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Abstract—High-frequency rail transit systems play a key role
in dense urban transportation. As such, decisions made in design,
implementation, and operation may precondition the successful
performance of the overall urban system. To fully understand
the impacts of these decisions there is a need for an integrated
analysis, where rail is analyzed as a component of a larger
and more complex transportation system. In this paper we
present a new rail simulator as an integrated component of
a comprehensive agent-based mobility simulation platform. By
leveraging a multi-modal activity-based demand formulation and
mesoscopic dynamic network supply simulation, our proposed
design aims primarly to capture the impacts of complex dynamics
between individual traveler behavior, the design and operation
of a rail system, and the performance of all other modes. A
second aim is flexibility; through the implementation of a flexible
architecture, the simulation of a wide variety of different rail
operational configurations and scenarios becomes feasible. As a
demonstration of capabilities the simulator is used to replicate
the operations and performance of a fully automated Mass
Rapid Transit line in Singapore. The simulator was calibrated
using a novel sequential calibration method with only automatic
fare card data, without requiring automatic train control or
manually collected data, and validated with another dataset.
The proposed rail simulator can be used for the assessment
of different rail control strategies under regular and disruption
conditions, and to evaluate the performance of the road and other
public transportation networks and users.
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I. INTRODUCTION

Mass transit plays a key role in dense urban transportation systems
and more than 50% of residents in major cities such as Hong
Kong, Singapore, Tokyo, and London, rely on public transport for
their daily commute [1]. As such, the choices made in the design,
implementation, and operation of rail networks are of considerable
importance. Understanding and analyzing the underlying relationship
between demand and supply in these systems is therefore a crucial
factor in the decision process. A natural approach to this analysis is
through simulation, which allows for the examination of a multitude
of potential scenarios. However, in complex urban systems, it is im-
portant to use integrated mobility simulators which not only capture
dynamics within the rail system, but also within other modes of
transport and individual travel patterns. That is, travel demand across
modes should affect the rail system performance, and changes across
the many features of a multimodal supply network should affect the
demand for rail. There is a reasonable amount of prior work involving
the development of train simulators to investigate various problems
such as train scheduling, infrastructure design or disruptions. Simple
macroscopic simulators such as Bahn [2] and MetroModSim [3]
have been developed in the past to provide simplified representations

of rail networks; in these simulators, trains move at deterministic
speeds, with minimal signal controls such as linked pairs of stop/go
signals. On the other end of the spectrum, more recent commercial
simulators such as OpenTrack [4], a microscopic time-based railway
simulator, provide a comprehensive model of train movement across
long distances. However, they (1) tend to not focus on demand-side
effects, (2) are commonly used in long-distance freight transportation
planning and (3) are not capable of multi-modal simulation anal-
ysis. Multi-modal simulators, such as AIMSUN and VISSIM [5]1,
provide detailed road traffic simulation with limited rail capabilities
often constrained by traffic flow and road vehicle motion models.
Both packages allow for integration with static demand models
but lack breadthwise dynamic integration with all forms of transit
and associated infrastructure, and dynamic changes in demand and
supply operations. In academia, rail simulators are often developed to
investigate various supply-targeted policies. For example, Grube et al.
[6] and Sanchez-Martinez et al. [7] both created discrete event-based
simulators to increase the operational efficiency of high-frequency
rail transit by implementing various holding strategies. Cha et al.
[8] constructed a similar model for Maglev trains to investigate how
varying passenger arrival rates affect system performance. Others
utilize rail simulation in operations research, such as to optimize bus-
based disruption recovery strategies in subways ([9], [10]). However,
these models are often customized to the topic at hand or mostly data
driven, and hence serve mainly as a tool to demonstrate a very specific
operational strategy. For example, [6] and [7] assume constant train
speeds and ignore operational restrictions (such as safe distances),
while [11] utilizes historical train running time data instead of actively
simulating train movement. [8] utilizes a linear dwell time based off
historical data, but ignores the effects of induced passenger conges-
tion. [9] and [10] only consider deterministic choice (that is, when
the subway breaks down, passengers automatically take the substitute
bus) and ignore the possibility of individual agents revising their
mode or destination choice due to service disruptions. Despite these
limitations, these efforts resulted in key contributions to the state-
of-the-art and together form the perfect foundation for the design
of a multi-purpose generic rail simulator. Multi-modal simulators do
exist in academia. MATSim is an advanced integrated multimodal
simulator that generates demand from a synthetic population and
an activity-based model2 [12]. However, it also focuses primarily
on road transit, with the intricacies of demand-side effects (such as
dwell time) notably absent from its embedded rail simulator. SUMO
[13] is a microscopic time-based multimodal simulator that supports
passenger mode choice; however, it lacks dynamic demand features
(once a commuter makes a choice, such as mode, she/he will not
change decision) and has limited rail simulation capabilities. Finally,

