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ABSTRACT 31 

 32 

Traffic microscopic simulation applications are currently a common tool in road system analysis 33 

and several application attempts to safety performance assessment have been recently carried out. 34 

However, current approaches still ignore causal relationships between different levels of vehicle 35 

interactions or/and accident types, lacking a physical representation of the accident phenomena itself. In 36 

this paper, a new generic probabilistic safety assessment framework for traffic microscopic simulation 37 

tools is proposed. The probability of a specific accident occurrence is assumed to be estimable by an 38 

accident propensity function, consisting in a deterministic safety score component and a random 39 

component. The formulation of the safety score component may be specified as dependent on the type of 40 

occurrence, detailed vehicle interactions and maneuvers, and on selected key simulation modelling 41 

features. This generic model was applied to the case of urban motorways and specified to four types of 42 

events: non-accident events and three types of accidents in a nested logit structure: rear-end and lane-43 

changing conflicts, and run-off-road events. 44 

As there is still no available large disaggregated data set linking trajectories to accident 45 

occurrence, artificial trajectories from a detailed calibrated microscopic simulation tool were used. These 46 

trajectories were obtained following a comprehensive calibration effort: extracting trajectories for a 47 

generic scenario, calibration of the simulation tool using the collected trajectories, and re-calibration of 48 

the simulation model using aggregate data for each event selected for replication and used in the safety 49 

model estimation phase. 50 

The final estimated safety model allowed for the identification and interpretation of several 51 

simulated vehicle interactions at stake. The fact that these considerations were extracted from simulated 52 

analysis shows the real potential of well (detailed) calibrated traffic microscopic simulation for detailed 53 

safety assessments and their potential as a lay-out design tool. 54 

 55 

 56 

 57 

KEYWORDS 58 

 59 
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1 INTRODUCTION 63 

Traffic microscopic simulation applications are currently becoming a common tool in both the 64 

transportation practitioners and researchers communities. The original purpose for developing such tools 65 

was network efficiency assessment. The need for simultaneously assessing safety impacts of 66 

transportation systems soon arose. However, despite several enhancements at the driving behaviour 67 

modelling level (for a detailed review see (1)), dedicated safety modelling in simulation has been 68 

frequently neglected due to the existing limited applied model formulations on driver’s perception, 69 

decision and error mechanisms and to the lack of data for its development. 70 

With the development of many infrastructure-based Intelligent Transportation Systems, research 71 

efforts have been dedicated to identify, traffic scenarios that might be used as accident precursors. Models 72 

developed with this aim are referred as (real-time) accident probability models and, typically, make use of 73 

aggregated real-time traffic data collected by sensing technologies (generally from loop detectors), road 74 

geometric characteristics and, in some cases, weather conditions to statistically predict changes in the 75 

accident occurrence probability. Some researchers opted for the use of these accident probability models 76 

to perform the safety assessment in microscopic simulation experiments (2), (3) and (4). These modelling 77 

streams rely on the availability of historical accident records and depend on some level of aggregation 78 

regarding the traffic operations data used as explanatory variables. As accidents are considered rare events 79 

and it is hard to isolate the effect of many factors affecting its occurrence, conflicts have also been used as 80 

an alternative estimator of system safety (5). The use of conflicts is based on the assumption that the 81 

expected number of accidents occurring on a system is proportional to the number of conflicts making 82 

suitable for systems’ comparisons (6). One of the main limitations of using conflicts is the correct 83 

estimation of this proportionality. This difficulty has motivated the research community to develop 84 

several models to estimate accident frequency from traffic conflicts counts (7). Another difficulty in using 85 

conflicts for modelling purposes is the lack of practical definitions and measurement standards (as it does 86 

not estimate the probability of an accident itself). For this purpose several time-based, deceleration-based 87 

and dynamic-based surrogate safety performance indicators were proposed in the literature (8). Despite 88 

this, these models are the most widely used within microscopic simulation studies ((9), (10), (11), (12), 89 

