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Abstract— This paper tests the Generalized Extreme Value conflicts with an R in the range of 0.70 - 0.77 at signalized

(GEV) distribution as an EV method using the minimum time-to-
collision with the opposing vehicle during passingmaneuvers.
Detailed trajectory data of the passing, passed anapposite
vehicles from a fixed-based driving simulator expaément were
used in this study. One hundred experienced driversrom

different demographic strata participated in this experiment on
a voluntary base. Raw data were collected at a relstion of 0.1 s
and included the longitudinal and lateral position, speed and
acceleration of all vehicles in the scenario. Frorthis raw data,
the minimum time-to-collision with the opposing velctle at the
end of the passing, maneuver was calculated. GEV stiibution

based on the Block Maxima approach was tested forhe
estimation of head-on collision probabilities in pasing
maneuvers. The estimation results achieved good fitith respect
to head-on collisions’ prediction indicating that his is a
promising approach for safety evaluation.

Keywords— Road Safety; Probabilistic Model; Extreme Vej
Driving Behavior; Minimum Time-to-Collision

. INTRODUCTION

The literature has frequently addressed the adgestaf
using surrogate safety measures over crash datadpécially
nowadays when advanced sensing technologies whiilftdte
the collection of detailed data on vehicles' trtmjges are
becoming readily available [2]. Crash data suffeont
underreporting and frequently poor quality. Funthere, the
use of crash data to infer conclusions about tfeyskevel, is a
reactive approach while using surrogate safety ureasis a
proactive and time-efficient approach [3]. The afaggregate
crash data to develop safety models does not pramsights
on the crash causations or details on the drivashcavoidance
behavior. Thus, the use of surrogate safety messtoe
modeling and estimating safety is considered asoaniging
approach to achieve those targets. The developedgsie
safety measures can also be implemented in trsifficilation
packages. Crashes are also infrequent, the rativeba
conflicts and actual crash frequencies, accordmd4i, is
20000 to 1. Thus, there is a clear advantage ofjusirrogate
safety measures over crash data. Reference [Sjaitedi that
the validity of a surrogate safety measure is Uguatgtermined
by its correlation with crash frequency which isualty
assessed using regression analysis. For exampléued a
statistically significant relationship between ¢r@s and

junctions. However, the regression analysis stilorporates
the use of crash counts which are known to suffemf
availability and quality issues, and thus this apph is
limited. Besides, it is difficult to insure the bility of the
crash-to-surrogate ratio and this relationship alsardly
reflects the physical nature of crash occurren¢eRBference
[7] concluded that comprehensive and generalizexvain to
the question "are near-crashes representativadshes?” may
be less useful. Instead careful separate analysedifferent
types of situations are needed. Recently [8] d@ezloa new
and more sophisticated approach based on the Extx&iue
(EV) theory to estimate the frequency of crashesetbaon
measured crash proximity. The field of EV theory swa
pioneered by [9]. It is a commonly applied theomy many
fields, such as in meteorology, hydrology, and rt® [5].
However, [8] indicates that its application in tfield of
transportation engineering is still limited. Acciomgl to [1] the
EV approach has three considerable advantagedtoémaffic
conflict technique in the detailed analysis of 8af€l) The EV
theory abandons the assumption of a fixed coefficie
converting the surrogate event frequency into thastc
frequency; (2) the risk of a crash given the suategevent is
estimated for any condition based on the obsenathbility
of crash proximity without using crash data; (3 tbrash
proximity measure precisely defines the surrogatne This
method has the potential to estimate the probglufiextreme
events from relatively short period of observaticmsd it
proposes a single dimension to measure the sevefity
surrogate events and to identify crashes. The aitpli
assumption of the EV theory is that the stochdsticavior of
the process being modeled is sufficiently smoothetable
extrapolation to unobserved levels [8]. In the eahtof road
safety, the more observable traffic events are tsagredict
the less frequent crashes, which are often unohiskEnin a
short time period [5]. More recently, [8] used avi &pproach
to build up relationships between occurrence ohtrangle
crashes at urban intersections and frequency ffittcnflicts
measured by using post-encroachment time. A major
improvement of this study is that it links the pabbity of
crash occurrence to the frequency of conflictsnested from
observed variability of crash proximity, using elpabilistic
framework and without using crash records. The gene
formulation of the application of EV to road safetgpalysis



was then proposed by [2] and it was only very rdgeapplied
to other crash types and data sets [5,7].

