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Abstract 

Observed accidents have been the main resource for road safety analysis over the past decades. Although such 

reliance seems quite straightforward, the rare nature of these events has made safety difficult to assess, especially 

for new and innovative traffic treatments. Surrogate measures of safety have allowed to step away from 

traditional safety performance functions and analyze safety performance without relying on accident records. In 

recent years, the use of surrogate measures to estimate accident probabilities with extreme value theory (EV) 

models has been an alternative approach to its use as aggregate accident frequency predictors. In this paper we 

extend existing efforts on EV for accident probability estimation with driver specific characteristics and joint 

distributions estimates using two dependent surrogate measures. Using detailed trajectory data from a driving 

simulator, we model the probability of head-on and rear-end collisions in passing maneuvers. 

We show that accounting for driver specific variables and road infrastructure variables improve the head-on 

collision probability estimation. This is valuable since driver and road heterogeneity can now be considered in 

evaluating various safety interventions both for in-vehicle and infrastructure based solutions.. We also present an 

exploratory structure and results for combining surrogate measures that describe correlated events. Such feature 

is essential to keep up with the expectations from surrogate safety measures for the integrated analysis of 

accident phenomena. 
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1. Introduction 

1.1.   Motivation & Problem Definition 

Prediction of accidents has been a major topic in traffic safety for the last couple of decades. Despite the huge 

efforts that researchers have put in developing accident prediction models [1], there is a great tendency in the last 

decades to develop new proactive methods for safety evaluation that are not based on accident records ([2, 3]. 

Evaluating conflicts and risky situations between road users has been the main alternative and multiple 

methodologies can be found in the literature: the Swedish traffic conflict technique [4], DOCTOR method [3], 

and the use of surrogate safety measures [2]. The main challenge is the link between these measures and the 

number of accidents. Zheng, Ismail and Meng [5] indicate that the validity of surrogate safety measures is 

usually determined by its correlation with accident frequency which is usually assessed using regression 

analysis. However, regression analysis still incorporates accident counts which are known to suffer from 

underreporting and quality issues, and thus this approach is limited. Besides, it is difficult to insure the stability 

of the accident-to-surrogate ratio and this relationship also hardly reflects the physical nature of accident 

occurrence [5]. Therefore, there is a need to develop an alternative approach to predict the number of accidents 

based on surrogate safety measures. Recently [6] developed a new and more sophisticated approach based on the 

Extreme Value (EV) theory to estimate the frequency of accidents based on measured accident proximity.     

1.2.   Extreme Value (EV) Approach 

The EV approach has three considerable advantages over the traffic conflict technique: (a) it abandons the 

assumption of fixed ratio converting the surrogate event frequency into accident frequency; (b) accident risk 

given the surrogate event is estimated based on the observed variability of accident proximity without using 

accident data; (c) the accident proximity measure precisely defines the surrogate event.  

The implicit assumption of the EV theory is that the stochastic behavior of the process being modeled is 

sufficiently smooth to enable extrapolation to unobserved levels [6]. In the context of road safety, the more 

observable traffic conflict events are used to predict the less frequent accidents, which are often unobservable in 

a short time period [5]. The field of EV theory, pioneered by Fisher and Tippett [7], is a commonly applied 
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theory in many fields, such as in meteorology, hydrology, finance [5] and very recently, road safety analysis 

Songchitruksa and Tarko [6]. Songchitruksa and Tarko [6] used an EV approach to build up relationships 

between occurrences of right-angle accidents at urban intersections and frequency of traffic conflicts measured 

by using post-encroachment time. A major improvement of this study is that it links the probability of accident 

occurrence to the frequency of conflicts estimated from observed variability of accident proximity, using a 

probabilistic framework and without using accident records. The generic formulation of the application of EV to 

road safety analysis was then proposed by Tarko [8] and it was only very recently applied to other accident types 

and data sets [5, 9]. Despite these recent efforts the extent in which EV can accurately be used in accident 

frequency prediction is yet to be tested. 

