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ABSTRACT 1 

This paper presents a utility-maximizing approach to agent-based modeling with an application to the 2 
Greater Boston Area (GBA). It leverages day activity schedules (DAS) to create a framework for 3 
representing travel demand in an individual's day. DAS are composed of a sequence of stops that make up 4 
home-based tours with activity purposes, intermediate stops, and subtours. The framework introduced in 5 
this paper includes three levels: (1) the Day Pattern Level, which determines if an individual will travel 6 
and, if so, what types of primary activities and intermediate stops they will do; (2) the Tour Level, which 7 
models the mode, destination, and time-of-day of the different primary activities; and (3) the Intermediate 8 
Stop Level, which generates intermediate stops. The models are estimated for the GBA using the 2010 9 
Massachusetts Travel Survey (MTS). They are then implemented in SimMobility, the agent-based, activity-10 
based, multimodal simulator. It run in a microsimulation using a Synthetic Population. Produced results are 11 
consistent with the MTS. Compared to similar activity-based approaches, the proposed framework allows 12 
for more flexibility in modeling a wide range of activity and travel patterns. 13 
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1. INTRODUCTION 1 

Transportation modeling has played a key role in how planners and politicians make decisions for transport 2 
networks and cities. With the increase in available data, the complexity of the designed interventions is 3 
growing. To complement and inform these decisions, transportation models must develop to reflect the 4 
multidimensional scope of the impact of such interventions and the individualized responses to them. 5 
Activity-based models, such as the one presented in this paper, model travelers’ behaviors as a sequence of 6 
trips originating and ending at home, known as a tour. In addition, many agent-based modeling (ABM) 7 
approaches leverage personalized daily schedules for each individual to represent their behavior throughout 8 
a day. The generated day activity schedules (DAS) are composed of a sequence of activities, classified as 9 
primary activities, intermediate stops, and subtours. In turn, they are used to extract aggregate demand 10 
metrics and to simulate travel behavior. By using a variation of the DAS (1) approach—a sequence of 11 
discrete choice models following utility maximization—we implement a framework that models different 12 
travel patterns and can model impacts of behavioral interventions. 13 

In the applications of activity-based travel demand models, Rasouli and Timmermans (2) identified 14 
three different approaches: (1) constraints-based models, (2) utility-maximizing models, and more recently, 15 
(3) computational process models. These three approaches mainly differ in the way individual and 16 
household activity travel patterns are modeled. 17 

 Constraints-based models are the earliest type of activity-based models. They are only designed to 18 
check whether any given activity programme is feasible given spatial and temporal constraints rather than 19 
to predict travel patterns. The constraints in these models originate from Hägerstrand’s (3) formulation of 20 
“time geography,” which classifies these constraints into three categories: capability constraints, coupling 21 
constraints, and authority constraints. Besides not being able to predict activity travel patterns, these models 22 
suffer from major limitations, including the unrealistic assumption of isotropic conditions (4), and more 23 
importantly, their inability to deal with uncertainty as well as spatial and temporal variability.  24 

On the other hand, utility-maximizing models utilize econometric models—mainly discrete choice 25 
models—in order to model household and individual’s travel. In the earlier applications of these models, 26 
Adler and Ben-Akiva (5) and Recker and McNally (6,7) proposed a multinomial logit (MNL) model to 27 
represent an individual’s choice of the optimal travel pattern, defined in terms of the tours traveled on a 28 
given day and the number of stops made within each tour.  29 

This approach was further developed by Ben-Akiva and Bowman (1,8,9,10,11,12) who proposed 30 
the daily activity schedule model.  It utilizes nested logit (NL) models to represent different travel choices 31 
as a multidimensional choice with shared unobserved elements. The topmost choice within this approach 32 
is an activity pattern choice, in which the primary activity, the primary tour type, and the number and 33 
purpose of secondary tours are modeled. The number of secondary tours is restricted between zero, one, or 34 
two or more tours. Lower levels—which are conditional on the activity pattern choice—include time-of-35 
day choice for the primary tour, mode and destination choice for the primary tour, time-of-day choice for 36 
the secondary tours, and mode and destination choice for the secondary tours. This approach also has a 37 
coarse representation of tour time-of-day decisions, which is limited to sixteen alternatives representing 38 
different combinations of four time periods: AM peak, midday, PM peak, and other. DaySim, the extension 39 
to this model implemented in Sacramento, allows for greater variability by estimating tour types and 40 
numbers separately (13).  41 