In this study the time-to-collision or TTC [10] Whe used
as a surrogate safety measure of the risk to bavied in a
head-on collision with the opposite vehicle whilasping on
two-lane rural highways, using the EV approach.dkding to
[11] in 2012 there were 3,561 fatalities in the &kSa result of
a head-on collision. Not many studies have focusedhe
detailed analysis of the link between passing meersuand
head-on-collisions. The TTC was previously used[18] to
evaluate the risk of passing behavior on two-lanealr
highways. The authors defined the minimum TTC, las t
remaining gap between the passing vehicle and pipesing
vehicle at the end of the passing process. Thissunea
expresses the risk involved in the passing maneuibe
authors developed a Tobit regression model thalaggpthe
minimum TTC. Traffic related explanatory variablegre
found to have the most important effect on the minin TTC,
but also the road geometric design and driver cieriatics
were also found to have a significant contributi@ther
studies used as well the TTC as a measure for treadnflicts
[13,14].

There are two families of EV distributions whicHléovs
two different approaches to sample extreme evefisthe
Generalized Extreme Value (GEV) distribution whishused
in the block maxima or minima (BM) approach, in @i
maxima over blocks of time (or space) are consajef@) the
Generalized Pareto Distribution (GPD) which is usedhe
peak over threshold approach [15], where all valabsve
some high level are used. In this paper the BM @gugr only
is examined.

[l. RESEARCHMETHOD- BLOCK MAXIMA (BM) APPROACH

In the GEV distribution the extreme events are dadp
based on the block maxima (BM) approach. Followihip
approach the observations are aggregated into fixedvals
over time and space, and then the extremes ar@ctedrfrom
each block by identifying the maxima in each singleck.
Mathematically, the standard GEV function is atofes [5]:

function

For the BM approach, and in the case that moskblbave
enough observations, the r-largest order statistiss
recommended, it enables the incorporation of mbem tone
extreme from each interval in order to increasecthafidence
of parameter estimates. It is usually recommendelave at
least a sample of 30 maxima (or minima). The sizehe
chosen interval should be large enough so thag e enough
observations from which a maxima is chosen in whicls
truly an extreme value, and small enough to progidample
larger than 30. In the case of passing maneuvegse is only
one extreme in each interval, which is the TTChatend of the
passing maneuvers which we refer to here as thémmm
TTC.

The model's parameters were estimated using the

maximum likelihood method (ML) in R (v3.0.3) usirte
“exTremes” and “evd" packages [16]. Details on stetistical
properties of the GEV can be found in [17] and twe t
theoretical background of its applicability for mmgate safety
analysis in [2].

A laboratory experiment using a driving simulator
previously developed by [12] for modelling drivepassing
behavior on two-lane highways was used in ordecditect
data on the time-to-collision with the opposing ickh The
simulator used in this experiment, STISIM [18]aifixed-base
interactive driving simulator, which has a 60 horital and 40
vertical display. The driving scene was projectatba screen
in front of the driver. The simulator updates thiages at a rate
of 30 frames per second. The situations that paatits
encountered were defined by the vehicles showngniFk The
subject vehicle is passing an impeding vehiclenffreehicle)
while another vehicle is approaching from the ojftpos
direction. This paper focuses on the minimum TT@agate
safety measure while passing on two-lane rural wiyls.
Mathematically, the TTC is calculated by the diersiof the
distance between the fronts of the subject vehiald the
opposing vehicle by the sum of their speeds. Theimim
TTC is the TTC value at the end of a successfukipgs
maneuver.

LABORATORY EXPERIMENT
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where {X;, X, ..., X} is a set of independently and identically L. 7 L Time-To-Collision (TTC) _@ Opposing
distributed random observations with unknown distiion — vehicl [ i i e

F(x) =Pr(X; <x), the maximum M, =

max{Xy, X,, ..., X, } will converge to a GEV distribution when

n — oo. Three parameters identify this distribution: the

location parameters-o < u < oo; the scale parametegr >
0; and the shape parameterco < ¢ < . If the shape

parameter¢, is positive, then this would yield the Frechet cd

with a finite lower endpoint(u — a/¢), if & is negative, this
will yield the (reversed) Weibull cdf with finite pper
endpoint(u + o /|¢|), and ifé = 0 this yields the Gumbel cdf.
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Fig. 1. TTC with the Opposing Vehicle.

