
used in this study. One hundred experienced drivers from 
different demographic strata  participated in this experiment on 
a voluntary base. Raw data were collected at a resolution of 0.1 s 
and included the longitudinal and lateral position, speed and 
acceleration of all vehicles in the scenario. From this raw data, 
the minimum time-to-collision with the opposing vehicle at the 
end of the passing, maneuver was calculated. GEV distribution 
based on the Block Maxima approach was tested for the 
estimation of head-on collision probabilities in passing 
maneuvers. The estimation results achieved good fit with respect 
to head-on collisions’ prediction indicating that this is a 
promising approach for safety evaluation.  

Keywords— Road Safety; Probabilistic Model; Extreme Value; 
Driving Behavior; Minimum Time-to-Collision 

I.  INTRODUCTION 

The literature has frequently addressed the advantages of 
using surrogate safety measures over crash data [1], especially 
nowadays when advanced sensing technologies which facilitate 
the collection of detailed data on vehicles' trajectories are 
becoming readily available [2]. Crash data suffer from 
underreporting and frequently poor quality. Furthermore, the 
use of crash data to infer conclusions about the safety level, is a 
reactive approach while using surrogate safety measures is a 
proactive and time-efficient approach [3]. The use of aggregate 
crash data to develop safety models does not provide insights 
on the crash causations or details on the driver crash avoidance 
behavior. Thus, the use of surrogate safety measures for 
modeling and estimating safety is considered as a promising 
approach to achieve those targets. The developed surrogate 
safety measures can also be implemented in traffic simulation 
packages. Crashes are also infrequent, the ratio between 
conflicts and actual crash frequencies, according to [4], is 
20000 to 1. Thus, there is a clear advantage of using surrogate 
safety measures over crash data. Reference [5] indicates that 
the validity of a surrogate safety measure is usually determined 
by its correlation with crash frequency which is usually 
assessed using regression analysis. For example, [6] found a 
statistically significant relationship between crashes and 

conflicts with an R2 in the range of 0.70 - 0.77 at signalized 
junctions. However, the regression analysis still incorporates 
the use of crash counts which are known to suffer from 
availability and quality issues, and thus this approach is 
limited. Besides, it is difficult to insure the stability of the 
crash-to-surrogate ratio and this relationship also hardly 
reflects the physical nature of crash occurrence [5]. Reference 
[7] concluded that comprehensive and generalized answer to 
the question "are near-crashes representative for crashes?” may 
be less useful. Instead careful separate analyses for different 
types of situations are needed. Recently [8] developed a new 
and more sophisticated approach based on the Extreme Value 
(EV) theory to estimate the frequency of crashes based on 
measured crash proximity. The field of EV theory was 
pioneered by [9]. It is a commonly applied theory in many 
fields, such as in meteorology, hydrology, and finance [5]. 
However, [8] indicates that its application in the field of 
transportation engineering is still limited. According to [1] the 
EV approach has three considerable advantages over the traffic 
conflict technique in the detailed analysis of safety: (1) The EV 
theory abandons the assumption of a fixed coefficient 
converting the surrogate event frequency into the crash 
frequency; (2) the risk of a crash given the surrogate event is 
estimated for any condition based on the observed variability 
of crash proximity without using crash data; (3) the crash 
proximity measure precisely defines the surrogate event. This 
method has the potential to estimate the probability of extreme 
events from relatively short period of observations and it 
proposes a single dimension to measure the severity of 
surrogate events and to identify crashes. The implicit 
assumption of the EV theory is that the stochastic behavior of 
the process being modeled is sufficiently smooth to enable 
extrapolation to unobserved levels [8]. In the context of road 
safety, the more observable traffic events are used to predict 
the less frequent crashes, which are often unobservable in a 
short time period [5]. More recently, [8] used an EV approach 
to build up relationships between occurrence of right-angle 
crashes at urban intersections and frequency of traffic conflicts 
measured by using post-encroachment time. A major 
improvement of this study is that it links the probability of 
crash occurrence to the frequency of conflicts estimated from 
observed variability of crash proximity, using a probabilistic 
framework and without using crash records. The generic 
formulation of the application of EV to road safety analysis 



was then proposed by [2] and it was only very recently applied 
to other crash types and data sets [5,7]. 