(13)). 90 

Very recently, efforts have been made to integrate interaction in probabilistic modelling 91 

frameworks. While the above mentioned accident probability models try to link the probability of a 92 

specific accident occurrence using a statistical model fitted to aggregated data, probabilistic frameworks 93 

try to formally represent cause-effect relationships between performed driving tasks and traffic scenarios 94 

that may lead to typical accident events. Such approach has a higher potential in replicating the intrinsic 95 

nature of an accident mechanism and, ultimately, would not depend on safety records itself. On the other 96 

hand, probabilistic frameworks depend on much more detailed information as the distributions and 97 

relationships between all variables at stake are needed (e.g.: evasive manoeuvres probabilities for 98 

different situations or pavement conditions for different scenarios). Songchitruksa and Tarko (14) 99 

proposed an Extreme Value (EV) approach to build up relationships between occurrence of right-angle 100 

accidents at urban intersections and frequency of traffic conflicts measured by using PET as accident 101 

proximity variable. Saunier and Sayed (15) developed a comprehensive probabilistic framework for 102 

automated road safety analysis based on motion prediction. Wang et al. (16)  propose an incident tree 103 

model and an incident tree analysis method for the identification of potential characteristics of accident 104 

occurrence in a quantified risk assessment framework. These efforts step forward in a more 105 

comprehensive formulation of the accident phenomena, but still haven’t been widely validated or 106 

integrated in simulation tools for practical application. Several simulation-based safety studies were also 107 

documented in a very recent and comprehensive review by Young et al. (17). In summary, the authors 108 

clearly pointed out the need for analysing the probabilistic nature of the link between the vehicle 109 

interaction and the accident itself and for generalising the models to accommodate for different types of 110 

accidents. Furthermore, the need was recognized for differentiating distinct cause-effect relationships for 111 

diverse types of accidents and for a probabilistic formulation without the limitations resulting from the 112 
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aggregation of both traffic data and safety records. 113 

 114 

2 GENERIC MODEL FORMULATION 115 

A generic framework for modelling cause-effect mechanisms between detailed vehicle 116 

interactions from simulated environments and the accident occurrence probability is proposed. It is first 117 

assumed that the state of a vehicle   at any given time t can be viewed as a discrete variable whose state 118 

outcome   can be one of different types of accident or no accident at all. An individual outcome   among 119 

all possible outcomes   is considered to be predicted if its probability     ( ) is maximum. As in previous 120 

research studies, the main difficulty is how to estimate     ( ). This probability should be a function of 121 

specific observed variables characterizing the interaction between vehicles (14). Such considerations step 122 

away from the assumption of a fixed coefficient model converting the surrogate event frequency into 123 

accident frequency, typically used in the traffic conflicts technique. The probability for a specific accident 124 

involving vehicle   to occur at time   is assumed to be estimable by a specific accident propensity (or 125 

proximity) measure (18): 126 

    ( )    (1) 

In the proposed model, each accident propensity function   , is considered to have a 127 

(deterministic) safety score (  ) component and a random component ( ): 128 

     (   )    (2) 

where   is the vector of explanatory variables,   is the vector of unknown parameters to be estimated and 129 

  is the random term (the terms   and   were omitted for simplicity). The assumption of the deterministic 130 

safety score component agrees with the recent research stream where detailed interaction variables 131 

directly affect the accident occurrence probability itself. The random component   is assumed to represent 132 

the unobserved effects involved in the determination of the outcome; these may be derived from a random 133 

process in the occurrence of a specific event or caused by a lack of knowledge of this process. 134 

As it is common in safety modeling research, the accident phenomenon relies on many different 135 

variables:  136 

  (   )    (                  ) (3) 

where the   accident-type specific scoring function    depends on:     , the driver-vehicle unit   specific 137 

variables at time  ;      , the variables at time   for the interaction between   and a conflicting driver-138 

vehicle unit   ;     , the dynamic environmental variables at time   (e.g.: weather, variable speed limit, 139 

lighting conditions, etc); and   , the static environmental variables (e.g.: geometrics, road signs, etc). 140 

Note that driver characteristics are typically not considered in traffic simulation tools, which substantially 141 

limits the number of available candidate explanatory variables     . 142 

In the presented model we framed the formulation of each function    to represent a cause-effect 143 

relationship, to simultaneously deal with different non-independent types of accident outcomes and to 144 

consider a disaggregated probability for any vehicle state (   ) observation (instead of the existing 145 

aggregate formulation used in real-time accident probability models). 146 

 147 

3 MODELLING DIFFERENT ACCIDENT TYPES 148 

The above general formulation is now detailed to a specific set of accidents that typically occur 149 

on busy urban motorways: rear-end accidents, side collisions during lane-change maneuvers and run-of-150 

road accidents. It is clear that these three different outcomes correspond to very distinct phenomena. 151 
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However, it is also known that these three outcomes may be related, namely if one considers accident 152 

outcomes following an evasive action from different risky interactions (see FIGURE 1): 153 