To understand how various infrastructure and tdéfctors
affect the TTC when passing, a number of simulatenarios

The BM method can also be used to study minima by'ere designed. Each scenario included 7.5 km oflawe

considering the maxima of the negated values idstefa
minima of the original values. This is how the minim TTC
will be handled in this study.

rural highway section with no intersections. Thad®ections
were on a level terrain and with daytime and goazhtiver
conditions, which allowed good visibility. Howeveeach
scenario design varied according to four mainoi@cbf two



levels each. The choice of these factors was baisguievious
studies that showed their impact on passing dewssidwo

levels were used for each factor. These factorslaeespeed of
the front vehicle (60 or 80 km/h); the speed of tpposite
vehicle (65 or 85 km/h); opposite lane traffic volke (200 or
400 veh/h); and road curvature (300-400 m or 158@02m).

This produces 216 different scenarios.
confounding method [19] was used to allocate fehedriver 4
scenarios out of the 16 scenarios. Detailed inftioneon this
experiment can be found in [12].

A. Participants

One hundred drivers (64 males and 36 females) aith
least 5 years of driving experience participatedhia driving
simulator experiment on a voluntary base. The dsivage
ranged between 22 and 70 years old. Drivers weteuicted to
drive as they would normally do in the real worlén
advertisement on the experiment was publishedeaf éthnion
campus in Israel and drivers who were interestguhtticipate
contacted the researchers.

B. Thedata

The data set from the driving simulator experime
resulted in 1287 completed passing maneuvers, ichwvi
ended with a front-front collision (these observat were
removed from the estimation data sets). TABLE Ispras a
summary statistics of passing maneuvers relatadhlas.

Passing gaps were defined as the gap between
successive opposite vehicles at the time the leaithe on the
opposite lane is at the same line with the subjebicle. The
passing duration is measured from the moment thgesu
vehicle left-front wheel crosses the center line gaown in
Fig. 1) until the passing maneuver ends when tlae-|edt
wheel crosses the centerline. Vehicles’ speedsimsnsirized
in TABLE | are measured at the beginning of thespas
maneuvers. The following distance (m) from fronthieée
when starting to pass is measured as the distatoebn the
front of the subject vehicle and the end of thanfreehicle as
illustrated in Fig. 1. Finally, the minimum TTC arnkle gap
from passed front vehicle are both measured aéigeof the
passing maneuver and reflect the risk to collidéhwhe
opposing vehicle, and the front vehicle, respebtive

IV. RESULTSAND ANALYSIS

This section presents the results of the analysieviing
the research method described above. First, thenagiin
results of the stationary BM using the GEV modedrissented,
followed by the non-stationary BM estimation result

A. Sationary Block Maxima Approach (BM) Results

A Generalized Extreme Value (GEV) distribution iitefd
to the 1287 passing maneuvers and the respectimenoin
TTC measurements. For the block intervals we use
annotated time that contain the entire passing maare Both
the chosen block interval and the resulting numioér
observations in each block are variable. In thisecathe
calculated probability represents the probabilityachead-on
collision for a single passing maneuver. Furtheengrast
studies concluded that with minimum TTC smallemtiaalow
limit (typically, 1 to 1.5 s) are useful as crashrsgates [7,

The partial

20]. As a first test, the filtered data accordinghis approach,
and choosing a limit of 1.5 s, resulted in 463 mexi Fig. 2
(top) presents the Cumulative Distribution Functi@bF) of
the minimum TTC (min{TTC}) for the full data set,hie Fig.
2 (bottom) presents the CDF of the min{TTC]} for tfikered
data. For the full data set, 50% of the observatiere less
than a TTC of about 2 s, while in the filtered d&@% of the
observations were less than a TTC of about 0.9 s.

TABLE |I. DATA SUMMARY STATISTICS

th th
Variable mean median 15 . 85 .
percentile percentile
Accepted passing 21.47 | 2075 17.39 28.79
gap (s)
Passing duration (s) 4.98 4.83 3.50 6.48
Passing vehicle 2221 | 21.29 17.27 27.39
speed (m/s)
Front vehicle speed 66.20 60.00 60.00 80.00
(m/s) ' ’ ' '
Opposing vehicle 76.28 | 85.00 65.00 85.00
speed (m/s)
Following distance
from front vehicle 15.47 12.80 8.39 2292
when starting to ' ’ ’ '
pass (m)
Minimum TTC (s) 2.37 1.98 0.76 4.10
Gap from passed
front vehicle at end 244 294 1.49 3.42
of the passing ’ ’ ’ '
maneuver (S)
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Fig. 2. CDF of minTTC (s) for the full dataset (f@gmd filtered data (bottom).