The Prism-Constrained Activity-Travel Simulator (PCATS) (14) is another utility-based model 42 
which utilizes Hägerstrand’s time-space prisms. It divides the day into blocked periods in which individuals 43 
are engage in fixed activities at specific times and locations. A two-tier nested logit model is used for open 44 
periods, whereby individuals first choose between an “in-home activity,” an “activity at or near the location 45 
of the next fixed activity,” and a “general out-of-home activity.” Similarly, mode and destination choice 46 
models and activity duration models are used to develop the full patterns. 47 

A similar approach is adopted by Bhat, et al. (15) in the Comprehensive Econometric Micro-48 
simulator for Daily Activity-travel Patterns (CEMDAP), which divides the population into workers and 49 
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non-workers. The activity patterns of workers are divided into five periods with regards to work while the 1 
patterns for non-workers consists of a sequence of home-based tours. The simulator uses a generation-2 
allocation model to determine activity participation which includes (1) work and school activities, (2) 3 
children’s travel needs, and (3) independent activities for personal and household needs. Afterwards, a 4 
scheduling model is applied to determine the sequencing of the activities produced by the generation-5 
allocation model. 6 

The Comprehensive Utility-based System of Travel Options Modelling (CUSTOM) (16) has 7 
recently been developed as an approach that considers time budgets for activity scheduling. In the prototype 8 
application, trips purpose, mode, location, and time allocation decisions are made sequentially for workers. 9 
After each activity, an individual decides to either go home permanently, go home temporarily, or perform 10 
another activity. 11 

A number of activity-based approaches have also been implemented in different regions of North 12 
America. Coordinated Travel-Regional Activity Modeling Platform (CT-RAMP) (17), differentiates 13 
between non-mandatory and mandatory activities, such as work and education. It determines the frequency 14 
of mandatory tours and schedules those, and then uses the remaining time to schedule additional tours. 15 
TASHA (18). active in the Greater Toronto-Hamilton Area, generates individual projects for each 16 
individual including a start time and duration. It schedules household member’s days by adjusting the 17 
predetermined start times. 18 

More recently, computational process models have been utilized in developing heuristics that 19 
represent activity and travel patterns. Some examples of these applications are SCHEDULER (19), AMOS 20 
(20,21), and ALBATROSS (22,23,24). On the other hand, MATSIM (25) draws agents’ activity chains 21 
conditional on their socio-demographics from the observed distribution in the population. ActivitySim, the 22 
open-source agent-based simulator developed by Los Alamos National Laboratory, uses optimization to 23 
choose the best schedule at any point based on utilities, priority functions, and location functions (26). Other 24 
models assume a planning horizon and scheduled and unscheduled trips to be generated, such as ADAPTS 25 
(27). However, most of these models lack behavioral interpretability compared to utility-maximizing 26 
models. For a detailed description of these three approaches, we refer the reader to Rasouli and 27 
Timmermans (2). 28 

Even though utility-based approaches—particularly the DAS approach—allow for high flexibility 29 
in modeling travel patterns, their applications were sometimes restrictive. For example, the approach in 30 
Ben-Akiva and Bowman (1) did not account for all possible activity patterns; only a finite set of predefined 31 
patterns was considered, such as home-work-home (hwh), home-other-home (hoh), etc. Later applications 32 
of the model in DaySim utilize a similar approach to this paper. CEMDAP (15), on the other hand, divides 33 
worker’s time periods in (1) before work, (2) the to-work commute, (3) during work, (4) from work, and 34 
the (5) after work, imposing scheduling behavioral assumptions in how an individual’s pattern is built.  In 35 
addition, these approaches suffered from a tradeoff between the computational complexity of the model 36 
and its ability to model a wider range of activity patterns.  37 