 154 

FIGURE 1   Model structure for motorway accident occurrence 

 155 

3.1 Rear-end (RE) conflicts 156 

When facing rear-end interactions the probability of a collision is formulated in terms of: the 157 

subject vehicle braking requirements to avoid a RE collision and the maximum available braking power. 158 

The first is represented by the difference between the actual relative acceleration between the subject 159 

vehicle   and its leader ( − 1),    (m/s
2
), and the deceleration rate required to avoid crash, DRAC (m/s

2
), 160 

estimated using Newtonian physics: 161 

      (   )  DRAC(   )    (   ) (4) 

DRAC(   )  
[ ( − 1  ) −  (   )] 

 [ ( − 1  ) −  (   ) −  ( )]
 

(5) 

where  (   ) ,  (   ) and  ( ) are the speed, longitudinal position and length of vehicle   (FIGURE 2.a). 162 

We further split of the needed deceleration rate into its positive,   +
    (   ) ≥ 0,and negative, 163 

  −
    (   ) ≤ 0, components, allowing for the consideration of different parameters. The advantage of 164 

using        instead of just the DRAC is the consideration of the current acceleration state. The value of 165 

       is easily interpreted: the negative values represent safer values, for which the vehicle is already 166 

applying a deceleration rate greater than DRAC. 167 

  

 

a. Rear-end (RE) b. Lane-changing (LC)  

occurrence t

accidentnon-accident

run-off-road rear-end collision side collision
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c. Run-off-road (ROR)   

FIGURE 2   Accident outcomes 

We further improve this formulation by dividing the required deceleration by the time-to-168 

collision, TTC, thus considering also how long the driver has before the potential collision. The RE safety 169 

score function will then depend on the available time for adjustment, resulting in a relative needed 170 

deceleration ratio RA    (   ): 171 

RA    (   )  
      (   )

TTC(   )
 

(6) 

TTC(   )  
 ( − 1  ) −  (   ) −  ( )

( (   ) −  ( − 1  ))
 

(7) 

Finally, similarly to the CPI surrogate safety measure described in (6), a measure of the maximum 172 

available deceleration rate is also considered. It allows considering heterogeneous safety conditions 173 

regarding different vehicle categories and different pavement conditions (e.g.: dry/wet) that are expected 174 

to influence the deceleration performance: 175 

     (   )  DRAC(   ) − (     (   )   )  (8) 

     (   )       ( (   )           ) (9) 

where      (   ) is the maximum available deceleration for vehicle   at time  ,   is the grade rate (m/m), 176 

  is the gravitational acceleration of 9.81 m/s
2
 and      (   ) is the maximum available longitudinal 177 

friction coefficient, which depends on the speed of the vehicle itself  (   ) and on two factors that 178 

account for the vehicle type,      , and the pavement condition,     . This simplified formulation of the 179 

friction coefficient is due to the small number of variables typically available in simulated environments. 180 

Similarly to the previous variables, the rate RA   (   )         (   )/TTC(   ) is used in the safety 181 

score function to account for the TTC. 182 

The systematic safety score for RE collisions may now be formulated as: 183 

   (   )    
     

  RA+
    (   )    

  RA−
    (   )    

  RA   (   ) (10) 

where RA+
     and RA−

     are the positive and negative components of the relative needed deceleration 184 
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ratio computed using   +
     and   −

     respectively; RA    is the maximum available deceleration ratio; 185 

and   
  ,   

   ,   
   and   

   are the estimable parameters. 186 

 187 

3.2 Lane-changing (LC) conflicts 188 

The lane change action decision is typically modelled by means of gap acceptance models (19) 189 

or, alternatively, by acceleration variation models (20). One would expect the probability of lane-change 190 

collisions to be function of vehicles lateral movements. However, the large majority of the current micro-191 

simulation tools do not provide this modelling feature. Therefore, surrogate measures depending on 192 

lateral movements, such as the time-to-lane-crossing proposed in (21) and the Post-Encroachment-Time 193 

used in (22), are not easily integrated.  194 

The probability of a LC collision is based on gap acceptance models and formulated in terms of 195 

gap variation. The gap acceptance is generally modelled separately regarding the lead and the lag gaps on 196 

the target lane (FIGURE 2.bError! Reference source not found.). This disaggregation is of special 197 

interest as different parameters may be computed for different gaps (23). It is known that the lane-198 

changing process becomes increasingly difficult as the speed differences between the subject vehicle and 199 

the lead and lag vehicles in the target lane increases (24). Thus, in the proposed formulation, the safety 200 

score of the LC event is specified in terms of relative gap variation: 201 

RG a (   )  
   a (   )