In this study the time-to-collision or TTC [10] will be used 
as a surrogate safety measure of the risk to be involved in a 
head-on collision with the opposite vehicle while passing on 
two-lane rural highways, using the EV approach. According to 
[11] in 2012 there were 3,561 fatalities in the US as a result of 
a head-on collision. Not many studies have focused on the 
detailed analysis of the link between passing maneuvers and 
head-on-collisions. The TTC was previously used by [12] to 
evaluate the risk of passing behavior on two-lane rural 
highways. The authors defined the minimum TTC, as the 
remaining gap between the passing vehicle and the opposing 
vehicle at the end of the passing process. This measure 
expresses the risk involved in the passing maneuver. The 
authors developed a Tobit regression model that explains the 
minimum TTC. Traffic related explanatory variables were 
found to have the most important effect on the minimum TTC,  
but also the road geometric design and driver characteristics 
were also found to have a significant contribution. Other 
studies used as well the TTC as a measure for head-on conflicts 
[13,14].  

There are two families of EV distributions which follows 
two different approaches to sample extreme events: (1) the 
Generalized Extreme Value (GEV) distribution which is used 
in the block maxima or minima (BM) approach, in which 
maxima over blocks of time (or space) are considered; (2) the 
Generalized Pareto Distribution (GPD) which is used in the 
peak over threshold approach [15], where all values above 
some high level are used. In this paper the BM approach only 
is examined. 

II. RESEARCH METHOD - BLOCK MAXIMA (BM) APPROACH 

In the GEV distribution the extreme events are sampled 
based on the block maxima (BM) approach. Following this 
approach the observations are aggregated into fixed intervals 
over time and space, and then the extremes are extracted from 
each block by identifying the maxima in each single block. 
Mathematically, the standard GEV function is as follows [5]: 

���� = exp 	− �1 + � ����� ��
��
� �                    (1) 

where, ���, ��, … , � ! is a set of independently and identically 
distributed random observations with unknown distribution 
function "��� = Pr��% ≤ ��, the maximum ' =()����, ��, … , � ! will converge to a GEV distribution when * → ∞. Three parameters identify this distribution: the 
location parameter, −∞ < . < ∞; the scale parameter, 	0 >0; and the shape parameter, −∞ < � < ∞. If the shape 
parameter, �, is positive, then this would yield the Frechet cdf 
with a finite lower endpoint, �. − 0/��, if  � is negative, this 
will yield the (reversed) Weibull cdf with finite upper 
endpoint �. + 0/|�|�, and if � = 0 this yields the Gumbel cdf. 

The BM method can also be used to study minima by 
considering the maxima of the negated values instead of 
minima of the original values. This is how the minimum TTC 
will be handled in this study. 

For the BM approach, and in the case that most blocks have 
enough observations, the r-largest order statistics is 
recommended, it enables the incorporation of more than one 
extreme from each interval in order to increase the confidence 
of parameter estimates. It is usually recommended to have at 
least a sample of 30 maxima (or minima). The size of the 
chosen interval should be large enough so that there are enough 
observations from which a maxima is chosen in which it is 
truly an extreme value, and small enough to provide a sample 
larger than 30. In the case of passing maneuvers, there is only 
one extreme in each interval, which is the TTC at the end of the 
passing maneuvers which we refer to here as the minimum 
TTC. 

The model’s parameters were estimated using the 
maximum likelihood method (ML) in R (v3.0.3) using the 
“exTremes”  and “evd“ packages [16]. Details on the statistical 
properties of the GEV can be found in [17] and on the 
theoretical background of its applicability for surrogate safety 
analysis in [2]. 

III.  LABORATORY EXPERIMENT 

A laboratory experiment using a driving simulator 
previously developed by [12] for modelling drivers' passing 
behavior on two-lane highways was used in order to collect 
data on the time-to-collision with the opposing vehicle. The 
simulator used in this experiment, STISIM [18], is a fixed-base 
interactive driving simulator, which has a 60 horizontal and 40 
vertical display. The driving scene was projected onto a screen 
in front of the driver. The simulator updates the images at a rate 
of 30 frames per second. The situations that participants 
encountered were defined by the vehicles shown in Fig. 1. The 
subject vehicle is passing an impeding vehicle (front vehicle) 
while another vehicle is approaching from the opposite 
direction. This paper focuses on the minimum TTC surrogate 
safety measure while passing on two-lane rural highways. 
Mathematically, the TTC is calculated by the division of the 
distance between the fronts of the subject vehicle and the 
opposing vehicle by the sum of their speeds. The minimum 
TTC is the TTC value at the end of a successful passing 
maneuver. 

 
Fig. 1. TTC with the Opposing Vehicle. 

