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1 Abstract

2

3 The estimation of driving behavior models relies on the access to detailed traffic information such as

4  vehicle trajectories. Recent developments in vision-based technologies have allowed an increased

5  collection of vehicle trajectories around the world, with an emphasis on aerial or high observation point

6  imagery methods. Several computer algorithms have been proposed using images of different traffic

7  scenarios with the specific aim of detecting and tracking road users.

8 Very recently, multiple-object tracking based on constrained flow optimization has been shown to

9  produce very satisfactory results. Generally, this method uses individual image features collected for each
10 candidate vehicle position as main criteria in the optimization process. Although these methods are very
11 effective in controlled scenarios, adverse conditions such as dynamic view points and wider observation
12 areas with low ground sampling distances are known to encumber significantly the vehicle trajectory
13 extraction task.
14 In this paper we present the application of a k-shortest disjoint paths algorithm for multiple-object
15  tracking using a motion-based optimization based on dual graphs. A graph of possible connections
16  between successive candidate positions was built using speed and lane connectivity. Dual graphs were
17  constructed to allow for acceleration and lane-change-based optimization criteria. The k-shortest disjoint
18  paths algorithm was then used to determine the optimal set of trajectories (paths).
19 The proposed algorithm was successfully applied to the vehicle tracking in the A44 suburban
20  motorway, in Portugal. Vehicle positions were detected by image processing and 99.4% of the trajectories
21 were successfully and efficiently extracted using the proposed method.
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1  INTRODUCTION

2 Vehicle trajectory data has been one of the most important sources of information in driving behavior

3 modeling and calibration research (/,2,3). In recent years, the progress in sensing technologies and image

4  processing algorithms allowed for easier collection of such detailed traffic datasets (4, 5). Aerial imagery

5 is the most common process for collecting the base data (6), and several vehicle detection and tracking

6  algorithms have been deployed for different traffic scenarios (7). A key step in this process is the vehicle

7  tracking step, where the time-independent vehicles detected in successive images, are linked together to

8  reconstruct observed trajectories (see FIGURE 1).

9 One of the most common approaches relies on the segmented regions or contours properties
10 identified in each frame and uses Kalman filters (8, 9) to reconstruct motion tracks. Region-based
11 tracking is computationally efficient and works well with short image view fields and free-flowing traffic
12 (10). However, under congested traffic conditions, vehicles may partially occlude one another, making
13 individual blob identification much more difficult. Feature-based tracking is another approach based on
14 tracking of points which have a particular texture in their respective image positions. These interest points
15  have been long used in the context of motion, stereo, and tracking problems. A desirable quality of an
16  interest point is its invariance to changes in illumination and camera viewpoint. These points (features)
17  are then grouped considering spatial proximity or similar motion patterns along the relevant multiple
18  image frames. These algorithms have distinct advantages over other methods: they are robust to partial
19  occlusions, they don't require initialization, and can adapt successfully and rapidly to variable lighting
20  conditions, allowing real-time processing and tracking of multiple objects (/7). However, special
21 requirements have to be met as regards to camera calibration and objects with similar motions (/2).
22 Knowledge-based methods (/3), which employ a prior knowledge to decide whether the identified object
23 is a road user of interest, and optical flow based methods (a dense field of displacement vectors which
24 defines the translation of each pixel in a region) have also been used (/4). Each of these methods has,
25  however, presented some weaknesses, such as frequent identity switches or non-simple tuning of its
26  model parameters (/5).

27 Graph theory has been recently applied to the vehicle tracking problem with success (/6).
28  Typically, every region in a frame is represented by a node in the graph. A link between each region in
29  two consecutive frames is generated and labeled with a discrete variable representing the number of
30  objects moving from linked nodes. Trajectories are then extracted using global optimization using a min-
31  cost flow algorithm. Linear Programming can be used to link multiple detections over time, and therefore
32 solve the graph problem (/7). However, the computational complexity of the dynamic programming
33 approach can be prohibitive when the frame or/and vehicle number is higher.
34