1.3.   Risk of Passing Maneuvers 

Passing maneuvers on two-lane roads (one lane per travel direction) carries several types of risks. The process of 

passing involves, synchronizing the vehicle’s speed with that of the front vehicle, estimating the available gap on 

the opposite direction and evaluating its suitability to successfully perform the passing maneuver, and finally 

return to the main driving lane while keeping a sufficient safe gap from the passed vehicle, as well as, from the 

vehicle on the opposite direction. The gap from the passed vehicle is termed ’THW’ for time headway between 

the front of the passed vehicle and the rear of the passing vehicle – a measure for rear- and side-collisions with 

the passed vehicle. The gap from the vehicle on the opposite direction is termed ‘TTC’ for time-to-collision 

between the passing and the opposite vehicle – a measure for head-on collisions. Both of these gaps are 

calculated at the end of the passing maneuver. In this study both measures will be used: the THW was assumed 

as the remaining distance between the passing and passed vehicle divided by the driving speed of the passed 

vehicle, while the TTC was calculated as the remaining distance between the passing and opposing vehicle 

divided by the sum of their speeds.  

1.4.   Drivers’ Characteristics 

Several studies have shown that there are significant differences in passing behaviors among different drivers. 

Farah [10] using a driving simulator found that gender and age have a significant impact on the passing behavior. 

She found that the passing frequency of male drivers is higher than female drivers, male drivers also maintain 

smaller following time gaps from the front vehicle before initiating a passing maneuver, and have smaller critical 

gaps. Younger drivers, compared to older drivers, have significantly lower critical gaps and higher desired 

driving speeds, and keep smaller gaps from the front vehicle at the end of the passing maneuvers. These 

behaviors increase the risk of accidents. Llorca, Garcia, Moreno and Perez-Zuriaga [11] reached similar 

conclusions using an instrumented vehicle. The authors found that young male passing drivers have shown a 

more aggressive behavior. Passing times were around 1s lower than other drivers, while average speed difference 

was 4 km/h higher. Farah, Polus, Bekhor and Toledo [12] tested the significance of including driving styles in 

the passing behavior model, and found that drivers who are characterized by an anxious driving style and/or 

patient and careful driving style have larger critical gaps. Vlahogianni and Golias [13] emphasize that the 

behaviors of young male and female drivers during passing maneuvers are different, because of the differences 

in the process of scanning and evaluating available opportunities for passing.  

To summarize, the integration of drivers’ characteristics and driving styles in accident prediction is valuable 

and can contribute to understanding of the accident causation contributing factors and contribute to the 

improvement of the model prediction accuracy. Previous EV models did not account for these factors. 

 

2. Research Method  

The aim of this study is to develop and test two different methods to estimate accident probability in passing 

maneuvers. The first approach analyzes the risk of individual types of accidents during passing maneuvers: (1) 

head-on collisions using the proximity measure of the minimum TTC to the vehicle in the opposite direction at 

the end of a passing maneuver; (2) rear-end collisions with the passed vehicle using the proximity measure of the 

minimum THW from the front of the passed vehicle to the rear-end of the passing vehicle at the end of the 

passing maneuver. The second approach aims to analyze the joint risk of colliding with the opposite vehicle or 

with the passed vehicle during passing maneuvers using the two surrogate safety measures (THW and TTC).  

2.1.   Modeling Approach 

There are two families of EV distributions which follow two different approaches to sample extreme events: (1) 

the Generalized Extreme Value (GEV) distribution which is used in the block maxima or minima (BM) 

approach, in which maxima over blocks of time (or space) are considered; (2) the Generalized Pareto 

Distribution (GPD) which is used in the peak over threshold approach [14], where all values above some high 

level are used. In this paper only the BM approach is examined following the conclusion reached by Azevedo 

and Farah [15] and Farah and Azevedo [16] that the peak over threshold approach was found to be less efficient 

for the analysis of the risk of passing maneuvers using the same dataset as in this study. Therefore, non-

stationary Block Maxima approach was applied for estimating the risk of a single type of accident (head-on or 
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rear-end collision), while for estimating the risk of both types of collisions jointly the bivariate distribution with 

copula approach was considered. These two methods are described in detail below.  