To understand how various infrastructure and traffic factors 
affect the TTC when passing, a number of simulator scenarios 
were designed. Each scenario included 7.5 km of two-lane 
rural highway section with no intersections. The road sections 
were on a level terrain and with daytime and good weather 
conditions, which allowed good visibility. However, each 
scenario  design varied according to four main factors of two 



levels each. The choice of these factors was based on previous 
studies that showed their impact on passing decisions. Two 
levels were used for each factor. These factors are: the speed of 
the front vehicle (60 or 80 km/h); the speed of the opposite 
vehicle (65 or 85 km/h); opposite lane traffic volume (200 or 
400 veh/h); and road curvature (300-400 m or 1500-2500 m). 
This produces 24=16 different scenarios. The partial 
confounding method [19] was used to allocate for each driver 4 
scenarios out of the 16 scenarios. Detailed information on this 
experiment can be found in [12]. 

A. Participants 

One hundred drivers (64 males and 36 females) with at 
least 5 years of driving experience participated in the driving 
simulator experiment on a voluntary base. The drivers’ age 
ranged between 22 and 70 years old. Drivers were instructed to 
drive as they would normally do in the real world. An 
advertisement on the experiment was published at the Technion 
campus in Israel and drivers who were interested to participate 
contacted the researchers. 

B. The data 

The data set from the driving simulator experiment 
resulted in 1287 completed passing maneuvers, in which 9 
ended with a front-front collision (these observations were 
removed from the estimation data sets). TABLE I presents a 
summary statistics of passing maneuvers related variables. 

Passing gaps were defined as the gap between two 
successive opposite vehicles at the time the lead vehicle on the 
opposite lane is at the same line with the subject vehicle. The 
passing duration is measured from the moment the subject 
vehicle left-front wheel crosses the center line (as shown in 
Fig. 1) until the passing maneuver ends when the rear-left 
wheel crosses the centerline. Vehicles’ speeds as summarized 
in TABLE I are measured at the beginning of the passing 
maneuvers. The following distance (m) from front vehicle 
when starting to pass is measured as the distance between the 
front of the subject vehicle and the end of the front vehicle as 
illustrated in Fig. 1. Finally, the minimum TTC and the gap 
from passed front vehicle are both measured at the end of the 
passing maneuver and reflect the risk to collide with the 
opposing vehicle, and the front vehicle, respectively. 

IV.  RESULTS AND ANALYSIS 

This section presents the results of the analysis following 
the research method described above. First, the estimation 
results of the stationary BM using the GEV model is presented, 
followed by the non-stationary BM estimation results. 

A. Stationary Block Maxima Approach (BM) Results 

A Generalized Extreme Value (GEV) distribution is fitted 
to the 1287 passing maneuvers and the respective minimum 
TTC measurements. For the block intervals we use the 
annotated time that contain the entire passing maneuver. Both 
the chosen block interval and the resulting number of 
observations in each block are variable. In this case, the 
calculated probability represents the probability of a head-on 
collision for a single passing maneuver. Furthermore, past 
studies concluded that with minimum TTC smaller than a low 
limit (typically, 1 to 1.5 s) are useful as crash surrogates [7, 

20]. As a first test, the filtered data according to this approach, 
and choosing a limit of 1.5 s, resulted in 463 maxima. Fig. 2 
(top) presents the Cumulative Distribution Function (CDF) of 
the minimum TTC (min{TTC}) for the full data set, while Fig. 
2 (bottom) presents the CDF of the min{TTC} for the filtered 
data. For the full data set, 50% of the observations were less 
than a TTC of about 2 s, while in the filtered data, 50% of the 
observations were less than a TTC of about 0.9 s. 

TABLE I.  DATA SUMMARY STATISTICS 

Variable mean median 15th 
percentile 

85th 
percentile 

Accepted passing 
gap (s) 

21.47 20.75 17.39 28.79 

Passing duration (s) 4.98 4.83 3.50 6.48 

Passing vehicle 
speed (m/s) 

22.21 21.29 17.27 27.39 

Front vehicle speed 
(m/s) 

66.20 60.00 60.00 80.00 

Opposing vehicle 
speed (m/s) 

76.28 85.00 65.00 85.00 

Following distance 
from front vehicle 
when starting to 
pass (m) 

15.47 12.80 8.39 22.92 

Minimum TTC (s) 2.37 1.98 0.76 4.10 

Gap from passed 
front vehicle at end 
of the passing 
maneuver (s) 

2.44 2.24 1.49 3.42 

 

 
Fig. 2. CDF of minTTC (s) for the full dataset (top) and filtered data (bottom). 
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We estimate a stationary block maxima model for the 
maxima of the negated values instead of minima of the original 
values, i.e. max{-TTC}. The fitted distribution resulted in the 
following parameters of the GEV cumulative distribution 
function: µ ̂=-0.993 (0.0212), σ ̂=0.383 (0.0163) and ξ ̂=-0.236 
(0.0500). Fig. 3. (top) presents the probability density function 
of the empirical and modeled negated TTC, and Fig. 3. 
(bottom) presents the simulated QQ plot. From these figures it 
can be concluded that the modeled GEV distribution has 
satisfactory fitting results to the empirical data since the points 
fall close to the 45° line in the simulated QQ plot. 