G a (   )
 

(11) 

where G a  is the gap in meters and    a  represents the speed difference between the subject vehicle 202 

and the lead (or lag) vehicle on the target lane in m/s: 203 

    a (   )    ( − 1  ) −  (   ) (12) 

   a (   )   (   ) −  (   ) (13) 

Where  ( − 1  ) and  (   ) are the speed of the lead vehicle  − 1 and the lag vehicle   in 204 

the target lane, respectively. Again, the split of the relative gap variation into its positive, RG+
 a 

, and 205 

negative, RG−
 a  values allows for the consideration of different parameters associated with different 206 

safety conditions, i.e. for gaps that are either increasing or decreasing, respectively. 207 

RG+
 a 

(   )      (0 RG a (   ))  RG+
 a 

(   ) ≥ 0 (14) 

RG−
 a (   )      (0 RG a (   ))  RG−

 a (   ) ≤ 0 (15) 

Following the above formulation a gap with a higher relative shrinking rate (RG−
 a (     ) <208 

RG−
 a (     ) ≤ 0), for example, should have a higher impact on the LC conflict probability, 209 

  1  1
(LC)>  2  2

(LC), and therefore, its parameter estimate should be negative. 210 

The systematic component for LC collisions may now be formulated as: 211 

   (   )    
     

  RG+
 a (   )    

  RG−
 a (   )    

  RG+
  a (   )    

  RG−
  a (   ) (16) 

where RA+
 a 

 and RA−
 a  are the positive and negative components (with   p  { e      }) and   

  ,   
  , 212 

  
  ,   

   and   
   are the estimable parameters. 213 

 214 
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3.3 Run-off-road (ROR) events 215 

ROR events are assumed as being primarily related to individual vehicle dynamics rather than 216 

interaction with others. This assumption is especially true under free-flow scenarios. However, it may also 217 

result from evasive manoeuvres due to risky lane-changing or car-following decisions. 218 

Vehicle dynamics in traffic simulation models are represented in a much simplified manner when 219 

compared with the detailed movements’ description of real events and its representation currently 220 

achieved with accident reconstruction models. This significantly limits the current potential for a ROR 221 

micro-simulation modelling framework. The vehicle lateral movement, the true road geometric 222 

characteristics (such as transition curves), the pavement surface characteristics, and the vehicle detailed 223 

physical and mechanical attributes are generally not available. However, some relevant variables that may 224 

potentially be useful for the analysis of ROR events are already available in micro-simulation tools, such 225 

as vehicle speed, general road geometrics and the generic vehicle type. 226 

In the proposed framework, the safety score of ROR events is assumed to be linked to the 227 

difference between the current lateral acceleration of vehicle   and a site specific critical lateral 228 

acceleration. First, as vehicle lateral movements and the true road geometrics are not modelled, the 229 

vehicle path on curve elements is assumed as a simple circular path and the vehicle yaw equal to the 230 

curve bearing (FIGURE 2.c). The lateral acceleration of vehicle  ,   a , is therefore derived from its 231 

current speed and the curve radius R (m): 232 

  a (   )  
[ (   )] 

R
 

(17) 

Although the majority of the simulation tools do not provide information on lateral movement 233 

during a lane change, it is expected that this type of manoeuvres will also affect the ROR event 234 

probability. Using test track data, Chovan et al. (23) considered peak lateral acceleration values of 0.4 , 235 

0.55  and 0.7  for mild, moderate, and aggressive steering manoeuvres, respectively. As detailed lane 236 

change models are typically not available in microscopic traffic simulation platforms, a generic peak 237 

acceleration add-on for lane change of 0.5  was adopted and integrated in eq. 17 to account for a potential 238 

increased ROR probability in road sections with high frequency of lane: 239 

  a (   )  
[ (   )] 

R
 0      (   ) 

(18) 

where    (   ) is a dummy variable to account for lane change (1 if the vehicle is performing a lane 240 

change, 0 otherwise). 241 

The maximum allowed lateral acceleration   r
 a (   ) directly depends on the critical lateral 242 

friction coefficient   a  and the road super-elevation e (m/m): 243 

  r
 a (   )  (  a (   )  e)  (19) 