1Updates on the Aimsun and Vissim were retrieved on May 15,
2017, from https://www.aimsun.com/aimsun/new-features/ and http://vision-
traffic.ptvgroup.com/en-uk/products/ptv-vissim/, respectively.

2Demand is derived from an individual’s daily activity patterns.



Fig. 1. Structure of the SimMobility Mid-Term [14]

SimMobility [13], a multi-level activity-based modeling platform
in C++ also has interesting integrated simulation capabilities. It
comprises three different simulation levels: the Short-Term simulator
represents high temporal resolution (i.e. in the order of tenth of a
second) events and decisions, such as vehicle lane-changing, braking
and accelerating, individual pedestrian movement and agent to agent
communication [25]. The Mid-Term simulator represents daily activ-
ity scheduling, mode, route, destination and departure time choices
together with a dynamic multi-modal mesoscopic supply, and has a
temporal resolution in the order of seconds or minutes [14]. Finally,
the Long-Term simulator represents long-term choices such as house
and job relocation or car ownership [15]. However, and contrary to
its road and bus counterparts, a detailed rail supply model is absent
in SimMobility. In summary, the current rail simulation state-of-the-
art tends to macroscopically model demand (aggregated in terms of
flows) and to ignore the impacts of changes in demand or supply of
changes in other transportation modes. There is a need to develop a
simulator where passengers decisions are modeled microscopically,
capturing the different individual preferences and responses to system
conditions, as well as the impacts that events occurring in the
rail system have on the overall transportation network. A second
consideration is developing a simulator flexible enough to simulate a
wide range of different scenarios, thus reducing the need to custom-
develop simulators in the future. In this paper, we fill this gap
by presenting a comprehensive rail simulator integrated with the
SimMobility Mid-Term simulator, an ideal overarching platform.

II. FRAMEWORK WITHIN SIMMOBILITY MID-TERM

The Mid-Term contains many key functions, such as organic
demand (as explained below), mode/route choice models and a road
network supply time-based simulator, which allow for breadthwise
integration of the rail supply. It also has a publish/subscribe mech-
anism [14], allowing for the development of a dynamic feedback
loop between the rail system and passengers’ decisions in runtime.
Finally, the blank slate of the Mid-Term enables the rail simulator to
be developed in a similarly flexible manner and allows it to easily
simulate a wide range of scenarios and operating conditions. Mid-
Term encompasses four modules schematized in Figure 1.

A synthetic population of potential travelers for a given network
is generated in the Long-Term simulator and passed to the Mid-Term
simulator. The demand comprises two groups of behavior models:
(1) pre-day and (2) within-day.

1) The pre-day models follows an econometric Day Activity
Schedule approach to decide an initial overall daily activity

schedule of the agent, particularly its activity sequence (in-
cluding tours and sub-tours), with preferred modes, departure
times by half-hour slots, and destinations. This is based on
sequential application of hierarchical discrete choice models
using a monte-carlo simulation approach.