The remainder of this paper is structured as follows: Section 2 presents the modeling framework 38 
used and explains its different components. An application of this framework to the Greater Boston Area 39 
(GBA) and the illustration of how this framework was implemented in the activity-based simulator: 40 
SimMobility (28) is presented in Section 3. Section 4 presents the estimated significant variables for key 41 
models and model groups and simulation results. Finally, Section 5 presents the limitations and future 42 
extensions and concludes the paper. 43 

2. MODEL FRAMEWORK 44 

2.1 Model Overview 45 

The activity-based modeling framework presented was proposed by Siyu (29) for Singapore. The 46 
framework leverages utility-maximization to create a complex variety of DAS. It is built with a 47 
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sequence of discrete choice models, which are functions of different personal characteristics and 1 
network parameters.  2 

The framework for each individual's day schedule is divided into three sections: (1) the 3 
Day Pattern Level, (2) the Tour Level, and (3) the Intermediate Stop Level. Each of these levels is 4 
conditional on the ones above and they are modeled as a sequence of discrete choice models, linked 5 
via inclusive values. 6 

The Day Pattern Level determines if the individual will make tours, what activity purposes 7 
those tours will have, and what types of intermediate stops those tours may contain. Furthermore, 8 
it determines how many tours of each chosen tour purpose an individual will execute. 9 

The Tour Level is then performed for each chosen tour. It determines the mode, the 10 
destination, and the start and end time of each activity. For work tours, a work-based subtour—11 
originating and ending at work during the allocated duration of the work activity—may be 12 
modeled. The mode, destination, and time-of-day of those subtours are modeled as well.  13 

Finally, the Intermediate Stop Level generates stops for trips to and from the primary 14 
activity. Each intermediate stop has a purpose, a mode, a destination, and a time-of-day.  15 

Inclusive values from lower models are included in higher models to represent the nested 16 
nature of the decision-making process, in which higher level decisions are affected by the expected 17 
utilities of lower level ones. The general framework presented above is summarized in Figure 1. 18 
All models are further discussed and can be estimated using travel diaries with individual and 19 
household characteristics.  20 

The output of the sequence of models is a DAS, which includes a sequence of stops that 21 
make up tours. Each tour has a primary activity and every stop has an arrival time, departure time, 22 
purpose, and mode taken to it. 23 

 24 
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 1 
FIGURE 1 Model framework schematic. 2 

2.2 Model Components 3 

This section explains each of the models presented in Figure 1 in detail: their structure, inputs, and 4 
outputs. 5 

2.2.1 Day Pattern Level 6 

Day Pattern Travel 7 

The Day Pattern Travel model determines if the individual makes any tours in a given day. The 8 
model takes the form of a binary logit (BL), where the choices are either to travel and to stay at 9 
home. It takes personal characteristics of the individual and the inclusive value of the Day Pattern 10 
Tours model, explained next, as inputs. A decision to travel will lead to Day Pattern Tours model. 11 
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Day Pattern Tours 1 

The Day Pattern Tours model determines which activity purpose(s) the individual will pursue as 2 
their primary purpose(s) of the tour(s) they make. The model is a MNL where the choice set 3 
includes a combination of each the available activity purposes. The limit on the number of activity 4 
purposes in the combinations is empirically determined. Each choice's utility includes pattern-5 
specific parameters, such as purpose-specific constants; individual-specific parameters, such as 6 
socio-demographics; and inclusive values from the tour-level models of each activity type. 7 
Furthermore, the formulation includes purpose-interaction parameters, which capture the added 8 
utility of performing two or more purposes in combination. Work tours are only available for 9 
individuals who are employed and education tours are only available for individuals who are 10 
enrolled in an educational institution.  11 

Day Pattern Stops 12 

Similar to the Day Pattern Tours model, the Day Patten Stops models the choice between the 13 
allowed combination of purposes, yet for for stops performed before or after the primary activity 14 
of the tour. It includes the same variables as the Day Pattern Tours model, excluding the inclusive 15 
values. The availabilities are also determined in the same manner.  The output of the Day Pattern 16 
Stops model is used to determine the availability of stops in the Intermediate Stop Generation 17 
Model, explained in Section 2.2.3. 18 