'
35
36 FIGURE 1 The tracking problem
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1  In FIGURE 1 an example of how candidate positions are linked when constructing the graph is presented
2 for a small image set. In each image, three vehicles are captured by the camera. As an example, the
3 possible links from position a at time t and position f at time t + 1 are shown with arrows.
4 Recently Berclaz et al. (/6) reformulated the Linear Programming (LP) problem as a k-shortest
5  disjoint paths problem on a directed acyclic graph. In their study, the area of interest in the image
6  sequence and the time interval of the recording were discretized (as nodes) and linked considering
7  possible object motions, resulting in a directed acyclic graph. Two additional nodes (source and sink)
8  were added to account for a consistent number of trajectories (flow) in the data set. These two nodes are
9  linked to all the nodes representing positions through which objects can respectively enter or exit the
10 observed area, such as occlusions or the camera field of view, and to all nodes in first and last image. Any
11 path between the source and the sink nodes represent the flow of a single object in the original problem
12 along the edges of the path, hence a trajectory. The node-disjointness constraint is needed to assure that
13 no location can be shared between two paths (see FIGURE 2).
position @ .
source @ position.f “ sink
poéiﬁen ¢ '
14 t t+1 t+2
15 FIGURE 2 Generic multiple object tracking (adapted from (76))
16 In (/6) the optimization function depended on the marginal posterior probability of the presence

17  of an object in each image, which was obtained previously during the object detection task. When the
18  extraction of object features from the detection algorithm is defective, either due to poor image quality or
19  to low ground sampling distances, feature-based optimization may produce unreal trajectories, which is a
20  known limitation that has to be addressed while extracting vehicle trajectories’ data. To overcome these
21  limitations an alternative approach using vehicle motion parameters as optimizing function is proposed.
22

23 THE PROPOSED FRAMEWORK

24 To account for different motion related criteria, the algorithm proposed by Berclaz et al. (/6) was
25  extended by integrating the use of dual graphs, based on the assumption that any driver has a motion-
26  based optimizing function, i.e., that any trajectory is subject to on a set of motion-based objectives of the
27  driver. Ideally, complex microscopic driving behavior models and Kalman-filter dynamics model may be
28  used in this optimization process using large number of variables and parameters to reconstruct
29  trajectories along with the k-shortest disjoint paths algorithm. Due to the specific nature of the current
30  application, a simpler approach was considered. In free-flow conditions, it was assumed that a driver
31  tends to reach and maintain its target speed; when relaxing the free-flow constrain, the driver tends to
32 minimize changes in acceleration. These changes are even smaller if observations are more frequent, due
33 to vehicle dynamics limitations. Regarding lateral movement, a similar approach can be formulated with
34  the inclusion of lane change tags: when the lateral acceleration (regarding the lane axis) is constant and
35  different from zero for a longer period of time, a lane change might be tagged.

36 In the next paragraphs the graph construction task is described and the k-shortest disjoint path
37  algorithm is presented.
38
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1 Graphs Construction
2 Similarly to the approach proposed by (/6), our optimization problem was expressed as a graph problem.
3 Instead of dividing the area of interest into possible locations that may or may not be occupied by a
4 vehicle, a primal graph A was built linking acceptable candidate positions already detected in the vehicle
5 detection step. However, dual graphs (/9) were constructed representing different motion relationships
6  (speeds and accelerations) between the linked positions. The dual graph of G is constructed such that each
7  of its nodes correspond to an edge of G, and each edge to two neighboring edges of G.
8
9  Primal Graph
10 The primal graph represents all connections between acceptable candidate positions in successive images.
11 This graph is constructed based on bounding limits for speed and lane connectivity.
12 Each detected vehicle position candidate i € K¢, where t € T represents the image from the full image
13 setT; and i’, a node (candidate position) in the primal graph A. For any location it, let N(i¥) c Kt*1
14 denote the possible positions of i¢ at the next observation time t + 1. To model vehicle positions over
15  time, let us consider a labeled directed graph with Y} |K¢| nodes, representing all candidate positions in
16  the full image set. Its edges correspond to admissible vehicle motions between successive image shots.
17 For it and j'*! (denoted as i and j for simplicity) to be connected with an edge e;j, its computed speed
18  should satisfy eq. (1):
o o<y, =N oy 1
— ij_Atij — Ymax ()
20

21 where X, ll and le, l € {long, lat} are the longitudinal and lateral vehicle positions relatively to the lane
22 center line for the position candidates i and j, respectively. Eq. (1) is also used to assign the longitudinal
23 edge costs cl-lj = V$-, where Vlﬁ- represents the longitudinal speed from two consecutive positions i and j.
24 A lane change tag ciljc ={0,1}, equal to 1 if lane; = lane; and 0 otherwise, can also be computed for
25  each edge e;;. Lane connectivity was only used to reduce the size of the primal graph. Its information
26  was extracted from existing geo-referenced lane axis data. Every detected position was projected to the
27  nearest lane axis and linked positions associated with unfeasible lane changing maneuvers (e.g.: different
28  directions) were filtered out.