Similarly to its longitudinal counterpart, the values of the maximum lateral friction coefficient, 244 

  a , also dependon the vehicle speed itself  , on the pavement condition (wet/dry) and on the type of 245 

vehicle: 246 

  a (   )    a ( (   )           ) (20) 

The safety score function may now be formulated in terms of the positive (unsafe) and negative 247 

(safe) components of the difference between the current and the critical lateral accelerations: 248 
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    (   )    
      

     +
 a (   )    

     −
 a (   ) (21) 

where   +
 a  and   −

 a  are the positive and negative components of    a    a −   r
 a , respectively. 249 

 250 

3.4 Estimation framework 251 

As previously stated, the explanatory variables of one type of accident may influence the 252 

occurrence of others and evasive manoeuvres may create correlations between different accident 253 

outcomes. When modelling multiple discrete outcomes, the multinomial nested logit model proposed by 254 

Ben-Akiva (25) has advantages over the simple multinomial logit model, because it can simultaneously 255 

estimate the influence of independent variables while allowing for the error terms to be correlated and, 256 

therefore, allowing for the violation of the independence of irrelevant alternatives (IIA) property (the 257 

reader is referred to (26), for its derivation and formulation details). 258 

To directly estimate the proposed model, a large set of all types of model outcomes and its vehicle 259 

interaction data is needed. Unfortunately, a large data allowing for the direct association between 260 

trajectories and accident occurrence is still not available. Furthermore, although the proposed model is 261 

specified individually for any vehicle   at every time  , the philosophy of microscopic simulation 262 

applications is to replicate as close as possible real aggregate measurements, even at such detailed level as 263 

aggregated accelerations, headways or TTC. Thus, to estimate the above model the use of artificial 264 

(simulated) trajectories is proposed. Yet, a set of critical assumptions must be considered: 265 

1. A well calibrated microscopic simulation model must be calibrated appropriately to replicate 266 

statistical distributions of detailed traffic variables.. 267 

2. Trajectories extracted in a generic day represent the general driving behaviour of traffic. 268 

Confidence on this assumption depends on the amount and breath of information available for 269 

treatment. Other factors (such as weather) influence general driving behaviour parameters; 270 

part of this variability will be assessed by means of a dedicated calibration, carried out for 271 

each specific event, using readily available data sets (eg.: from loop sensors). 272 

3. Although simulation models are accident free, their description of detailed traffic variables 273 

can be linked to the accident probability. This is supported by previous studies (9), (2). 274 

The microscopic simulation tool is then calibrated once using the pre-estimated seed Origin-275 

Destination (OD) matrix, and both aggregate (loop sensor based) and disaggregate (observed vehicle 276 

trajectories) data collected for a specific generic day   . The optimum sets of the microscopic simulation 277 

model parameters    are then used as initial parameters in an aggregate calibration process using the 278 

aggregated data available for each event observation  . After this, the optimum set of parameters for each 279 

event  ,   , is used to generate a set of (artificial) detailed traffic variables. Finally, this set of detailed 280 

traffic variables is used jointly with its associated outcome of event   to estimate the proposed safety 281 

model.  282 

It is typically expected that both the loop-based variables used for calibration and the accident 283 

occurrence reported variables are defined for a pre-defined time and spatial units. In some cases, such 284 

aggregated intervals maybe too large to capture short-term variations; nevertheless several authors (27), 285 

(2) have successfully used aggregated periods up to 5 min intervals to perform accident occurrence 286 

probability analyses. With the absence of true trajectory variables for the vehicle   involved in each 287 

observed event  , the characterization of the detailed traffic variables for a specific accident occurrence 288 

must be linked by means of spatial and temporal aggregation. Additionally, it is well known that safety 289 

records have time and spatial errors. Therefore, for estimation one needs to aggregate all vehicle state 290 

outcome probabilities     ( ) by standardized intervals of space, s, and time periods, p: 291 

 s  ( )  
1

 
∑     ( )

 
 

(22) 
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where     ( ) is the probability of occurrence   for any relevant observation of vehicle   at time  , 292 

traveling in spatial interval s and time period p and defined by the proposed nested logit model;   is the 293 

total number of observations for all vehicles that travelled in the interval s p. It is important to point out 294 

that, following this formulation, the model is based on mean values and not on extreme values. This 295 

follows the traffic micro-simulation specification philosophy, where the replication of averaged variables 296 

is expected. However, one may want to push the use of extreme formulations and rely on detailed 297 

calibration methods of extreme values, or by extending the specification of the driver behaviour to better 298 

model such scenarios. Such formulation was not tested for the present document. 299 