Number of Tours 19 

Using the output of the Day Pattern Tours model, the Number of Tours is then determined for each 20 
of the selected tour purposes. The models are either BL—if the choice is in between one or two 21 
tours—or MNL if the choice includes more tours. The number of tours in the choice set for each 22 
purpose is determined from the data. Variables in the model include individual characteristics and 23 
inclusive values from tour-level models. 24 

2.2.2 Tour Level 25 

Each of the tours, determined after the Number of Tours model, is processed through the Tour 26 
Level and then the Intermediate Stop Level. 27 

Usual Work 28 

The Usual Work model is performed for work tours only. It determines whether or not the 29 
individual is going to their usual work location. The decision is thus modeled as a BL. The model 30 
includes individual characteristics as well as the inclusive value of either the Mode model or the 31 
Mode and Destination model for work. If the usual location is chosen, then the Mode is modeled; 32 
otherwise, the Mode and Destination model is used. 33 

Tour Mode 34 

The Tour Mode models determine the mode for work tours with a usual location and any other 35 
tours which have fixed locations, such as education. The mode choice is modeled as a MNL (or 36 
NL) with the choice between the available mode alternatives. This structure allows for the 37 
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inclusion of new modes, such as on-demand mobility. The models include individual parameters 1 
as well as travel time and cost. Alternative availabilities are determined based on distance 2 
thresholds for walking and biking, transit availability between different origin-destination pairs, 3 
and household characteristics, such as owning a car or bicycle. The usual location of the tour is 4 
determined in the synthetic population, such as a worker’s work location or a student’s school 5 
location. 6 

Tour Mode and Destination 7 

Mode and destination are modeled jointly for any tour that has a non-fixed destination. The final 8 
choice set includes all combinations of modes and destinations. Destinations are usually the traffic 9 
analysis zones (TAZ) in the modeled region. The model includes travel times and costs for each 10 
mode when relevant. For each possible destination, size variables, such as area, employment, 11 
population, and central business district (CBD) dummy, are included. They are incorporated using 12 
the aggregate spatial method outlined by Ben-Akiva and Watanatada (30). The model is estimated 13 
as a MNL or NL, where the order of nesting is determined empirically. 14 

Tour Time-of-Day 15 

Once the tour destination and mode are chosen, the Tour Time-of-Day models determine the start 16 
time and end time of the primary activity. The continuous 24-hour day is discretized into 48 half-17 
hour segments. The full choice set includes all of the possible combinations of start and end times, 18 
leading to 1,176 alternatives. The alternative specific constants follow a continuous and cyclical 19 
form outlined by Ben-Akiva and Abou-Zeid (31) using a trigonometric utility functional form. 20 
Activity duration, travel times, and travel costs are also included. If there is no available time, the 21 
tour is removed. The number and duration of the time of day segments can be varied both in the 22 
simulation and in the model estimation in order to achieve accurate results. Ben-Akiva and Abou-23 
Zeid, for example, use 35 time intervals consisting of half-hours in peak periods and longer 24 
intervals in off-peak periods. For simulation, departure times are randomly generated within the 25 
30-minute interval selected. Logsums from the Tour Time-of-Day model can be included in the 26 
Tour Mode and Destination Model to capture the nested structure of the choice. 27 

Work-based Subtour Generation 28 

Subtours may be generated for work tours. The Work-based Subtour Generation is modeled as a 29 
quit/no-quit BL. While the individual chooses to not quit, they continue to schedule subtours. 30 
Individual characteristics and the tour mode are parameters in the model. 31 

Work-based Subtour Mode and Destination 32 

The Work-based Subtour Mode and Destination is modeled in the same manner as the primary 33 
activity Mode and Destination model. The modes, however, are limited based on the hierarchy 34 
described by Siyu (29), dictated by the work tour mode. In this hierarchy, an individual can only 35 
take the mode of their tour or others more readily available. Therefore, a person may not, for 36 
example, take a personal vehicle if they did not drive to work.  37 
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Work-based Subtour Time-of-Day 1 

The Work-based Subtour Time-of-Day is modeled in the same manner as the Tour Time-of-Day. 2 
However, the availabilities of alternatives are determined by the duration of the primary work 3 
activity. 4 