2) These schedules are then passed to the within-day module,
which works in tandem with the (3) supply module trans-
forming the activity schedule into effective decisions and
execution plans. Through a publish/subscribe mechanism of
event management agents may get involved in a multitude of
decisions, not constrained to the traditional set of destination,
mode, path and departure time depending upon their state in the
event simulation cycle. Examples of triggers of this mechanism
include excessive delay during the trip, specific incident or
disruption information. Specific individual choice models are
then called and result in rescheduling of the remainder of the
day, canceling an activity, re-routing in the middle of a trip
or changing mode. The time-step based supply side simply
picks the latest plan information for each agent and executes
it. A global events manager module checks, at each time step,
which subscribed events occur and wakes up the corresponding
agents. If an agent changes her/his plan due to an event, it will
be reflected in the next time step, which will then be executed
by the supply simulator.

3) The supply model follows a mesoscopic dynamic traffic assign-
ment paradigm and provides feedback about the current system
performance, which may cause a traveling agent to modify
her/his schedules in response in the within-day module. For
example, if a traveler becomes aware that the planned route
is disrupted or unexpectedly congested, she/he may instead
trigger the decision to take a taxi to the destination.

4) Finally, in the (4) day-to-day learning module, individuals
’learn’ from their experiences and modify their choices in the
subsequent runs of the Mid-Term simulator.

The reader is referred to [13] and [14] for the detailed description of
the four modules.

In SimMobility, there is a distinction between Agents and En-
tities. They are both modeled microscopically with unique asso-
ciated parameters; however, the former are vested with decision-
making abilities, while the latter make no decisions whatsoever. For
example, traveller-agents decide on daily activity schedules, trips,
mode choices, and route choices in the pre-day module, and have an
associated ’role’ corresponding to their current action (car passenger,
bus traveller, driver, etc). If a traveler selects public transportation
as the mode for a given trip, a dedicated route-choice is called by
the simulator. In our proposed integration, for any legs of this trip
assigned to the rail system, the traveler-agent’s role is then changed to
<rail passenger> and her/his movement is handled by our new
proposed rail supply module. The exact location of this individual
in the rail system is calculated and updated at every simulation
time-step until she/he leaves the rail system; at this juncture, her/his
corresponding role changes, and is no longer visible to the rail supply
module. The publish/subscribe mechanism was also considered in the
proposed integration and is fundamental for opportunistic re-routing,
mode choice revision or activity scheduling, thus dynamically allow-
ing for changes in demand. Finally, the individual’s realized trips
within the rail supply module is returned to the overall Mid-Term
simulator, as well as performance metrics such as capacity reliability
and travel time reliability.

III. THE RAIL SUPPLY SIMULATOR

A. Components and Structure
Similar to the Mid-Term, the rail simulator itself consists of Entities

and Agents all integrated within the SimMobility C++ code. We
designed six new entities and three new agents: pools, blocks, sta-
tions, platforms, schedules and lines as entities; and rail passengers,
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Fig. 2. Entities in the Rail Supply Simulator

trains and service controllers as agents. A pool is analogous to an
uninvolved area such as a depot, sidings and others, forming an area
where out-of-service trains wait (further elaborated below). This helps
in distinguishing between different states of operation for the existing
trains: active (servicing) vs. inactive (idle at a terminal station, side-
track waiting for its next schedule to begin, or out-of-service). This
distinction is simulated by having an ’active pool’ and ’inactive pool’
as ordered lists located at specific stations (generally at the end of
a train line). Such list helps in simulating ordering constraints in
the dispatching process. A platform is linked to a train service in
a specific direction and is independent of the number of existing
physical platforms. As such, most stations contain two platforms,
with interchange stations containing more. A station represents a
point of connection between the overall Mid-Term simulator to the
rail simulator, where commuters are ”passed” from the former to
the latter. Stations serve as connections to the multi-modal supply
network. A block represents a specific section of track with unique
geometric and operational properties, and connects platforms to each
other. A line represents a sequence of platforms and blocks that
trains progress through sequentially during service. As such, train
services are effectively represented as two different lines in the rail
simulator. Finally, every train is assigned a schedule, which represents
an ordered subset of platforms within a line that a train should serve.
For example, a given line k consisting of i, j, ... stations is represented
in the rail simulator as two lines: k1, which consists of ordered list of
platforms i1, j1, ...; and k2 for the opposite direction with platforms
i2, j2, .... An express train on k1 could conceivably stop only in some
of the stations (e.g. j1). Figure 2 shows a graphical depiction of the
proposed design. A station has walking time parameters that each
passenger uses to determine their walking time within the station.
Block-entities have acceleration rates and maximum train speeds
associated with them that affect how fast train-agents decide to move
on that particular block, and platform-entities have minimum and
maximum dwell times that affect how long trains stop at the platform-
entity. On the other hand, passengers and trains make decisions at
every decision time-step 3 based on their own associated attributes,
relevant entity attributes, and instructions from the Service Controller.
The Service Controller controls all other agents’ movements and
behaviors via the use of internal functions that ensure smooth
operation of the system. For example, the Service Controller may
impose a second speed limit on a given train, in addition to the
speed limit already defined by the block-entity attributes the train is
on, to keep two trains a safe distance from each other. Finally, the
user has ultimate control over the rail simulator. Through the use of
application programming interfaces (APIs), the user is able to interact
with the Service Controller to create operational configurations and
other scenarios worthy of investigation (such as disruptions). For
example, the user may specify unconventional operating logic, or
introduce atypical train behavior such as break-downs, to explore the
sensitivity of the system to deviations from standard operation or the
robustness of proposed policies. These components are summarized
in Tables 1 and 2.