Finally, if one considers a large observation period, typically needed to have a relevant number of 300 

accident occurrences, it is expected that the loop sensors will fail for some instances. Furthermore, the 301 

computational memory and processing resources needed to generate and use the simulated trajectory data 302 

for a large set of no-accident occurrence units is impractical. For this purpose an outcome (choice)-based 303 

random sampling was assumed. Then, to account for this biased sampling process the weighted 304 

exogenous sample maximum likelihood function (WESML) proposed in (29) was used. 305 

 306 

4 THE URBAN MOTORWAY CASE AND TESTING DATASET 307 

The proposed model was estimated using collected and simulated data for the A44 urban 308 

motorway near Porto, Portugal. This road was selected as case study due to its dense traffic, unusually 309 

high number of lane changes, short spacing between interchanges and high percentage of heavy goods 310 

vehicles. A44 is a 3,940m long dual carriageway urban motorway with 5 major interchanges, two 3.50m 311 

wide lanes and 2.00m wide shoulders in each direction (FIGURE 3). There are acceleration and 312 

deceleration lanes at all interchanges, although several as short as 150m. On and off-ramps connect to 313 

local roads, which generally have tight horizontal curves, intersections or pedestrian crossings, features 314 

that tend to impose significant reductions in vehicle speeds. 315 

 316 

FIGURE 3   A44 Layout 

Three different traffic data sets were specifically collected for the present study: a dynamic seed 317 

OD based on a sample of license plate matching and vehicle counts (Lima Azevedo, 2014); 5 min loop 318 

sensor average speeds and counts for the existing eight traffic stations (4 in each direction), between 2007 319 

and 2009 (30); and vehicle trajectories collected for a generic morning (with and without congestion) by 320 

aerial remote sensing for the entire length and access links of the A44 motorway (31). Finally, incident 321 

records were also collected for the same period of 2007 to 2009 including a total of 144 side-collisions 322 

rear-end collisions and run-off-road accidents. 323 

Along with the 5 min temporal units for the observed traffic data, the nature of the accident 324 

location record required a spatial observation unit of 50 m. These units are the ones to be considered for 325 

the aggregation of individual probabilities. Using such units, a very large number of no-accident (𝑁𝐴) 326 

events were observed during this three years period (more than 180 × 10
6
). After excluding the days with 327 

bad sensor data, a random sampling technique was used to select 6,400 no-accident events, resulting in a 328 

total of 6,544 events to be calibrated and simulated for artificial data generation.  329 

The integrated driver behaviour model (19) implemented in MITSIMLab (32) was used to 330 

simulate trajectories for each observed event. For the calibration, the global multi-step sensitivity-analysis 331 

based calibration proposed in (33) was used. The method was then coupled with a meta-model based 332 
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calibration for calibrating the simulator with trajectory data and with a powerful simultaneous demand-333 

supply calibration method for the calibration of the large set of accident and non-accident events using 334 

aggregated data (34). This procedure was selected, as it was concluded in previous work (34) that 335 

disaggregate calibration improves significantly the accuracy of simulated trajectories and spot-speeds, 336 

which are important for adequate representation of vehicle interactions in safety studies. 337 

The artificial data generated by the calibrated models showed a clear divergence between accident 338 

and non-accident event simulated outputs typically used in safety assessment (see detailed statistics in 339 

(30)). 340 

5 ESTIMATION RESULTS 341 

5.1 Modeling assumptions 342 

For the computation of the RE and ROR model components, both       and   a  must be 343 

specified. Unfortunately, on-site measured values were not available. Hence, generic    values were 344 

adopted based on measurements from other urban freeways found in the literature (Inoue and Hioki, 345 

1993): a direct variation from 0.85 at 0km/h to 0.75 at 130km/h for dry pavements and from 0.70 at 346 

0km/h to 0.20 at 130km/h for wet pavements. An increase factor of 1.10 was considered for the lateral 347 

coefficient   a . Furthermore, both       and   a  were decreased by a factor of 0.70 for heavy vehicles in 348 

dry conditions. 349 

The availability of each occurrence alternative was included in the specification of the likelihood 350 

function. For each observation: 351 

 a rear-end conflict was considered as possible whenever the subject vehicle is in a car-following 352 

state; 353 

 a lane change conflict was considered as possible if the road carriageway has two or more lanes 354 

and if the subject vehicle wants to perform a lane change; 355 

 a run-of-road event was considered as possible if the road section is a curve or if the subject 356 

vehicle is performing a lane-change. 357 

Finally, multiple replications should be used directly in the estimation phase within a Monte 358 