29

30  Dual Graphs

31  After constructing the primal graph, accelerations might be computed from adjacent edge cost (speed)
32 combination. These combinations produce a new cost for each pair of adjacent edges in the graph, similar
33 to turn costs in route planning graphs. These new costs cannot be stored easily with the edges nor nodes
34  of the primal graph, but they can be attached to a linear dual graph. This can be achieved using linear dual
35  graphs, where edges in the original graph are replaced by nodes, and pairs of consecutive edges by edges
36 (19). Given a primal directed weighted graph A(N, E), the graph B (N JE ) with the following properties is
37  called its complete linear dual graph:

38 o For each edge e;; in A there is a node n;; = d(e;;) in B. d is an objective function so that
39 d_l(nl]) = eij.

40 o For each pair of consecutive edges (e;;, €y ) in A, there is an edge € in B between the
41 corresponding nodes 1;; = d(e;) and 1y, = d(ej ).

42 e A cost function f;: E — R.

43 The number of nodes in B equals the number of edges in A and the number of edges in B equals

44 the number of connected edge pairs in A.
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1 A first dual graph representing the accelerations, called B, may be obtained by performing the
2 above procedure once. A second dual graph representing variation of accelerations, called B, is obtained
3 by performing a second iteration, using the following cost transformation functions:
4 1. Acceleration Dual Graph B:
l l
Ao VTV
5 Gk = Fjk = §e, Tae )
6 ¢l =clf % ¢ 3)
7 2. Acceleration Variation Dual Graph B:
al Al _ 1 !
8 Cijlem = DQjpm = Qo — Ay 4)
9 61'11'Ckm = Ciljck X C]llgm (5)
10

11 where, i, j, k and m are the node indexes in the primal graph A. These transformations are represented in
12 FIGURE 3, where the primal graph A is represented in continuous grey lines, dual graph B by dashed
13 grey lines and the final dual graph B by bold dark nodes and edges.

--------- e
14
15 FIGURE 3 Dual graph construction
16 Additional acceleration-based criteria were used to filter out edges in the Acceleration Dual

17 Graph. Using minimum and maximum longitudinal and lateral accelerations, all edges not satisfying eq.
18 (6) were eliminated from B:

19
20 afnin < al@jk < afnax (6)
21
22 The majority of shortest path algorithms take as input a single edge cost value. To avoid the use

23 of multi criteria optimal path problem, a cost function to integrate longitudinal and lateral vehicle
24 movements must be specified. In our application, a simple linear optimizing function was considered. For
25 any edge €, (noted as b for simplicity) in the final dual graph B, its cost ¢}, was computed as:

26

27 &, = w'el + wiele (7
28

29  where c‘ll, is the value of 'c'll, normalized to [0,1] and c_}f is equal to (1 — ’c'llf). w! and w!¢ represent
30  therefore the weight of the longitudinal acceleration variation and a lane change factor. It is worth
31  mention that this simplified approach is acceptable for non-saturated motorway traffic, but does not
32 however, represent a true drivers' trajectory optimizing function valid for all traffic flow conditions. The
33 lane change factor, for example, considers that a driver tends to stay in the same lane, underestimating the
34  effect of strategical lane change in drivers' trajectory optimizing function.

35
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1 The k-Shortest Disjoint Paths Algorithm

2 After the graph construction, an extension of the k-shortest disjoint paths algorithm proposed by

3 Suurballe (/8) was used to compute the best set of trajectories. Suurballe's algorithm relies on the iterative

4  augmentation of signed paths and on a generic shortest path algorithm using modified costs. In this

5  section a short description of the extension of the Suurballe’s algorithm proposed in (6) is presented, and

6  one should refer to both articles for further details.