3An agent- and decision- specific multiple of simulation time-steps

TABLE I
ATTRIBUTES OF AGENTS AND ENTITIES IN THE RAIL SIMULATOR

Name Type Attributes
Pool Entity • id

• maximum capacity
• train list (dynamic)
• type (active/inactive)
• dispatching schedule id

Block Entity • id
• maximum acceleration rate
• maximum deceleration rate
• maximum speed
• location (X,Y coordinates)
• length

Station Entity • id
• walking time distribution parameters (list)
• traits (u-turn, bypass,interchange, regular)
• maximum capacity
• passenger list (dynamic)

Platform Entity • id
• dwell time function parameters (list)
• maximum capacity
• traits (shared, regular)
• passenger list (dynamic)

Passenger Agent • id
• origin (station id)
• destination (station id)
• path (list of platform ids)
• individual walking speed parameter

Train Agent • id
• schedule id
• actual dispatching time (dynamic)
• list of passengers (dynamic)
• maximum capacity
• length

Service Agent • id
Controller • list of APIs

TABLE II
DECISIONS MADE BY AGENTS

Name Decisions

Passenger • walk time selection

Train • dwell time selection
• acceleration, deceleration and speed

Service Controller • passenger access to station
• passenger access to platform
• passenger access to train

B. Agent Decisions
For better understanding, each action is marked with a letter-

number code that denotes whether it is an action taken by the
passenger-agent (P), train-agent (V), Service Controller (C), or User
(U) for the necessary inputs, and its position in the sequence of events
within the simulation.

1) Passenger-agent Decisions: The passenger flow is essen-
tially linear, consisting of 7 steps with minimal intervention from
the Service Controller (see Figure 3). A passenger officially enters
the system (P.01) when it is passed from the overarching Mid-Term
simulator to the rail simulator (when the passenger ’taps-in’ at a fare
gate). It is then assigned a walking time to the platform, drawn from
a distribution based on the station he enters at (P.02, C.01, U.01) and
a individual specific parameter. The passenger queues in first-in, first-
out (FIFO) order and is assumed to board the first train that arrives
with sufficient capacity (P.03, P.04, C.02). If a train does not have
sufficient capacity, the passenger is denied boarding (P.03.5), and has
to wait for the subsequent train. Once boarded, the passenger-agent
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Fig. 3. Passenger-agent decisions

Fig. 4. Train-agent decisions

’sleeps’, with all movement between stations controlled by the train-
agent. The passenger is then ’awakened’ at his desired destination
(P.05), and assigned a walking time to the fare-gate (if exiting the
system) or the next platform (if performing a transfer) (P.06, C.03,
U.01). Note that the walking times in P.02 and P.06 are drawn from
the same percentile of different distributions to maintain consistency
in individual walking speeds and keep the geometric features of the
stations constant. Once the passenger exits the system (P.07), the train
sub-trip is determined to be completed.