Carlo process, similar to panel data estimation. With this approach, several observations for the same 359 

event are available and directly included in the safety score function with an additional event specific 360 

component. The main burden in such an approach is the computer memory and processing resources 361 

needed during the estimation phase. In the current study, the estimation process was carried out 362 

considering each replication as independent. 363 

The maximum likelihood estimates of the model parameters are calculated by maximizing this 364 

function:  365 

ℒ  ∑∑y  s  w   [ s  ( )]

 s  

 
(23) 

where   are all possible outcomes considered for the proposed model  s  ( ) is the probability of outcome 366 

  for spatial interval s and time period p (given by equation 22), w  is the outcome  -specific sampling 367 

ratio, y  s   is 1 if   is the observed outcome for the observation pair s p and 0 otherwise. In this study, 368 

the PythonBIOGEME open source software was used (36). 369 

Finally, for numerical reasons, it is good practice to scale the data so that the absolute values of 370 

the parameters are between zero and 1; thus, all relative gap variation variables were divided by 10 and 371 

the lateral acceleration difference specified in 0.1m/s
2
. 372 

 373 

5.2 Results 374 

The estimation results are presented in TABLE 1. 375 
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When the positive RA     component is close to zero, the relative deceleration is close to the 376 

DRAC and thus closer to a safe situation. When RA+
     increases the probability for a RE accident is 377 

higher, as the difference between the vehicle relative deceleration rate and its DRAC gets higher.   
    has 378 

a higher absolute magnitude than   
   , penalizing much more any safety decay in the unsafe domain 379 

(RA      > 0) rather than in the safe one (RA    < 0). Regarding the negative component, i.e. when the 380 

follower has already adjusted its acceleration, lower RA−
     will result in an increased RE probability due 381 

to lower TTC. The positive sign of   
    and its statistical significance makes the consideration of different 382 

exogenous safety conditions non-negligible. It is worth pointing out that both the vehicle category 383 

(car/truck or bus) and the pavement (wet/dry) conditions were considered. 384 

The parameters of the negative components of the lead and lag gaps variation during LC events 385 

(  
    and   

  ) are also significant: largest absolute values of its independent variables (RG−
 a  and RG−

  a ) 386 

represent significantly shrinking gaps. As both parameters are negative, any RG−
 a  or RG−

  a  will increase 387 

the probability of LC accident events. The lead relative gap variation came out as the most statistically 388 

significant regarding LC events and its higher magnitude is due to the much smaller simulated lead gaps 389 

during lane-change not only when compared to lag gaps but also when comparing accident events with 390 

no-accidents. 391 

 392 

TABLE 1   Estimation results. 

Event Parameter value st. dev. t-stat p-val 

Rear-end 

conflict 

RE constant   
   -13.09* 0.608 -5.08 <0.01 

Positive relative needed dec.   
   2.917 0.917 3.18 0.01 

Negative relative needed dec.   
   -1.92 0.784 -2.45 0.03 

Maximum available dec. ratio   
   2.03 1.034 1.96 0.07 

Lane-

change 

conflict 

LC constant   
   -7.08* 0.457 6.32 <0.01 

Positive relative lag gap variation   
   -0.011 0.012 -0.92 0.38 

Negative relative lag gap variation   
   -0.568 0.338 -1.68 0.12 

Positive relative lead gap variation   
   -0.311 0.255 -1.22 0.25 

Negative relative lead gap variation   
   -0.628 0.315 -1.99 0.07 

Run-off-

road event 

ROR constant   
    -12.45* 0.367 -6.68 <0.01 

Positive lateral acc. difference   
    0.023 0.013 1.77 0.10 

Negative lateral acc. difference   
    1.775 0.965 1.84 0.09 

 Scale parameter for the accident nest  µ 1.622 0.567 2.86 0.01 

 Nº of parameters 13 (* are the parameters affected by weights) 

 Sample size: 10733084 (3 replications) 