2.2.   Non-Stationary Block Maxima Approach 

In the GEV distribution the extreme events are sampled based on the BM approach. Following this approach the 

observations are aggregated into fixed intervals over time and space, and then the extremes are extracted from 

each block by identifying the maxima in each single block. Mathematically, the standard GEV function is as 

follows [5]: 

𝐺(𝑥) = exp (− [1 + 𝜉 (
𝑥 − 𝜇

𝜎
)]

−1
𝜉

) (eq. 1) 

where, {𝑋1, 𝑋2, … , 𝑋𝑛} is a set of independently and identically distributed random observations with unknown 

distribution function 𝐹(𝑥) = 𝑃𝑟(𝑋𝑖 ≤ 𝑥) , the maximum Mn = max{X1, X2, … , Xn}  will converge to a GEV 

distribution when 𝑛 → ∞. Three parameters identify this distribution: the location parameter, −∞ < 𝜇 < ∞; the 

scale parameter, 𝜎 > 0; and the shape parameter, −∞ < 𝜉 < ∞. If the shape parameter, 𝜉, is positive, then his 

would yield the Frechet Cumulative Distribution Function (CDF) with a finite lower endpoint, (𝜇 − 𝜎/𝜉), if  𝜉 is 

negative, this will yield the (reversed) Weibull CDF with finite upper endpoint (𝜇 + 𝜎/|𝜉|), and if 𝜉 = 0 this 

yields the Gumbel CDF.  

In a non-stationary BM model several impacting factors can be included typically in the location parameter to 

account for their impact on the probability of the extreme events. The BM method can also be used to study 

minima by considering the maxima of the negated values instead of minima of the original values. Such property 

is extremely useful for the analysis of gap and distanced based variables, typically used in surrogate measures. 

More details on the GEV properties can be found in [8]. 

In some applications the study of probability using multivariate distributions is of interest. Traditionally, 

single surrogate safety measures are used to estimate a single type of events. However, it is expected that in 

some of the complex accident phenomena, multiple pre-accident events can play an important role in a potential 

accident. Passing maneuvers are a typical case where both the opposite and passed vehicles are key stimulus 

during driver’s decision making.  

2.3.   Bivariate distributions with Copula method to model dependence  

We focus our attention on the bivariate distribution with copula method due to the expectable existence of 

dependence (not necessary linear) between the two surrogate safety measures. A copula is a multivariate 

distribution whose margins are all uniform over (0,1), following as shown in equation (2) for a p-dimensional 

random vector U on the unit cube: 

 

𝐶(𝑢1, … , 𝑢𝑝) = Pr(𝑈1 ≤ 𝑢1, … , 𝑈𝑝 ≤ 𝑢𝑝). (eq. 2) 

 

The copula not only provides a structure for the dependence between the variables but also reveals itself to be 

invariant under strictly monotone transformations. The Sklar’s Theorem (1959) ensures that it is possible to 

estimate a multivariate distribution by separately estimating the marginal distributions and the copula function C. 

In this sense, let 𝐹 be the p-dimensional distribution function of the random vector 𝑈 with margins 𝐹1, … , 𝐹𝑝, 

then the copula 𝐶 is such that for all vector x the equality 𝐹(𝑥) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑝(𝑥𝑝)) holds, where C is unique 

if the marginal distributions are continuous.  

The two most frequently used copula families are elliptical copulas and Archimedean copulas. More details 

on these copula families can be found in Fang, Kotz and Ng [17], Nelsen [18], and Genest and Rivest [19]. To 

assess if a given copula is well fitted to the data under analysis, goodness-of-fit are performed based on statistics 

such as the rank-based versions of the Cramer-von Mises or the Kolmogorov-Smirnov. An example of goodness-

of-fit testing overview are given in Berg [20]. 

2.4.   Data Collection 

Data on the time-to-collision (TTC) with the opposing vehicle and the time headway (THW) between the passed 

and passing vehicles at the end of passing maneuvers were obtained from a driving simulator experiment 

previously developed by Farah, Bekhor and Polus [21] for modelling drivers’ passing behavior on two-lane rural 

highways. In this experiment the STISIM [22] driving simulator was used. STISIM is a fixed-base interactive 

driving simulator, which has a 60° horizontal and 40° vertical display. The driving scene was projected onto a 

screen in front of the driver with a rate of 30 frames per second.  

In this experiment a total of 16 simulator scenarios were designed in order to have a better understating on 

how different infrastructure and traffic related factors affect drivers’ passing behavior. The 16 different scenarios 
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are the result of an experimental design that included 4 factors in 2 levels, which are: the speed of the front 

vehicle (60 or 80 km/h), the speed of the opposite vehicle (65 or 85 km/h), the opposite lane traffic volume (200 

or 400 veh/h), or the road curve radius (300-400 or 1500-2500 m). However, all the scenarios included 7.5 km of 

two-lane rural highway section with no intersections, and good weather conditions. Each driver drove 4 

scenarios out of the 16 scenarios which were selected following a partial confounding method that was adopted 

[23]. A more detailed information about this experiment can be found in [21]. 

