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INTRODUCTION

Agent-based microsimulation has become a mainstay in transportation and land-use planning, using an ever
growing array of large-scale modeling platforms such as MATSim (1), UrbanSim (2), SimMobility (3),
ILUTE (4, 5), and MUSSA (6). These models can inform a variety of decisions, such as policy changes
or investment structures. The underlying foundation of these models is an accurate disaggregated dataset
of individual agents for which activity-based models can be estimated from. This means that the accuracy
of the population is absolutely paramount. Unfortunately, a complete disaggregate data set of persons in
a population is not available either due to privacy constraints or costs. To resolve this problem, transport
modelers typically generate a synthetic population using available data sources, such as population samples
and census totals (7).

Over the past three decades, population synthesis for microsimulation has made many significant
advances. Much of this can be attributed to advances in computational power, but many methods have
broken off into new branches entirely, such as simulation-based synthesis (8, 9) or land-use models (10, 11).
This is due to the varying quantity and type of data available in different locations. As a result, there is no
definitive method superior in all regards, but rather an array of problem solving techniques each developed
to address a particular challenge.

This research presents a process using a combination of methods for when both aggregated and
disaggregated data are available. The data used to generate the population is from the United States (U.S.)
Census Bureau, making the framework transferable to anywhere in the United States or where similar census
data is available. The process itself is based on Iterative Proportional Fitting (IPF) of households and persons
which are reweighted using Iterative Proportional Updating (IPU) in a sparse matrix of household-person
groups. The process includes accurate integerization techniques for improved computation performance and
a multi-level region seeding technique to better address the zero cell problem. The population in this paper
is generated for the Greater Boston Metropolitan Area (GBA) of approximately 4.6-million persons and
1.7-million households.

METHODOLOGY

The synthesis framework builds on several of the methods, techniques, and approaches that have been intro-
duced thus far in the field of population synthesis. The framework can be broken into five steps:

Seeding algorithm

Iterative Proportional Fitting
Integerization

Iterative Proportional Updating
Monte Carlo Sampling

AR BN~

1. Seeding Algorithm

Creating the seed data in this population synthesis framework uses the U.S. Census Bureau’s Public Use
Microdata Sample (PUMS) (12). In order to try and capture spatial differences in the population, a seed
is created for each of the smaller census tracts by using data from a larger Public Use Microdata Areas
(PUMASs) that the census tracts are located in. However, the PUMS is roughly a five percent sample of
the population, which is likely to result in sampling zeros. This is done by first creating a seed using the
PUMA which a census tract is within (13, 14). Then if any zero cells exist they are replaced by borrowing
proportionally adjusted representatives from the entire PUMS. This method preserves structural zeros in the
microdata, but also helps retain the relative proportions of the PUMA without introducing sampling zeros.
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2. Iterative Proportional Fitting

Iterative Proportional Fitting (IPF), first introduced by Deming and Stephan (15, 16), is used to proportion-
ally fit the cells in an n-dimensional contingency table when the marginal totals are known in an iterative
process.

3. Integerization

The results of IPF typically contain many possible combinations of person or household type cells. This
creates a problem for the following step of Iterative Proportional Updating (IPU), which treats these cells as
margins, causing the computational requirements to grow enormously. Fortunately, many of the IPF zero or
near-zero cells can be eliminated before IPU begins, reducing the table size. Ye et al. (13) solved this issue
by simply rounding the IPF results, but Lovelace et al. (19) showed that this disproportionately eliminates
rare person or household types in the population (i.e. all cell frequencies of less than 0.5). The Truncate,
Replicate, and Sample (TRS) method mitigates this concern by proportionally sampling the cells using the
decimal values as weights. The TRS method achieves the original goal of eliminating excessive near-zero
cells, while mitigating the concern for preserving the population proportions as much as possible for IPU.

4. Iterative Proportional Updating

IPU is a very computational intensive step of the synthesis process. In addition to integerizion, the joint
table is transformed into a sparse data matrix containing only non-zero values, rather than storing the entire
matrix in memory. This was accomplished using the open source ‘Matrix’ package for the R programming
language (20). Furthermore, the IPU process was coded in C++, taking advantage of its inherent speed and
memory efficiency benefits.