 Initial log-likelihood: -9636.49 

 Final log-likelihood: -2047.53 

 ρ : 0.787 

 ρ̅ : 0.786 

 393 

Regarding ROR events , when    a  is positive, the simulated lateral acceleration is higher than 394 

the critical lateral acceleration and the vehicle is under unsafe conditions. Thus, when   
    > 0 there is a 395 

higher probability of ROR events. Similarly, when    a  is negative, larger absolute values are related to 396 

safer conditions, as the simulated lateral acceleration is much smaller than the critical one (  
    < 0). Yet, 397 

one would expect a higher absolute magnitude for   
   , but these results may be justified with the small 398 
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number of observations with    a > 0. 399 

The estimated scale parameter of the accidents nest μ was also significant, revealing a non-400 

negligible effect of shared unobserved attributes of the different types of accident under analysis. 401 

 402 

6 VALIDATION 403 

As no other accident data set was available, the validation was performed using two new sets of 404 

artificial data, generated by MITSIMLab for the same sample of events.  405 

In TABLE 2 the averaged ratios of the probabilities between a specific type of accident and the 406 

no-accident events are presented for both the estimation and validation data sets. The range of both input 407 

variables and estimated probabilities for the validation data set are similar to the estimation ones. The 408 

trade-offs (correlations) captured by the model are also visible, especially between RE and LC conflicts. 409 

 410 

TABLE 2   Validation probability ratios regarding  ( A). 

   (RE)  (LC)  (ROR) 

Estimation 

RE 3.783 3.880 0.359 

LC 2.284 3.581 0.468 

ROR 1.755 0.499 1.241 

Validation 

RE 4.352 5.824 0.344 

LC 2.363 3.027 0.391 

ROR 1.306 0.277 1.299 

 411 

The accuracy rates for all accident events considered was 38.6% using the validation data set. The 412 

accuracy for non-accident events was 92.1% while false alarms reached 7.9%. In a previous model using 413 

real loop sensor data, Oh et al. (2001) estimated the prediction accuracy for accidents and non-accidents 414 

as 55.8% and 72.1%, and a false alarm rate of 27.9%. Xu et al. (37) estimated the same rates as 61.0%, 415 

80.0% and 20.0%, respectively. The rates obtained with the proposed model with artificial data still 416 

remain below the values found in the literature for aggregated accident probability models using real data. 417 

The small sample used for estimation may have affected this number. Yet, the false alarm rate is 418 

considerably lower than values reported in other studies, indicating a high specificity of the proposed 419 

model. 420 

  421 

7 CONCLUSIONS 422 

A generic framework for modelling cause effect mechanisms between detailed traffic variables 423 

and accident occurrence probability in traffic microscopic simulation tools was proposed and tested in a 424 

real road environment. Detailed variables of vehicle motion and interactions were found to be linked to 425 

different accident increased probabilities. The nested structured allowed to capture existing trade-offs 426 

between different types of accidents. The fact that all these considerations were extracted from simulated 427 

analysis shows the real potential of advanced traffic microscopic simulation regarding detailed safety 428 

assessments, as long as detailed calibration is successfully carried out. The interaction between vehicle 429 

gaps and relative motions has been proved as a key factor for accident occurrence in previous safety 430 

related studies. Yet, no probabilistic formulation accommodating such interaction and integrated in traffic 431 

simulation models had previously been reported in the literature. 432 

Several enhancements regarding the specific formulation of the proposed probabilistic safety 433 

model for urban motorways may be introduced. The inclusion of further components in the safety scoring 434 

function (e.g.: driver related variables), the formulation of non-linear safety score functions, the 435 

specification of additional accident types and the definition of more powerful modelling structures, such 436 
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as the mixed logit, or estimation methods, such as a panel data estimation based on multiple replications, 437 

should be tested. Also, both the validation using other sets of data and traffic scenarios and a benchmark 438 

against alternative non-probabilistic safety assessment tools would be valuable. The availability of large 439 

detailed trajectory data sets from naturalistic studies will be also a key source for potential improvements. 440 

Furthermore, the integration of conceptual perception and error modelling frameworks and more detailed 441 

motion descriptions in microscopic simulation tools may mitigate some of the modelling constraints. 442 

Finally, it is worth remembering that the modelling and estimation structures were formulated in terms of 443 

expected behavioural considerations but constrained by the driving behaviour simulation model 444 

limitations. In fact, when a safety assessment model (probabilistic or not) is integrated into a simulation 445 

tool, the safety formulation should also consider the modelling assumptions and limitations of the traffic 446 

simulator itself. 447 
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