A total of 100 drivers (64 males and 36 females) with at least 5 years of driving experience participated in the 

driving simulator experiment on a voluntary base. 67 drivers have an age between 22 and 34 years old, 20 

drivers with an age between 35 and 49 years old, and the remaining 12 with an age between 50 and 70 years old. 

Each driver, before participating in the driving simulator experiment, filled a questionnaire composed of two 

parts: the first part included questions on the driver personal characteristics (including questions such as: gender, 

age, and driving experience), while the second part included the multidimensional driving style inventory 

(MDSI) developed by Taubman Ben-Ari et al. [24]. The MDSI is a 6-point scale, which consists of 44 items that 

are used to characterize four factors that represent different driving styles: (1) Reckless and careless driving 

style, which refers to deliberate violations of safe driving norms, and the seeking of sensations and thrill while 

driving. It characterizes persons who drive at high speeds, race in cars, pass other cars in no-passing zones, and 

drive while intoxicated, probably endangering themselves and others; (2) Anxious driving style, which reflects 

feelings of alertness and tension as well as ineffective engagement in relaxing activities during driving; (3) 

Angry and hostile driving style, which refers to expressions of irritation, rage, and hostile attitudes and acts while 

driving, and reflects a tendency to act aggressively on the road, curse, blow horn, or “flash” to other drivers, and 

(4) Patient and careful driving style, which refers to planning ahead, attention, patience, politeness, and 

calmness while driving, as well as obedience to traffic rules. Factor scores were calculated for each respondent 

on each of these four driving styles.  

 

3. Results and Analysis 

The data set from the driving simulator experiment resulted in a total of 1287 completed passing maneuvers, 9 

head-on collisions and 2 rear-end collisions. 

3.1.   Univariate Model 

To fit the 1287 passing maneuvers and their respective minimum TTC and THW measurements, a Generalized 

Extreme Value (GEV) distribution was considered to measure the risk of each type of accident. In this approach, 

a set of block intervals was defined according to the annotated time that contains the entire passing maneuver, 

having as a result a variable number of observations for each block as well as the number of blocks.  

3.1.1 Head-on collisions 

Aiming at estimating the probability of a head-on collision for a single passing maneuver, the minimum TTC 

was considered as a head-on accident surrogate measure. The data was then filtered to account only for values 

smaller than 1.5s [4, 9, 25], leading to a total of 463 observations. Knowing that 9 maneuvers ended with actual 

head-on collisions, the probability of a head-on collision in a passing maneuver is 9/472=0.0191, with 95% 

binomial confidence interval (0.0089, 0.0366). 

The estimation of the stationary BM model was developed by Farah and Azevedo (18) for the negated values 

instead of minima of the original values, i.e., 𝑚𝑖𝑛{𝑇𝑇𝐶}. The authors estimated that the parameters of the 

univariate GEV cumulative function are 𝜇̂ = −0.993 (0.0212) , 𝜎̂ = 0.0383 (0.0163)  and  𝜉 =
−0.236 (0.0500). Figure 1. presents the probability density function of the empirical and modeled negated TTC 

(upper left) and the simulated QQ plot (upper right). This model was then improved to a non-stationary BM 

model by the authors. They concluded that the covariates ‘passinggap’, ‘tailgatetp’, ‘speedfront’, ‘curvature’, 

related to the infrastructure and traffic, were found to significantly contribute to the prediction of the probability 

of a head-on-collision during a passing maneuver Farah and Azevedo [26]. While the covariate ‘speedpv’ was 

not found to be significant. Variables related to drivers’ personal characteristic (gender, age, and driving style) 

were not tested. In this study, we will include the traffic and road variables that were found to be significant, and 

we will test whether drivers’ personal characteristic significantly contribute to the model. The variables are 

defined as following: 

 passinggap: The time gap between two opposite vehicles at the time the subject meet the lead opposite 

vehicle ; 

 tailgatetp: The time gap between the subject vehicle and the front vehicle at the moment of start passing 

(s); 

 speedfront: The speed of the front vehicle at the moment of start passing (m/s); 

 curvature: The road curvature (1/m); 

 speedpv: The speed of the passing vehicle (m/s); 



5 

 

 gender: The gender of the driver (1-male; 0-female); 

 age: Categorical variable, with ranges 22-34; 35-49 and 50-70 ; 

 drivingstyle: Angry & Hostile; Anxious; Reckless & careless; Patient & careful [24]. 