7

8  Interlacing path and Augmentation

9 A signed path is a sequence of sign-labeled edges connecting them in order to form a path in a directed
10 graph G, where each edge is assigned with a positive label @ or a negative label ©. An interlacing path
11 s, is aspecial type of signed path linked to a path set P;, which satisfies the following two conditions:
12 e An edge is common to both s and P, if and only if it has a negative label;
13 e A node is common to both s and P, if and only if it is on an edge with negative label.
14 Both conditions are essential to achieve both edge and node-disjointness. The augmentation of P,
15 and s may be viewed as the addition and subtraction of labelled paths, where adding positive labeled
16  edges of s to P, and removing negative labeled edges of s from P;. The augmentation process is illustrated
17  in FIGURE 4 b) e) and f) for a simple graph.

i ] | m I J m i J o m
Q O O0—0—>0—>0 —0-0—0-0—0
k k kK

18 d) Transformed graph G' e) shortest path in iteration 2 f) Final shortest path set
19 FIGURE 4 Suurballe’s algorithm general framework
20 The path set obtained in b) composed by a single path {i,j, k,m} is augmented by the path
21 {i, k,j',m} showed in e), resulting in the disjoint paths set [{i, k, m}, {i,j, m}].
22

23 Graph Transformation

24 To account for signed paths and augmentation in the original graph G, Suurballe (/8) proposed two
25  transformations to a path p on G to obtain an interlacing path equivalent s:

26 o Node splitting: to account for the above-described two conditions, the node-disjointness
27 criteria is relaxed to an arc-disjointness by node splitting: for each node i, introduce an
28 auxiliary node i’, reassign all outputs on i as outputs on i’, leave all arc lengths unchanged
29 and connect i and i’ by an auxiliary link e;; with cost ¢;;; = 0 (see FIGURE 4).

30 o Path inversion: To account for signed labeling, the direction and algebraic sign of cost for
31 each arc (and auxiliary arc) of p is inverted. This transformation represents a
32 transformation from signed paths to directed unsigned paths.
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1 The two step transformation is illustrated in FIGURE 4 for a simple path. In ¢), nodes j and k in
2 path {i,j, k,m} are split into j,j' and k, k" respectively. Finally, in d), source and sink nodes were not
3 split to allow multiple flows (paths) from these two nodes. All edges direction in path {i, j, k, m} were
4  reverted and its cost signs inverted.

5 In short, the Suurballe's algorithm (allowing negative costs) performs the following steps:

6 1. Find the shortest path p; from source to sink in G using a generic shortest path algorithm.

7 2. Split every node i in p; and reverse the direction and algebraic sign of all edges in P,

8 according to the previous section.

9 3. Find the shortest path p, in the transformed graph G using a generic shortest path algorithm.
10 Discard the reversed edges of p, from both p; and p,. The remaining edges of p; and p,
11 form a sub-graph with two edge-disjoint paths from source to sink.

12
13 Cost Transformation
14  As the number of vehicles passing in the observed area is unknown, one also needs to optimize the
15  number of paths k. Berclaz et al. (/6) formulated the general optimizing problem by establishing an
16  equivalence to the LP formulation. As discussed in their paper, the equivalence of the LP and the k-
17  shortest paths formulation by Suurballe results from assuming a convex function of the path set total cost
18  with respect to k. In fact, when assuming that path costs are monotonically increasing at each iteration n,
19  cost(p,) < cost(p,41), being p, the shortest path computed at the nt” iteration of the algorithm, the
20  total cost function for the full path set P, at iteration n, (costset(P,) = X1 cost(p,)) is convex with
21 respect to n. Therefore, the global minimum is reached when cost(p,,) changes sign and becomes non-
22 negative.
23 In our case study the following transformation of the already combined cost ¢, (see eq. 7) for the
24 acceleration variations and lane change tags was used:
25

Ca
26 cost, = log (1_6_‘1) (8)
27
28 Doing so, the cost(B,) is concave with respect to n, and sets the stopping criterion of the
29  algorithm to obtain the best Py, trajectories as:
30
31 cost (P, —1) = cost (P;) < cost (P; +1) 9)
32
33  General Framework
34  The general algorithm for vehicle tracking and trajectory extraction from the processed images is
35  summarized in FIGURE 5.
36
37 THE CASE STUDY
38  The proposed approach was used in the collection of trajectories aiming at the fine calibration of an
39  advanced micro-simulation tool for safety assessment. Vehicle positions were extracted from a sequence
40  of aerial images using advanced computer vision techniques. The pilot area layout, systems’ configuration
41  and image processing algorithms are shortly presented in this section, but the reader should refer to (23)
42 for further details.
43
44  System Configuration and Pilot Site Layout
45  Network of interest was the A44 road in the region of greater Porto, Portugal. It is a two-lane urban
46  motorway with less than Skm and 5 main interchanges. It represents one of the main south entrances for
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1 the commuters living in the south-western region of greater Porto and to heavy vehicles heading to the
2 main national port.
3