2.2.3 Intermediate Stop Level 5 

In the Intermediate Stop Level, tours are divided into the inbound and outbound parts—before and 6 
after arriving at the primary activity respectively—and each of these parts is processed separately. 7 

Intermediate Stop Generation 8 

The Intermediate Stop Generation model is a NL quit/no-quit model, whereby a no-quit choice 9 
results in a new intermediate stop. While one of the nests includes only the quit option, the other 10 
includes the other activity purposes. Individual characteristics, tour purpose, and remaining time 11 
window—determined based on the start or end time of the primary activity, and preceding or 12 
successive stops—are included as variables in the model. Availability of stop purposes is 13 
determined based on the outputs of the Day Pattern Stops model. Stops are scheduled sequentially. 14 

Intermediate Stop Mode and Destination 15 

The Intermediate Stop Mode and Destination is modeled like the Tour Mode and Destination. For 16 
inbound and outbound stops, the travel time and travel cost being considered are those between 17 
the planned stop and the one succeeding or preceding it respectively. The mode availability follows 18 
the same hierarchy as that described in the Work-based Subtour Mode and Destination model.  19 

Intermediate Stop Time-of-Day 20 

Unlike the tour and subtour activities, intermediate stops are bound by adjacent activity start and 21 
end times. Therefore, their choice set is constructed out of the 48 half-hour time periods. The 22 
Intermediate Stop Time-of-Day still has the trigonometric functional forms, but are interacted for 23 
the different stop purposes. Travel time and travel cost are also included. The model is MNL and 24 
alternatives are defined similar to the window for generation. 25 

3. ESTIMATION AND SIMULATION IN THE GREATER BOSTON AREA 26 

The modeling framework defined above is applied to the GBA. The region has a population of 4.5 27 
million individuals within 1.6 million households. Data from the 2010 Massachusetts Travel 28 
Survey (MTS) (32) and skim matrices for car and transit travel times and costs, provided by 29 
Boston's Central Transportation Planning Staff (CTPS), are used to estimate the models. The MTS 30 
includes activity diaries for 33,000 individuals belonging to 15,000 households. The data was 31 
collected between June 2010 and November 2011. Individuals were asked to fill out all activities 32 
they performed in a designated weekday (24 hours, Monday to Friday) in chronological order, and 33 
to provide the activity location, the transport mode used to arrive at this location, the arrival and 34 
departure times, and accompanying household or non-household members. The survey also 35 
collected individual and household characteristics for participants. 36 
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Estimation for the models was done using PythonBiogeme (33). It was performed in two phases. 1 
First, all models were estimated using only the processed MTS and CTPS data. Before the second 2 
round of estimation, inclusive values from the lower level models were calculated. Models that 3 
included these were re-estimated in the second round. This estimation procedure allowed for 4 
partial simulation of the topmost levels to determine performance before continuing to lower 5 
levels. 6 

3.1 Data Preparation 7 

3.1.1 Tours, Subtours, and Intermediate Stops 8 

MTS trip diaries were processed in order to identify tours, subtours, and intermediate stops. 9 
Activities in the MTS are classified into work, education, shopping, personal, recreation, or escort 10 
activities. The tour primary activity is determined based on the following hierarchy: (1) work, (2) 11 
education, (3) personal activities, (4) shopping, (5) recreation, and (6) escort. For full-time 12 
students, education is prioritized over work. If a tour includes two or more highest-priority 13 
activities of the same type, the primary activity is the one with the longest duration. All other 14 
activities within the tour are classified as intermediate stops. Work-based subtours are defined as 15 
trip chains starting and ending at the work location. Work activities before and after subtours are 16 
merged and considered as a single activity.  17 

3.1.2 Day Patterns Models 18 

Sixty-four activity patterns can be defined with the possible combinations of the six activity 19 
purposes. For example, a possible activity pattern is “work, recreation, and shopping”. After 20 
examining the MTS data, it was concluded that most individuals participated in at most four 21 
different primary activity purposes in a day, reducing the number of possible activity patterns from 22 
64 to 56. Similarly, 56 activity patterns are identified from the data for intermediate stops, 23 
representing the different combinations of activities an individual engages in during the stops. For 24 
each individual, the number of tours for each activity type is determined. It was observed from the 25 
MTS data that individuals perform at most two tours per activity type per day—except for 26 
recreational tours, for which the maximum was three. 27 