A set of a non-stationary models considering different covariates were estimated. After testing several linear 

combinations, the four best non-stationary models are presented in Table 1 with a range of likelihood ratio p-

value between 2.773 × 10−9 and 1.931 × 10−8 (Model #1 to #4). The estimated likelihood ratio tests are shown 

in Table 2. The previously estimated stationary model and non-stationary model without driver-specific variables 

(Model #0) from [26] are used as a benchmark in the remaining of this section.  

Table 1: Estimation Results of the 5 Best Models for the BM Approach 

Non-stationary 

model 

#0 [26] #1 #2 #3 #4 

Estimated  v. 

(Std. Error) 

Estimated  v. 

(Std. Error) 

Estimated  v. 

(Std. Error) 

Estimated  v. 

(Std. Error) 

Estimated  v. 

(Std. Error) 

𝜇̂0 
-1.0451 

(0.1377) 

-0.9838 

(0.1394) 

-0.9273 

(0.1457) 

-0.9528 

(0.1456) 

-1.1071 

(0.139) 

𝜇̂1 (speedFront) 
0.0245 

(0. 0064) 

0.0265 

(0.0064) 

0.027 

 (0.0064) 

0.0257 

(0.0064) 

0.0273 

(0.0064) 

𝜇̂2 (tailgatetp) 
0.0026 

(0.0018) 

0.0028 

(0.0018) 

0.0028 

(0.0018) 

0.0026 

(0.0018) 

0.0027 

(0.0018) 

𝜇̂3 (passinggap) 
-0.022 

(0.0044) 

-0.0232 

(0.0044) 

-0.0235 

(0.0044) 

-0.0226 

(0.0044) 

-0.0227 

(0.0044) 

𝜇̂4 (curvature) 
-33.6534 

(13.5196) 

-34.3039 

(13.4199) 

-34.0688 

(13.4034) 

-34.0902 

(13.4888) 

-34.1393 

(13.3976) 

𝜇̂5 (Gender) - 
-0.0967 

(0.0421) 

-0.0804 

(0.0438) 
- - 

𝜇̂6  
(Angry&Hostile) 

- - 
-0.0211 

(00162) 

-0.0294 

(0.0156) 
- 

𝜇̂7 (F2234) - - - - 
0.1166 

(0.0442) 

𝜎̂ 
0.3639 

(0.0145) 

0.3616 

(0.0143) 

0.3607 

(0.0142) 
0.362 (0.0143) 

0.3611 

(0.0142) 

𝜀̂ 
-0.2196 

(0.042) 

-0.2176 

(0.0413) 
-0.216 (0.041) 

-0.2163 

(0.0414) 

-0.2175 

(0.0405) 

Negative 

Loglikelihood 
208.6541 206.0598 205.2183 206.8908 205.2379 

 

Analyzing the results presented in Table 1, it is concluded that the introduction of Gender improves the 

accuracy of the model when compared to the non-stationary model (#0) developed by Farah and Azevedo [26]. 

The significance of this variable is given by the p-value of the likelihood ratio test, which is equal to 0.023, with 

95% confidence level.  

Table 2: Direct Value of the Likelihood Ratio Test (p-value) for the 5 Best Models for the BM Approach 

Non-stationary model 0 [26] #1 #2 #3 #4 

#0 [26] -     

#1 
5.1887 

(0.023) 
-    

#2 
6.8717 

(0.032) 

1.6831  

(0.194) 
-   

#3 
3.527 

(0.060) 

-1.662 

(1) 

3.3451 

(0.0674) 
- 

 

#4 
6.832 

(0.008) 

1.644  

(2.2E-16) 

0.0393 

(0.843) 

3.3057 

(2.2E-16) 
- 

 

The contribution of the variables representing driving styles (Angry&Hostile, Anxious, Reckless&Careless 

and Patient&Careful) was tested considering all the possible combinations of these variables besides the ones 

included in Model 1. Comparisons between the different models were based on the likelihood ratio test. This 

procedure resulted in the inclusion of one driving style, Angry&Hostile, as presented in model #2. Analyzing the 

correlation between the different driving styles and the remaining variables, a small correlation of 0.29 was 

found between Angry&Hostile and Gender. Taking this into account, including the variable Angry&Hostile in a 
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model with the variable Gender (model #2), may not contribute to improve our estimation. In order to test which 

variable among the two has a larger influence, the variable Gender was excluded from model #2, creating model 

#3. Comparing the results of models #1 to #3, it is concluded that the model that only includes Gender (model 

#1) has a better fit based on the p-value of the likelihood ratio test. Another reason to prefer this model is the 

simplicity of collecting data on driver gender compared to the driving styles, which require drivers to complete 

the MDSI survey. 