1. Construct the primal graph A.

2. Compute the dual acceleration and lane change graphs
(B., By).

3. Compute the dual acceleration variation and lane
change graphs (Ba, E"lc).

4. Compute the transformed combined cost graph (BT).

5. Iteration 1: Compute the shortest path p; on BT using
the Bellman-Ford algorithm (21, 22).

6. Iteration n:

a. compute the transformed graph B'F using
Suurballe's transformation steps (see FIGURE 4).

b. compute the shortest path p, on BT using the
Bellman-Ford algorithm.

c. compute the interlacing path s,, from p,,.

d. compute the full path set P, by augmentation of s,
onP,_;.

(:o.sz‘sef-)( Pa1) \ No

) cosstset(P,)
e. if costset(P,_,) = costset(B,) , then return P,_. Yes

(O NN

FIGURE 5 General framework

A light aircraft overflew the A44 eleven times (flight runs), between 8:45 and 10:45 AM (see
FIGURE 6). Flight characteristics were optimized considering the atmospheric conditions on-site and a
desired ground sample distance of 23cm. Images were orthorrectified using a 3D terrain model, the

9  camera and lens characteristics and the precise flight positioning data recorded through differential GPS.
10 Images were collected at an average rate of 0.5Hz, triggered by the fixed maximum image overlapping
11 rate of 90%.

12

13 Vehicle Detection

14  The vehicle detection was carried out using colored background subtraction (see FIGURE 7). The reader
15  should refer to (23) for the details on the vehicle detection algorithm:

[c BN o)

16 1. Images were locally rectified to minimize the terrain model and main orthorrectification
17 errors. Each image was divided into grids, scaled and referenced automatically using the
18 SIFT (Scale Invariant Feature Transform) method (25). The key points in successive images
19 were then matched using the RANSAC (random sample consensus) algorithm (24).

20 2. For each flight run over the A44 a colored background was constructed using the median
21 filter. A foreground of moving objects was extracted through background subtraction.

22 3. Shadows were filtered from the foreground using a spectral ratio technique and non-shadow
23 moving pixels were used in a region-based analysis to extract blobs out of connected pixels
24 and the vehicle candidate positions.

25
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4 b) Average speed in the A44 motorway (black) and on the existing (eight) loop sensors (grey)
FIGURE 6 Loop sensor data collected on-site and flight run periods
6
a) rectified image b) background ¢) foreground d) spectral ratio e) blob analysis f) position
extraction
7 FIGURE 7 Image processing steps (adapted from (23))
8

9  TRACKING RESULTS

10 In this section, we present the results of the cost function calibration and the statistics of the extracted
11 trajectories for the A44 motorway case study.
12
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1 Cost Function Calibration

2 The algorithm parameters w' and w! = (1 - wl) that represent the weights of the longitudinal

3 acceleration variation and a lane change factor in the simple driver model used in this case study need to

4 be tuned. Different combinations of weight pairs were tested against a manually reconstructed trajectory

5 set with dense traffic situations. A set of specific measures of performance (MoP) were computed for both

6  the manually extracted trajectories and those reconstructed by the proposed algorithm: mean (u), standard

7  deviation (o), skewness (y) and inter-quantile range (iqr) for speed, acceleration, headways, time-to-

8  collision, lane gaps, etc. A few examples of the obtained root mean square percentage error (RMSPE) of a

9  set of MoP are presented in TABLE 1. A description of this goodness of fit measures is presented in (20).