With this stationary model using the fitted GEV 
distribution, the estimated probability of max{-TTC}≥0 is 
0.0179 with 95% confidence interval (0.0177,0.0182). The 
confidence intervals of estimations were computed assuming 
the normal distribution under regularity conditions of the 
parameters, a simulation experiment size of 1×106 and its 
simulated distribution quantiles. Out of the 463 near head-on 
collisions in the driving simulator (using the threshold of 1.5 
s), 9 maneuvers ended with actual collisions. In other words, 
the probability for a head-on collision assuming a near head-
on collision in a passing maneuver is 9/463= 0.0194, with a 
95% binomial confidence interval (0.00893, 0.0366). This 
value is comparable to the estimate resulting from the fitted 
GEV distribution. 

However, the process of passing maneuver may be affected 
by the detailed conditions of each specific passing, such as the 

 
Fig. 3. Probability Density plot (top) and simulated QQ plot (bottom) for 

the stationary Block Maxima model 

relative gaps and speeds between the vehicles surrounding the 
subject vehicle. To account for the fact that the TTCs at the 
end of the passing maneuvers are non-stationary observations 
and are affected by several factors, we tested the inclusion of 
different covariates that were collected during the driving 
simulation experiment in the location parameter of the BM 
model. 

B. Non-Stationary Block Maxima Approach (BM) Results 

Several linear combinations of these variables were tested 
during model estimation task. To test reduced model structures 
and the inclusion of variables, the likelihood ratio test was 
used [17]. The final model was also tested against the 
stationary one, resulting in a p-value (3.741×10-8) significantly 
smaller than alpha = 0.05.  

The results in TABLE III indicate that as the speed of the 
front vehicle increases the negated TTC increases, and the 
TTC decreases which is logical since it is easier for the subject 
vehicle to pass the front vehicle. This is also according to the 
conclusions reached in previous studies [12, 21]. Similarly, as 
the accepted passing gap is larger, the negated TTC decreases, 
and the TTC increases. On the other hand, as drivers start their 
passing maneuver from a larger gap from the front vehicle, the 
negated TTC increases and the TTC decreases. This is because 
it take drivers longer to pass the front vehicle, and during this 
time the opposing vehicle has become closer, resulting in a 
shorter TTC. The road design as well impacts the TTC. As the 
road curvature is higher, the negated TTC is lower, and the 
TTC is higher. 

TABLE II.  LIST OF COVARIATES CONSIDERED IN THE BLOCK MAXIMA (BM) 

APPROACH 

Acronym Description 

passinggap The time gap between two opposite vehicles at the 
time the subject meet the lead opposite vehicle (s) 

speedopposing The speed  of the opposite vehicle at the moment 
of start passing (m/s) 

speedfront The speed  of the front vehicle at the moment of 
start passing (m/s) 

tailgatetp The time gap between the subject vehicle and the 
front vehicle at the moment of start passing (s) 

passduration The passing duration (s) 
curvature The road curvature (1/m) 

 

TABLE III.  ESTIMATION RESULTS OF BEST MODELS FOR BM APPROACH 

 Parameter Estimated 
value  

Standard 
error 

56 .̂8  -1.06 0.139 
 .̂� (speedfront) 0.0245 0.00644 
 .̂� (tailgatetp) 0.00274 0.00179 
 .̂9 (passinggap) -0.0212  0.00445 
 .̂: (curvature) -38.1  13.5 
 0; 0.369 0.0145 
 �< -0.225  0.0412 

 N 463  
 Neg. loglikelihood 215.54  
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This might indicate of an adaptation behavior by drivers who 
compensate for the difficulty of the passing maneuver on 
complex roads by increasing their safety margin. Previous 
results using the same dataset of this study by [22] found that 
on roads with sharper curvature, drivers accept larger critical 
gaps, which supports the results and conclusion of this study. 
The speed of the opposing vehicle was not found to be 
significant at the 95% confidence level, however, this variable 
is indirectly included through the passing gap which is 
measured in time.  
Fig. 4 (top) presents the probability density function of the 
empirical and modeled standardized1 maximum negated TTC, 
and Fig. 4 (bottom) presents the simulated QQ plot for the 
non-stationary model. The results indicate a good fit between 
the modeled GEV distribution and the empirical data, and a 
better fit compared to the results of the stationary model 
presented in Fig. 3. Also, the negative log-likelihood has 
improved from 229.5 to 215.5, maintaining a � > −0.5 that 
assures the regular asymptotic properties of the maximum 
likelihood estimators [17]. 
 