We estimate a stationary block maxima model for theelative gaps and speeds between the vehiclesusulirg the

maxima of the negated values instead of minim&efriginal
values, i.e. max{-TTC}. The fitted distribution ndted in the
following parameters of the GEV cumulative disttibn

function: ©*=-0.993 (0.0212)¢=0.383 (0.0163) ang=-0.236
(0.0500). Fig. 3. (top) presents the probabilitpsity function
of the empirical and modeled negated TTC, and Big.
(bottom) presents the simulated QQ plot. From thiggsges it

can be concluded that the modeled GEV distributias

satisfactory fitting results to the empirical datace the points
fall close to the 45° line in the simulated QQ plot

With this stationary model
distribution, the estimated probability of max{-TT€D is
0.0179 with 95% confidence interval (0.0177,0.018Phe
confidence intervals of estimations were computssuming
the normal distribution under regularity condition$ the
parameters, a simulation experiment size of 1x106 is
simulated distribution quantiles. Out of the 46&mbead-on
collisions in the driving simulator (using the tbheld of 1.5
s), 9 maneuvers ended with actual collisions. hreotwords,
the probability for a head-on collision assumingear head-
on collision in a passing maneuver is 9/463= 0.0Mith a
95% binomial confidence interval (0.00893, 0.036&his
value is comparable to the estimate resulting ftom fitted
GEV distribution.

However, the process of passing maneuver may betadf
by the detailed conditions of each specific passngh as the
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Fig. 3. Probability Density plot (top) and simuld®Q plot (bottom) for
the stationary Block Maxima model

using the fitted GEV

subject vehicle. To account for the fact that tHeC$ at the
end of the passing maneuvers are non-stationamgnzdtsons
and are affected by several factors, we testednttigsion of
different covariates that were collected during tiéving
simulation experiment in the location parameterthd BM
model.

B. Non-Sationary Block Maxima Approach (BM) Results

Several linear combinations of these variables wested
during model estimation task. To test reduced mettattures
and the inclusion of variables, the likelihood oatest was
used [17]. The final model was also tested agathst
stationary one, resulting in a p-value (3.741%i€ignificantly
smaller tharalpha = 0.05.

The results in TABLE 1l indicate that as the speédhe
front vehicle increases the negated TTC increaand, the
TTC decreases which is logical since it is eagiethe subject
vehicle to pass the front vehicle. This is alsooading to the
conclusions reached in previous studies [12, 2ibjil&ly, as
the accepted passing gap is larger, the negateddEt(eases,
and the TTC increases. On the other hand, as drstart their
passing maneuver from a larger gap from the frehicle, the
negated TTC increases and the TTC decreases.sltecause
it take drivers longer to pass the front vehicled auring this
time the opposing vehicle has become closer, ieguih a
shorter TTC. The road design as well impacts th€.TAs the
road curvature is higher, the negated TTC is lowad the
TTC is higher.

TABLE II. LIST OF COVARIATES CONSIDERED IN THBLOCK MAXIMA (BM)

APPROACH
Acronym Description

passinggap The time gap between two opposite vehicles at the
time the subject meet the lead opposite vehicle (s)

speedopposing  The speed of the opposite vehicle at the moment
of start passing (m/s)

speedfront The speed of the front vehicle at the moment of
start passing (m/s)

tailgatetp The time gap between the subject vehicle and the
front vehicle at the moment of start passing (s)

passduration The passing duration (s)

curvature The road curvature (1/m)

TABLE IIl. ESTIMATION RESULTS OF BEST MODELS FOBM APPROACH

Parameter Estimated Standard
value error

o -1.06 0.139
A, (speedfront) 0.0245 0.00644
i, (tailgatetp) 0.00274 0.00179
i3 (passinggap) -0.0212 0.00445
4 (curvature) -38.1 135
é 0.369 0.0145
é -0.225 0.0412
N 463
Neg. loglikelihood 215.54




This might indicate of an adaptation behavior biyahs who
compensate for the difficulty of the passing mamguen

complex roads by increasing their safety margirevieus

results using the same dataset of this study byffihd that
on roads with sharper curvature, drivers accepelacritical

gaps, which supports the results and conclusiathisfstudy.
The speed of the opposing vehicle was not foundbdo
significant at the 95% confidence level, howevhis wariable
is indirectly included through the passing gap wwhis

measured in time.