2) Train-agent Decisions: In contrast to passenger agents, the
flow of the train agent is significantly more complicated (see Figure
4). Service begins when a train is pulled from the ”inactive pool”
to the ”active pool” by the Service Controller (V.01, C.01). The
former is analogous to a train depot, while the latter is analogous
to an out-of-service train waiting at a terminal station. The train then
receives schedule information comprising its departure time from the
first station , a list of stations to service, and its expected arrival
time at those stations (V.02, C.02). When a train arrives at a station,
it relays this information to the Service Controller, which checks
for any especial instructions for the train previously specified by the
user (U.01). If there are none, the Service Controller boards and

alights passengers, calculates a dwell time for the train based on the
dwell time models, and instructs its subsequent behavior (V.03, C.03).
Similarly, as the train moves between stations, its relative position
to other trains and stations in the line is constantly monitored by
the Service Controller, and its speed adjusted accordingly subject to
train movement models and especial instructions from the user, if
any (V.04, C.03, U.01). Finally, when the train reaches the end of
the line, it conveys this information to the Service Controller, which
typically assigns the train a new schedule, usually the corresponding
return route (V.05, C.04). In rare cases, the Service Controller will
instead retire the train from the active pool (V.06, C.04), essentially
sending it back to the depot. This occurs when the desired arrival
frequency decreases, for example, when the system changes from
peak scheduling to off-peak scheduling.

IV. AN IMPLEMENTATION OF THE SERVICE CONTROLLER

Within the proposed simulation, the central control is represented
by the Service Controller4. It uses externally-written LUA scripts as
an interface to modify the behavior of the rail simulator and thus
allows for the simulation of a multitude of scenarios. For example, a
LUA script could be used to modify train speeds and accelerations to
test the effects of introducing brand-new trains into the system. It may
also be used to simulate disruptions. The LUA scripts interact with
the rail simulator through Application Program Interfaces (APIs),
which allow different aspects of the rail simulator to be modified.
Each API has a defined set of inputs, target functions to modify,
and resulting outputs. For example, the API reset_speed_limit
takes speed limit, start platform, end platform, and line ID as inputs
to set the new maximum speed of trains along a portion of a line.
There are 2 main categories of APIs: Command APIs that are used
to instruct the simulation to perform actions that deviate from typical
behavior, including modifications to train speed or schedules; and
Informational APIs that sense the status of various elements within
the simulation, such as the number of current active trains or the ID
of the next train to arrive at a station. Using these APIs, LUA scripts
can then be created:

1) The user specifies if...then scenarios, which modify train
operations in real-time during the simulation if conditions are
met (reactive control).

2) The user creates scenarios that proactively modify train oper-
ations in order to simulate and observe the effects of events
that may potentially occur (proactive control).

A major advantage of the Service Controller is its extreme flexibility,
which allows the rail simulator to be customized for vastly different
scenarios.

A. Signaling and Train Movement
The primary purpose of a signaling system is to help trains in a

rail network maintain safe distances from each other such that each
train has adequate room to brake as necessary. A ’safe distance’
is typically considered to be the braking distance of a train, plus
some additional leeway known as the safe operating distance5. In
cases where track is shared, especially when between trains running
in opposite directions, signaling systems are also used to ensure
that only one train runs on the track at any given time. These
systems have also been utilized to implement operations research
policies such as in Kariyazaki et al. [16], where train speeds are
intentionally reduced to minimize delays at stations. Ultimately, a
signaling system must be able to modify train speeds. There are two
main types of signaling systems used worldwide: fixed-block and
moving-block systems. Hill et al. [17] provides an in-depth discussion
of these systems, as well as general signaling principles and their