 
Fig. 4. Probability density function (left) and simulated QQ-Plot (right) for 

the non-stationary Block Maxima model 
                                                           

1 For non-stationary models, it is common practice to transform the 
data to a density function that does not depend on the covariates, 
using the following function ?% 	= 	−	@AB�1	 +	��/0	 ∗ 	 ��% 	−	.%��^�−1/�� (Gilleland and Katz, 2011) 
 

To estimate the probability of a head-on-collision during the 
passing maneuver (max{-TTC} ≥0) for the non-stationary 
model, simulated covariates or directly location parameters 
have to be generated. From the estimated location parameters 
for the estimation dataset, a normal distribution was fitted with 
satisfactory results with mean of -0.996, standard deviation of 
0.115 and a Kolmogorov-Smirnov test statistic of 0.0452. The 
simulated probability of max{-TTC} ≥0 is 0.0190 with 95% 
confidence interval (0.0188,0.0193), resulting in a better 
estimate than the stationary model. 
 

V. SUMMARY AND CONCLUSIONS 

In this on-going study an Extreme Value (EV) approach was 
applied for the estimation of the probability of head-on 
collisions that result from unsuccessful passing maneuvers on 
two-lane rural highways. The Block Maxima (BM) approach 
using the Generalized Extreme Value (GEV) distribution was 
tested using the minimum time-to-collision with the opposing 
vehicle during passing maneuvers.  
The estimation showed that the BM approach yielded 
satisfying results and that the non-stationary BM model 
performed better than the stationary BM model. This is 
according to expectation since the introduced covariates 
significantly affect the TTC and were found to be important 
explanatory variables in previous studies [12, 21]. 
Furthermore, the predicted probability of head-on collisions 
based on the BM approach was sufficiently close to the 
probability of head-on collisions based on the empirical data 
from the driving simulator. This also indicates that for passing 
maneuvers the TTC is a good surrogate safety measure for 
near-crashes of head-on collisions. This is different from the 
conclusion reached by [7] who found severe discrepancy 
between the rear-striking near-crashes (using the TTC) and 
rear-striking crashes. However, this can be explained by the 
mechanism of crash occurrence and the state of the driver. In 
passing maneuvers drivers are completely aware and 
conscious of their actions and therefore head-on collisions 
usually result from an error in drivers’ judgment of the 
suitability of the passing gap. On the other hand, in rear-
striking collisions, the state of the driver in these collisions 
might vary a lot. It can result, similarly to passing collisions, 
from drivers’ errors in judging their gap and speed from the 
front vehicle but can also result from the driver being 
distracted. In the first case, it is most likely to observe an 
evasive action of the driver to prevent the collision but in the 
second case no evasive action will be observed. This causes, 
as [7] indicate, a selection bias, and therefore, careful selection 
of near-crashes is a crucial issue in preventing this from 
occurring.               
Despite these promising results, future research by the authors 
will attempt to expand this work in several possible directions 
as follows: (1) test and compare the results with the EV using 
the Peak-Over Threshold approach; (2) testing alternative 
surrogate measures of head-on collisions such as the Time 
Exposed Time to Collision or Time integrated Time to 
Collision [25]; (3) developing a more sophisticated measure of 
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risk which accounts for the complexity of the passing 
maneuver and considers the probability to collide not only 
with the opposite vehicle but also with the passed vehicle. One 
possibility is, similarly to [7], to use a bivariate GEV which is 
built from two components of the Block Maxima vectors and 
which considers the TTC and the headway between the 
passing and passed vehicle at the end of the passing maneuver; 
(4) extending the non-stationary models by including other 
covariates related to road design (this study accounted for only 
the road curvature) and drivers’ characteristics, such as socio-
demographic, driving styles and cultural differences; (5) 
examining the transferability of such model and validation of 
the results with other datasets especially from field studies; (6) 
applying the developed models in traffic microscopic 
simulation environments for safety assessment [26]. 
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