3.1.3 Tour Mode and Mode Destination Models 28 

The tour mode is determined based on a hierarchy similar to that defined by Siyu (29): public 29 
transit, carpooling, driving alone, on-demand modes, motorcycle, biking and bike-sharing, and 30 
walking. Trips and tours with rare modes (e.g. ambulance, boat, airplane, etc.) are excluded. 31 
Walking, biking, driving alone, carpooling with two people, carpooling with three or more people, 32 
and public transit were empirically chosen as the available travel modes. 33 

In the Mode and Mode and Destination choice models, walk and bike availability are 34 
determined based on the maximum walking and biking distances observed in the MTS: 5 miles 35 
and 15 miles respectively. Biking is available only for individuals whose households own at least 36 
one bike. Driving alone is available only for individuals who have a driver's license and at least 37 
one car in their household. Public transit availability is obtained from the CTPS skim matrices. 38 
Carpooling is assumed to be available to all individuals.  39 
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3.1.4 Time-of-Day Models 1 

In Time-of-Day models, time availabilities are assigned in the order of activity priority. For 2 
example, a primary work activity is scheduled first, and all possible arrival and departure times 3 
are available for that activity. The second most important primary activity has all the times 4 
available, except those that are occupied by the primary work activity, and so on. Time availability 5 
for intermediate stops and work-based subtours are defined as specified in the framework (Section 6 
2). 7 

3.2 Simulation Implementation 8 

The models estimated in this project follow the structure designated by Siyu (29) for integration 9 
into SimMobility. The software includes a Long-term Level, which deals with vehicle ownership 10 
and land-use; a Mid-term Level, which deals with daily travel patterns; and a Short-term Level, 11 
which is a microscopic traffic simulator (28).  12 

The Mid-term Level of SimMobility is composed of three components: Pre-day, Within-13 
day, and Supply (34). The Pre-day, which is presented in this paper, provides the initial demand 14 
for the simulator. The Supply Simulator contains the road and transit network and the capacities 15 
for each mode. It is interacted with the Within-day, which contains models that allow users to 16 
change their define their route and change their mode according to real-time network conditions, 17 
accounting for mode choice as a function of a set departure time.  18 

Developed in C++, the simulator leverages performance improvements by relying on 19 
parallel processing and distributed computing. The lightweight, embeddable scripting language 20 
Lua is used to implement the above specifications (35). Implementation in Lua, combined with 21 
model framework’s treatment of activity purposes, allows for easy addition of new modes and 22 
purposes. Furthermore, it makes implementing estimated models for different cities 23 
straightforward.  24 

3.4.1 Synthetic Population 25 

As an agent-based simulator, SimMobility requires detailed individual information as an input. 26 
Fournier and Christofa (36) describe the process through which the synthetic population is 27 
generated. A number of sources are used to produce and validate the synthesis: 28 

1. Decennial data from the U.S. Census Bureau (2010) 29 
2. 5-year American Community Survey (2010) 30 
3. Massachusetts Travel Survey (2010) 31 
4. Public Use Microdata Samples (PUMS; 2011) 32 

While the census data (1 and 2) are aggregated totals, the PUMS and MTS data are 33 
disaggregated samples. A variety of methods were also used to generate the Synthetic Population, 34 
including different seeding approaches, iterative proportional fitting, integerization, iterative 35 
proportional updating, and Monte Carlo sampling. The developed synthetic population includes 36 
1.7 million households with over 4.5 million individuals, which are inputs to SimMobility. 37 
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4. ESTIMATION AND SIMULATION RESULTS 1 