5. Monte-Carlo Sampling

In order to synthesize a full population, households are drawn randomly from a joint sample and replicated
along with their joint person members into a synthetic population. Each census tract has a unique set of
household weights determined by the IPU for each tract. The random drawing is performed for each census
tract with n households drawn from the sample, where # is the total number of households in the tract. This
random drawing is repeatedly performed, checking each sample to the expected IPF distribution using a root
mean square error check, keeping the best fit sample.

Case Study Region: The Greater Boston Area

The study region is the Greater Boston Area as delineated by the Boston Metropolitan Planning Organization
(MPO). A synthetic population of 4.6-million individuals and 1.7-million households are generated for
the Greater Boston Area (GBA), across 960 census tracts shown in Figure 1(a) and the larger Public Use
Microdata Areas (PUMASs), shown in Figure 1(b). Geospatial information systems (GIS) shapefiles provide
the spatial geometries for the region, available from MassGIS (21) and the Boston MPO (22).
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(a) Census tracts
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FIGURE 1 Boston Metropolitan Area

(b) Public Use Microdata Areas (PUMAS)

This framework utilized five household control variables and eight person control variables, shown
in Table 1. The data for these variables are obtainable in comma separated values (CSV) file type format
from the U.S. Census Bureau (12, 17, 18). A synthesis year of 2010 was used as the data year for all tables
in order to be consistent with the most recent decennial census.

TABLE 1 Control variables

Household
Size  Vehicles Annual Dwelling Race
Income type
1 0 <$15k 1 unit Hispanic or latino
2 1 $15k-$25k  2-4 units  Black
3 2 $25k-$35k  5-19 units Native American
>4 3 $35k-$50k  >20 units Asian
>4 $50k-$75k Pacific islander
$75k-$100k White
$100k-$150k Multi
>$150 Other
Person
Sex Age Work hours  School Relationship Travel time Industry Occupation
enrollment (mins)
Male 0-9 0 Yes Head 0 None None
Female 10-14  1-34 No Spouse 1- 14 Nat. res. extraction ~Mgmnt./business/science/arts
15-19 >34 Child 15-34 Trans. and Utilities ~ Sales/office/admin.
20-24 Relative 45-59 Construction Nat. res./const. maint.
25-44 Nonrelative >59 Manufacturing Production/trans.
45-54 Wholesale trade Service
55-64 Retail trade
>65 Information
Finance/real estate
Prof./science/mgmnt.

Educ./social work
Arts/accommodation
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FINDINGS

The synthetic population is validated at two levels, at the marginal and microdata level using the Normalized
Root Mean Square Error (NRMSE). NRMSE is a common measure used in population synthesis and is es-
sentially a simple Root Mean Square Error (RMSE) that is normalized by the mean expected value. NRMSE
results that are below 1.0 are considered satisfactory and 0 is perfect. The purpose of normalizing RMSE
is that the error can grow very large in situations where there are many values being compared. Overall,
the synthetic population achieved excellent results at the marginal level, but error was high at the microdata
level, shown in Table 2 and Figure 2.
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TABLE 2 Validation results

Comparison R>  Slope NRMSE

Marginal regional totals 0.98 090 0.27

Marginal tract totals 092 086 047

Microdata Household types 0.43  0.26  6.61

Microdata Person types 0.69 0.64 6.79
CONCLUSIONS

The proposed population synthesis framework utilizes both established methods, such as Iterative Propori-
tonal Fitting and Monte-Carlo sampling, with the newer innovative methods of Truncate, Replicate, Sample
and Iterative Proportional Updating. The proposed process begins by generating IPF seeds using a pro-
portionally adjusted seed algorithm, reducing the risk of losing structural zeros or the risk of introducing
sampling zeros. The IPF results are then preprocessed for IPU by using TRS to integerize the fitted results.
This dramatically reduces memory requirements for IPU, rather than conventional approaches of limiting
the number of variables synthesized or crudely rounding IPF results. The combined approach allows for
population synthesis with many variables, while minimizing loss of accuracy, with computation for the
entire process of under two hours (1.9-hours).

Although there is room for improvement, the overall population synthesis framework was able to
achieve accurate results, maintain relatively low computational time and resources, and incorporate popu-
lation variables at or above typical numbers. The framework is also easily transferable to anywhere within
the United States or other locations where similar data are available. The next steps are to integrate origin-
destination distribution directly into syntheses and to improve the joint re-weighting step of IPU with a
computationally more efficient method.
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