Aligned with the conclusions achieved by Farah [10] and Llorca, Garcia, Moreno and Perez-Zuriaga [11] 

regarding the impact of age, this variable (age) was found to improve the accuracy of the model when compared 

to the stationary model but turned out to have a non-significant contribution if gender is also included. After 

several attempts, we included the interaction variable between gender (female drivers) with age (range 22-34), 

F2234, and the final model (model #4) is shown in Table 1. This model considers a new variable that takes 1 if 

the driver is a female with age range between 22 and 34, and zero otherwise.  

To estimate the probability of a head-on collision along with the conclusion about which model is the one 

with the better fit (models #1 and #4), two different approaches were considered. The first approach considers 

that the location parameter value is calculated using the covariates from the data, achieving the estimated 

probabilities of 0.0195 and 0.0198 for models 1 and 4, respectively, with 95% confidence level (0.0192; 0.0198) 

and (0.0195; 0.0201), respectively. These confidence intervals of estimation were computed assuming a normal 

distribution under regular parameters’ conditions, a simulation experiment size of 1 × 106  and its simulated 

distribution quantiles. The second approach considers the estimation of the location parameters based on the 

estimation dataset, where normal distributions with means (standard deviations) of -0.989 (0.123) and -0.988 

(0.125), for models #1 and #4, respectively were considered. The Kolmogorov-Smirnov test statistic of 0.0444 

and 0.0479, respectively was achieved. This procedure simulates the values 0.0197 and 0.0202 for the 

probabilities of head-on collisions of models 1 and 4, respectively, with 95% confidence interval of (0.01939, 

0.0199) and (0.0199, 0.0205).  Comparing the probabilities of these two methods with the probability for a head-

on collision assuming a near head-on collision in a passing maneuver of 0.0194, results in model 1 giving better 

estimation compared to model #4. We can conclude that model 1 is better than model #4, for estimating the 

probability of head-on collisions for single passing maneuvers. 

According to the results of model #1 presented in Table 1, if the speed of the front vehicle (speedfront) 

increases, or if drivers start their passing maneuver from a larger gap from the front vehicle (tailgatetp), the 

negated TTC increases (corresponding to a decrease in the TTC). These are logical results since it is more 

difficult to end the passing maneuver if the front vehicle has a higher driving speed. Similarly, starting the 

passing maneuver from a larger gap from the front vehicle results in a longer time to finish the maneuver and 

consequently smaller TTC. If the passing gap (passinggap) that is accepted is larger or the curvature of the road 

(curvature) is higher, the negated TTC is lower and the TTC is higher. This shows that drivers adapt their 

behavior in a passing maneuver if the road is too complex. Finally, male drivers have smaller TTC. This result is 

supported by previous studies [12, 13], where it was found that male drivers usually drive faster, have shorter 

passing gaps, and conduct a higher number of passing manoeuvers when compared to females.  

The probability density function of the empirical and modeled standardized1 maximum negated TTC and the 

simulated QQ-plot for the best non-stationary BM model (model #1) are shown in Figure 1.  

                                                           
1 For non-stationary models, it is common practice to transform the data to a density function that does not depend on the 

covariates, using the following function 𝑍𝑖 = − log (1 +
𝜖

𝜎
× (𝑋𝑖 − 𝜇𝑖))

−
1

𝜖
 27. E. Gilleland and R. W. Katz, New software to 

analyze how extremes change over time, Eos, Transactions American Geophysical Union 92 (2011), no. 2, 13-14. 
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Figure 1: Probability Density plot (upper-left) and simulated QQ-plot (upper-right) for the stationary BM 

model (18) and standardized Probability Density plot (lower-left) and simulated QQ-plot (lower-right) for 

the best non-stationary BM model (Model #1). 

3.1.2 Rear-end collisions 

In order to estimate the probability of rear-end collisions for a single passing maneuver, the headway 

between the front passed vehicle and the passing vehicle at the end of the passing maneuver (THW) is used as 

accident surrogate. Similar to what was developed to calculate the probability of a head-on collision for a single 

passing maneuver, the minimum THW should be smaller than a limit to be useful as an accident surrogate. 