4.1 Estimation Results 2 

Twenty-nine models are estimated for the GBA implementation. The significant values for the key 3 
models and model groups are discussed in this sub-section. For the Day Pattern Travel model, age, 4 
gender, education and employment, and inclusive values were significant. For the Day Pattern 5 
Tours and Day Pattern Stops models, in addition to the aforementioned variables, owning a transit 6 
pass, having a drivers’ license, income, and purpose-interaction terms were also significant. In the 7 
majority of the Number of Tours models, the purpose-specific inclusive value of was significant. 8 
For the Mode and Mode-Destination models, travel time and costs, as well as zone-specific 9 
population, area, and employment tended to be significant. While each Time-of-Day model had a 10 
different number of trigonometric components, travel time and cost were significant. Finally, for 11 
Intermediate Stop Generation, the remaining time window in the day, combined with how many 12 
stops were already performed for that half-tour, was significant. The tour purpose was also 13 
significant. For full estimation results, model specifications, and Lua implementation files, please 14 
refer to the GitHub repository (37). 15 

4.2 Simulation Results 16 

The value of the ABM approach is twofold: it can be used to get aggregate metrics of the demand 17 
and to simulate demand on a network. While the latter is outside of the scope of this paper, the 18 
former is presented below. For all figures, simulated results to the MTS are compared.  19 

The simulation was done in two phases. The calculation of the inclusive values for all 20 
individuals was done on 20 cores within 21 hours and the simulation of the DAS itself was done 21 
on 20 cores in 23 hours. 5,096,606 tours and 10,548,458 stops—including primary activities, 22 
subtours, and intermediate stops—were simulated for 4,142,068 people, of which 720,924 did not 23 
travel. Note that, since SimMobility allows for parallelization and distributed processing, the run-24 
time can be improved significantly by allocating more cores, or by using High Performance 25 
Computing (HPC).  26 

Figure 2 (a) shows the split of the tour purposes. The models are overall consistent with 27 
the MTS. While work is slightly overestimated, personal, recreation, and escort are slightly 28 
underestimated. Education, however, is overestimated by 5%. This can be explained by the 29 
underrepresentation of students in the MTS. Of the existing students in the MTS, 90.8% do at least 30 
one education tour in a day. Therefore, the Synthetic Population leads to more education tours. 31 

Similarly, Figure 2 (b) shows the comparison between the modal split of the MTS and the 32 
simulated DAS. Overall, the framework properly models the tour modes. Driving alone is 33 
underestimated by 5% while two-person carpool and three or more-person carpool are both 34 
overestimated by only 1%. Public transit was as prevalent in the DAS as in the MTS. 10% of the 35 
simulated tours have walking as the primary mode, while only 7% of the tours in the MTS are 36 
walking tours. Biking, although selected for 1449 tours, it is underestimated. The differing mode 37 
share is a result of the differing purpose share: since each tour purpose has its own mode (or mode 38 
and destination) choice model, the produced modal splits are different. 39 

 40 
 41 
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 1 
FIGURE 2 Tours by (a) purpose, (b) mode, and  2 

(c) number of tours per person per mode. 3 
 4 
Figure 2 (c) displays how many trips of a given purpose each individual performs. It shows that 5 
the Synthetic Population and models, despite reproducing modal trends well, are slightly 6 
underrepresenting work, shop, and recreational tours. More importantly, it shows that traveling is 7 
underrepresented. This corresponds to the difference of 1.12 tours per capita in the simulation, 8 
versus 1.21 tours per capita observed in the MTS.  9 
 10 
Figure 3 shows the times at which people travel to and from their primary activity. The temporal 11 
peaks for work and education are clearly visible in both the simulation and the MTS. It has been 12 
broken down by activity purpose. As mentioned, education is higher in the simulated results 13 
because of the underrepresentation of students in the MTS. It is also noticeable that, as a 14 
consequence of the hierarchy of tour purposes for simulation, lower tours are being pushed to later 15 
in the day, such as recreation and escort. 16 
 17 
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 1 
 2 
 3 

FIGURE 3 Tours by time-of-day for (a) work, (b) education,  4 
(c) personal, (d) recreation, (e) shop, and (f) escort. 5 

 6 
Finally, Figure 4 shows the special distribution of the tour destinations. As expected, the CBD—located at 7 
the center of the figure—has the highest tour density.  8 
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 1 
FIGURE 4 Tour destinations per TAZ 2 