Fig. 4 top) presents the probability density function of the
empirical and modeled standardizedaximum negated TTC,

To estimate the probability of a head-on-collisduring the
passing maneuvermgx{-TTC}>0) for the non-stationary
model, simulated covariates or directly locatiorrapaeters
have to be generated. From the estimated locaaoanpeters
for the estimation dataset, a normal distributiasyitted with
satisfactory results with mean of -0.996, standirdation of
0.115 and a Kolmogorov-Smirnov test statistic @4®2.The
simulated probability ofmax{-TTC}>0 is 0.0190 with 95%
confidence interval (0.0188,0.0193), resulting inbatter
estimate than the stationary model.

V. SUMMARY AND CONCLUSIONS

and Fig. 4 lottom) presents the simulated QQ plot for theIn this on-going study an Extreme Value (EV) apploavas

non-stationary model. The results indicate a gabtdetween
the modeled GEV distribution and the empirical datad a
better fit compared to the results of the statignarodel
presented in Fig. 3. Also, the negative log-likebd has
improved from 229.5 to 215.5, maintaining¢a> —0.5 that
assures the regular asymptotic properties of th&irman
likelihood estimators [17].
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Fig. 4. Probability density function (left) and simulated QQ-Plot (right) for
the non-stationary Block Maxima model

Y For non-stationary models, it is common practicéramsform the
data to a density function that does not dependhencovariates,
using the following function Z; = —log(1 + (¢/o * (X; —
uN™N(—1/8) (Gilleland and Katz, 2011)

applied for the estimation of the probability of akeon
collisions that result from unsuccessful passingi@naers on
two-lane rural highways. The Block Maxima (BM) apach
using the Generalized Extreme Value (GEV) distitutvas
tested using the minimum time-to-collision with theposing
vehicle during passing maneuvers.

The estimation showed that the BM approach vyielded
satisfying results and that the non-stationary BMdei
performed better than the stationary BM model. This
according to expectation since the introduced dates
significantly affect the TTC and were found to Imepbrtant
explanatory variables in previous studies [12, 21].
Furthermore, the predicted probability of head-afligions
based on the BM approach was sufficiently closette
probability of head-on collisions based on the eiogi data
from the driving simulator. This also indicatesttfa passing
maneuvers the TTC is a good surrogate safety medsur
near-crashes of head-on collisions. This is difiefeom the
conclusion reached by [7] who found severe disarepa
between the rear-striking near-crashes (using th€)Tand
rear-striking crashes. However, this can be expthihy the
mechanism of crash occurrence and the state alritaer. In
passing maneuvers drivers are completely aware and
conscious of their actions and therefore head-dfisioms
usually result from an error in drivers’ judgment the
suitability of the passing gap. On the other haindyear-
striking collisions, the state of the driver in $leecollisions
might vary a lot. It can result, similarly to pasgicollisions,
from drivers’ errors in judging their gap and spdesin the
front vehicle but can also result from the driveeiny
distracted. In the first case, it is most likely ebserve an
evasive action of the driver to prevent the callisbut in the
second case no evasive action will be observeds Géuses,
as [7] indicate, a selection bias, and therefaaeefal selection
of near-crashes is a crucial issue in preventing from
occurring.

Despite these promising results, future researcth&yauthors
will attempt to expand this work in several possitlirections
as follows: (1) test and compare the results withEV using
the Peak-Over Threshold approach; (2) testing radtere
surrogate measures of head-on collisions such esTime
Exposed Time to Collision or Time integrated Time t
Collision [25]; (3) developing a more sophisticatedasure of



risk which accounts for the complexity of the pagsi
maneuver and considers the probability to collid¢ only

with the opposite vehicle but also with the passghicle. One
possibility is, similarly to [7], to use a bivarlaGEV which is
built from two components of the Block Maxima vast@and

which considers the TTC and the headway between
passing and passed vehicle at the end of the gassineuver;

(4)

extending the non-stationary models by inclgdother

covariates related to road design (this study aaemifor only
the road curvature) and drivers’ characteristioshsas socio-
demographic, driving styles and cultural differesice5)
examining the transferability of such model anddation of
the results with other datasets especially frord ftudies; (6)

applying the developed models

in

simulation environments for safety assessment [26].

(1

(2

(3]

(4]

(5]

(6]

(7]
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