Based on the literature, this value varies between <0.6 [25] and <2 [25, 28]. Considering these thresholds, 

several BM stationary models were developed. Based on the estimated probabilities for rear-end collisions, it 

was concluded that 1.2s is the threshold with the best fit. 

With a total of 81 observations (excluding the observations that ended with actual collisions) that have a 

minimum THW smaller than 1.2s and knowing that 2 rear-end collisions occurred, the theoretical probability of 

a rear-end collision was calculated as 2/83= 0.024, with a 95% binomial confidence interval (0.00293, 0.0843). 

The estimation of the stationary BM for the model of the negated values of the THW, resulted in the 

parameters  𝜇̂ = −1.11 (0.0137)  , 𝜎̂ = 0.0956 (0.0132)  and  𝜉 = 0.536 (0.1666)  for the GEV cumulative 

distribution function. The density function of the empirical and modeled negated THW and the simulated QQ 

plot are shown in Figure 2. Taking these plots into consideration, it is concluded that the fitting results of the 

modeled GEV distribution are satisfactory because the empirical data points fall close to the 45º line in the 

simulated QQ plot. 

Using the fitted GEV distribution, the estimated probability of this stationary model of max{-THW} >=0 is 

0.0246 with 95% confidence interval (0.0243, 0.0249). This interval was computed assuming a normal 

distribution under regularity conditions of the parameters, simulating an experiment with a size of 1𝑥106 and its 

simulated distribution quantiles. This estimated probability is comparable with the empirical probability of 

0.02409. Concluding that the stationary BM model is a good approach to estimate the probability of a rear-end 

collision.  

Notwithstanding, the passing maneuver may be affected by specific passing conditions, such as speeds of the 

vehicles surrounding the subject vehicle. Therefore, several linear combinations of covariates were tested 

according to a non-stationary BM model approach. This process was conducted in a similar way to the model 

developed to estimate the probability of a head-on-collision. Taking this into account, the final non-stationary 

BM model includes the covariate related with the passing vehicle speed (speedpv), where the location parameter 

takes the values 𝜇̂0 = −1.169 and the parameter for the covariate speedpv  𝜇̂1 = 0.00266, while 𝜎̂ = 0.0971 

and 𝜉 = 0.453. Testing this non-stationary model against the stationary one through the likelihood ratio test, a p-

value of 0.0421 is achieved with a direct value of 4.128. The probability density plot as well as the QQ-plot for 

this model is also shown in Figure 2. 

To estimate the probability of 𝑚𝑎𝑥{𝑇𝐻𝑊 } ≥ 0 with this non-stationary model, a normal distribution was 

fitted taking into account the estimated location parameter. This distribution with a mean of -1.102, a standard 

deviation of 0.0179 and a Kolmogorov-Smirnorv test statistic of 0.118, lead to a simulated probability of 0.0181 
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for the 𝑚𝑎𝑥{𝑇𝐻𝑊 } ≥ 0 with 95% confidence interval (0.0179, 0.0184), resulting in a worst estimation than the 

stationary model. Therefore, the model with the better fit is the stationary BM model (Figure 2.). 

 
Figure 2. Probability Density plot (upper-left) and simulated QQ-plot (upper-right) for the stationary BM 

model  and standardized Probability Density plot (lower-left) and simulated QQ-plot (lower-right) for the 

non-stationary BM model (with speedpv as covariate). 

3.2.   Bivariate Model 

It is aimed to estimate a measure of risk that not only takes into account the possibility to collide with the 

opposite vehicle but also with the passed vehicle. Taking into account that performing a passing maneuver 

requires a split of attention by the driver regarding its location relative to the surrounding vehicle, it is assumed 

that the dependence between the TTC and the THW is unknown. Furthermore, an integrated analysis is possible 

to be developed if, and only if, a relationship of dependence can be found between TTC and THW. When 

examining the correlation between these two variables with using the whole dataset, a Pearson-correlation value 

of 0.186 was found. This value shows the lack of linear correlation between the time-to-collision measure and 

the time head-way measure. However, this does not mean that TTC and THW are independent [29]. To further 

examine potential correlation, the Kendall’s rank correlation tau was computed and found to be significantly 

greater than zero, indicating the existence of dependence between TTC and THW (𝜏 = 0.192, 𝑝 − 𝑣𝑎𝑙𝑢𝑒 =
2.2𝑒 − 16 ). This statement is corroborated by the independence test Global Cramer-von Mises, where a 

significant p-value close to zero (p-value=0.000499) gives strong evidence against the null hypothesis of 

independence. 