Overall, the framework and the Synthetic Population successfully replicate the major trends in travel 3 
demand in the GBA. 4 

5. CONCLUSION AND DISCUSSION 5 

This paper presents an application of an updated approach for modeling activity patterns in an 6 
activity-based, agent-based simulator. Compared to the existing approaches, this framework 7 
allows for more flexibility in representing different day patterns. In line with the DaySim 8 
modifications to the Bowman structure, the proposed structure allows for a larger set of 9 
combinations of different tour purposes and numbers of tours. By including the interaction terms 10 
at the Day Pattern Level in the Day Pattern Tours and Day Pattern Stops models, the model 11 
captures the added utility of performing different activities in combination—a behavioral trait 12 
often ignored. This is further enforced in the Intermediate Stop Generation model, which takes in 13 
the primary purpose as one of the inputs.  14 

Furthermore, the inclusion of the trigonometric functional forms in the Time-of-Day 15 
models allows for smoother scheduling of activities. This method was chosen over the use of 16 
multiple discrete-continuous models, which would have been combined with the Day Pattern Level 17 
as generation models. This Time-of-Day formulation can account for time periods where travel 18 
data is not available, and can be modified to model time periods of unequal length. More 19 
importantly, the structure captures the cyclical properties of time preferences (31). The current 20 
framework allows for the effective implementation of interaction terms between tour purposes to 21 
create diversified activity patterns and for the consideration of the time-of-day dependence of the 22 
value of an activity duration. 23 

 However, there are a number of improvements that can be made to this application. First 24 
of all, the data used in this paper were collected in 2010-2011, and thus are relatively old. Vehicle 25 
ownership, as well as modal shares in MTS are different from those observed today due to the 26 
pervasiveness of on-demand services, such as Uber, Lyft, ZipCar, etc. Additionally, the MTS lacks 27 
information on weekend travel and under samples university students, even though they represent 28 
a significant fraction of the GBA population. 29 



Viegas de Lima, Danaf, de Azevedo, Akkinepally, and Ben-Akiva 
 

16 

To correct for all of these data limitations, a data collection effort is planned in the GBA. 1 
During the data collection, 500 subjects are expected to validate their trips for multiple weeks and 2 
fill out the stated preference surveys (SP) using the Future Mobility Sensing (FMS) app-based 3 
survey platform (38). Subjects will install FMS and fill out a pre-survey, daily validation surveys, 4 
and daily SP surveys for three consecutive weeks. 5 

Undergoing research is focusing on calibrating the DAS models using traffic counts. In 6 
addition, a Within-day framework is developed in order to represent how agents change their Pre-7 
day DAS as the simulation advances due to network changes, delays, and unforeseen events. This 8 
framework currently includes route-choice and mode-choice models, which account for the 9 
potentially incorrect behavioral assumption that individuals choose their activity mode and 10 
destination before the start and end time. These models are being extended to account for re-11 
scheduling activities and re-planning the rest of the day. Currently, the Within-day framework is 12 
also useful to model the effect of real-time information (e.g. travel advisors) and incidents. 13 

In this framework, escort activities are modeled separately without accounting for any 14 
household interactions. These activities are supposed to capture pick-ups, drop-offs, and trips that 15 
are performed to accompany someone. Undergoing research is focusing on modeling social 16 
interactions particularly through joint household activities. A household DAS framework to be 17 
integrated into the Day Pattern Level is being proposed. The sequential models in this framework 18 
represent whether or not the household will have any joint activities during the day, what types of 19 
activities, the number of tours associated with each of these activities, which household members 20 
are participating in these tours, and whether or not the participating members travel together (e.g. 21 
carpooling). The output of the joint household models will then feed into the individual Day Pattern 22 
Level models.  23 

Overall, the presented and implemented model benefits from its framework and 24 
implementation environment. The model allows for complex activity patterns and activity purpose 25 
interaction, and takes into account the time-dependence of the value of duration. The simulation 26 
software it is implemented in, SimMobility, is streamlined with Lua files, which allow for the 27 
facilitated addition of new purposes and modes. 28 

  29 
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