10

11 TABLE 1 RMSPE for different weights combination and MoP

0k = (1—oh Dete‘:‘ted Speed (%) Headway (%) Acceleration (%)
trajectories (%) U o Y iqr U o y u o Y

0.500 116 032 695 384 755 042 037 279 537 833 112
0.750 53.8 0.16 3.68 688 246 021 052 193 268 637 347
0.800 38.2 0.15 326 77.1 253 0.19 042 198 277 7.02 3.80
0.850 253 0.15 288 124 250 0.16 001 0.10 207 596 3.20
0.900 14.0 0.15 268 105 270 0.14 001 008 185 4.68 146
0.925 6.99 0.15 265 107 245 0.3 0.02 008 190 4.8 217
*0.940 0.54 0.15 2.02 10.7 1.67 0.11 0.03 0.05 134 442 4.24
0.950 6.45 025 1.18 399 0.6 045 022 305 178 185 230
0.960 12.4 022 1.18 411 077 042 050 305 155 146 237
0.975 226 026 200 440 133 045 027 299 207 400 425

12

13 The proposed method achieves very good results for higher weights of the longitudinal

14 acceleration. However, the lane change also brings a non-negligible enhancement to the estimates of the
15 mean (u), standard deviation (o), skewness (y) and inter-quantile range (iqr) of longitudinal motion-
16  based variables. ' and w'® were respectively set to 0.94 and 0.06 for the vehicle tracking of all flight
17  runs.

18

19  Tracking Results

20  With the proposed method a total of 1855 trajectories for all flight runs were successfully collected.
21  Levels of service remained between A and D, except for the weaving area in the South-North direction,
22 where levels of service F and E were observed during the first two flight runs (see FIGURE 6 and the
23 trajectory sample from flight run n®1 in FIGURE 8).

24

3625 F

3500 /./
3375 £ |/
40 45 50

25 (s)
26 FIGURE 8 Sample of vehicle trajectories extracted using the proposed algorithm for the left and right lanes
27 in the South-North direction of the A44 motorway
28 For the specific purpose of the simulator calibration, key traffic variables from smoothed (26)

29  trajectories extracted using the proposed approach were computed. In FIGURE 9, the empirical
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cumulative distribution functions (CDF) for some of these variables are presented. Speed and headway
may be approximated to a truncated normal distribution. It is worth noting that for the earliest flight run
(flight run number 1), low speed values were still collected in some sections of the A44, resulting in a
bimodal nature of its distribution (see FIGURE 9 a). Acceleration and deceleration follow a half-normal
distribution with the typical low upper and lower range values for non aggressive manoeuvres.

AN N AW~

0.8

0.6

0.4

- H 0 §/ H H H H
0 20 40 60 0 50 100 150 200 250
a) Speed (m/s) b) Headway (m)

Flight Run
—1
—2
—3

0 1 2 3 4 5 -5 -4 -3 -2 -1 0
¢) Acceleration (m/s?) d) Deceleration (m/s°)
7 FIGURE 9 CDF of motion variables for the different flights

9  CONCLUSIONS AND DISCUSSION

10 The trajectory reconstruction of independent object detection is a known difficult step in the road vehicle
11 tracking problem. Recent developments in the application of graph-based algorithms to this specific
12 problem have brought several computational and formal advantages against previous optimization
13 solutions. By extending the k-shortest disjoint path algorithm to motion based optimization, we show in
14  this paper that the integration of dual graphs in the general k-shortest path algorithm can provide a
15  formulation free of image-based patterns and characteristics, by incorporating motion dynamics in the
16  optimization problem. The proposed approach relies on the specification of a motion-based optimizing
17  function, which can be easily modelled for different traffic scenes. A simple model based on longitudinal
18  acceleration and lane change tags result in robust and fast results, even with images collected from a
19  moving observation point and with low ground sampling distances.

20 Besides the algorithm parameters, the performance of the proposed method still depends on two
21 key inputs: the vehicle detection results and the image shooting frequency. The vehicle detection used for
22 the candidate positions generation (23) still lacks for an overall performance assessment for different
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1 lighting and weather conditions, and image acquisition system configurations. The influence of different
2 image sampling rates on the optimization parameters should also be assessed in future works. Finally, it is
3 worth noting that the original specification of the Suurballe algorithm applied to dual graphs may not
4  always converge to the true optimal solution. In fact, if no dependence is created between graphs, the
5  approach allows for node-joint paths in the primal graph for the final solution as all transformations and
6  shortest path calculations are made using the dual graph. A possible solution is to use an Integer
7  Programming (LP) formulation, as proposed by Berclaz et al (2011), instead of the graph-oriented
8  formulation of Suurballe, ensuring that the constraint matrix exhibits a property known as total
9  unimodularity, but at the expense of higher computer processing time, especially under dense traffic

10 conditions. Future work will focus on additional enhancements to the proposed method to account for

11 graph dependence, on different motion-based optimization criteria and on testing the algorithm to

12 different image sets.
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