Based on these results, different copula families were estimated to model the dependence between the 

negated values of TTC and of THW. This analysis concluded that the copula with the better fit is the Joe-Frank 

copula [30], with parameters 1.631 and 0.929. This result was confirmed by performing the goodness-of-fit test 

based on Kendall’s process (0.47 and 0.26 for the p-values of Cramer-von Mises statistic and Kolmogorov-

Smirnov statistics, respectively). 

Due to copula estimation’ property of allowing separate estimations for the copula and the marginal 

distributions, we now proceed with the informed estimation of the latter, using insights from the previous 

univariate analysis. For this exploratory analysis, we estimate the bivariate distribution considering the stationary 

univariate BM distributions for each variable as the upper tail margins distributions. This integration estimates 

the probability of an accident if both TTC and THW are below their thresholds (1.5s and 1.2s, respectively). To 

perform the estimation for the remaining TTC and THW values, other distributions for the margins should be 

analyzed and fitted (e.g., gamma distributions or Gumbel distribution).  

Simulating elements for the bivariate distribution analyzed in this exploratory approach, with a Joe-Frank 

copula and GEV distributions for the margins, a maximum loglikelihood of 50.73 and a Kendall’s tau of 0.184 

are achieved. The Kendall’s tau is comparable to the one previously achieved for the original dataset (0.192), 

revealing the suitability of our approach to estimate the joint probability of an accident based on the two 

surrogate measures (TTC and THW).  
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Using this fitted distribution, the estimated probability of having an accident, if both surrogate measures are 

below their threshold, is 0.04. The empirical probability was calculated by knowing that a maximum of 5 out of 

the total 11 collisions had the other surrogate safety measure value below its threshold (i.e., if head-on collision, 

then THW was below 1.2 s, and if rear-end collision, then the TTC was below 1.5 s), and that the sample of size 

is given by the number of collisions plus the 60 observations where both TTC and THW were below 1.5 and 1.2, 

respectively. Therefore, the empirical probability takes a value within the range 0.0164 and 0.0769, which is in 

concordance with the estimated probability. 

The probability density function of this bivariate distribution with GEV margins is displayed in Figure 3. 

This contour plot provides the confidence of the regions for the empirical data points (red dots), showing the 

suitability of this model to estimate the joint probability of colliding with the opposite vehicle or with the passed 

vehicle. As previously mentioned, further analysis of this approach should be performed where approaches such 

as extreme copulas [31] and the inclusion of other distributions for the margins should be explored.  

 

Figure 3. Probability Density contour plot for the Bivariate Distribution. 

 

4. Conclusions 

This paper analyzed the individual and joint probabilities of head-on collisions and rear-end collisions through 

the Block Maxima approach using the Univariate and Bivariate distributions with copula methods to model 

dependence between the two surrogate measures that capture those types of collisions during passing maneuvers. 

The univariate non-stationary estimation allowed to conclude that aspects linked to drivers’ characteristics, 

namely the gender, have a significant impact on the prediction of head-on collisions. However, these variables 

were not found to improve the prediction of rear-end collisions, where the stationary model seem to have a better 

fit. The bivariate model approach integrated the two different surrogate measures, TTC and THW, in order to 

estimate the risk of colliding with the opposite or with the passed vehicle in a single passing maneuver. Although 

the linear correlation between the two surrogate measures has proved to be weak, a bivariate distribution was 

estimated taking into account the existence dependence between these two surrogate measures by way of copula. 

This exploratory analysis is the first attempt to explain how two different surrogate measures are linked, 

providing guidelines to estimate the probability of colliding with the opposite or passed vehicles even in the 

presence of weak correlation.  

To sustain the preliminary conclusions that both TTC and THW are good surrogate safety measures for near-

accidents, head-on collisions and/or rear-end collisions, further analysis should be developed in order to validate 

through simulated data and/or data from other experimental scenarios the conclusions drawn by these models. 

This is the following work of the authors, together with the integration of these probabilities into a traffic 

microscopic simulation framework for safety assessment [32, 33]. 
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