4Different operators are simulated as instances of the Service Controller.
5A safe operating headway is often also implemented as a secondary

measure; this can be modeled in the same way as a safe operating distance.
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Fig. 5. Simulated Speed-Time Profile

implementation in rail simulators, and their proposed simulation
framework was implemented in our simulator through a LUA script.
In this framework, the designed block-entities were a valuable tool
for capturing track properties at specific locations, and were used
to model the impact of gradient in the maximum acceleration rate.
As demonstrated in Kraft [18], train movement between stations
can be approximated with a trapezoidal speed-time profile - that
is, in regions of constant acceleration, constant speed, and constant
deceleration - with minimal loss of accuracy (see Figure 5). This
allows train movement to be calculated via relatively straightforward
kinematic equations which were again implemented through LUA
scripts (see [16] for the individual equations). Note that in this
implementation, continuous equations were used in discrete time-
interval computations. If the time-step used in the simulation is
small, this is an acceptable approximation; however, if the time-step
is large, unreasonably high deceleration values may occur due to
loss of accuracy in estimating train positions. In order to help the
simulator yield coherent results, a solution was introduced, where
trains decelerated one time-step earlier than strictly necessary in
certain cases6.

B. Passenger-Train Interaction
Stations can have multiple properties from the following list:
1) U-Turn: There is a siding within, or in the vicinity of,

the station such that trains can reverse and switch to the
corresponding line heading in the opposite direction;

2) Bypass: There is a siding for the train to overtake the train in
front of it, or allow trains behind it to overtake, or simply wait
for further instructions without obstructing other trains;

3) Interchange: The station is shared by multiple lines and
passengers may transfer between lines;

4) Shared Track: Multiple lines share the same track; trains may
switch to different lines upon leaving the station.

Upon arriving at a station, a train first references its schedule, along
with any altering input from the user via the Service Controller, to
determine its departure behavior (to continue to the next station on
the line, switch to a different line, wait at a siding, etc.). The train,
station, and platform passenger lists are then updated according to the
origin-destination matrix of passengers at the station, and the change
in occupancy used by the Service Controller to calculate dwell times.
Next, the Service Controller calculates any additional delays that may
occur due to intended behavior, for example, a train attempting to ’U-
turn’ must wait until the corresponding track on the opposite line is
clear; or external factors, such as holding policies specified by the
user. Finally, the train departs after the total required delay resolves.

C. Dwell Time
Dwell time is affected by both system specific factors such as

passenger loads and behavior, and other external factors that can
affect operating conditions [19]. However, given that the latter is hard

6It should be noted that the approach in the preceding subsections essen-
tially applies continuous equations to discrete time-intervals and appropriate
treatment should be applied for long simulation steps, see [16]

Fig. 6. Singapore MRT network

to quantitatively measure, they are usually not included in dwell time
models, but considered through random parameters. Previous works
[20, 21] suggest that a straightforward approach to modeling dwell
time (DT ) is as a linear function of:

DT = β0+β1 ∗ boarding+β2 ∗alighting+β3 ∗ congestion (1)

where boarding represents the total number of boarding passengers,
alighting the total number of alighting passengers, and congestion a
combined term that reflects the interactions between passengers stay-
ing on-board (through-standees) and alighting passengers, through-
standees and boarding passengers, alighting and boarding passengers,
interference within alighting passengers as their number increases,
and interference within boarding passengers as their number in-
creases. The composition of the congestion term will vary from
system to system or indeed even from line to line, and can only
be determined from an understanding of existing conditions and
an analysis of which model best fits the available empirical data.
Alternatively, a microscopic simulation of crowd dynamics could be
used instead.

V. CASE-STUDY: SINGAPORE’S NORTH-EAST LINE

A. Introduction
In this section, we use the calibration of the Singapore Mass

Rapid Transit (MRT) North-East Line (NEL) as an example. The
NEL (the purple line in Figure 6, with end stations #6 and #7) is
fully automated and has a total of 28 operating trains servicing 16
stations across 20km. It has a daily ridership of approximately 350000
commuters, and provides a direct route from the primarily residential
north-east region of Singapore to the Central Business District in
the south. The calibration process was conducted using EZ-Link
(AFC) data provided by Singapore’s Land Transport Authority (LTA):
approximately 173 million trips, encompassing all rail and bus trips
made in the month of August 2013. Trip data included start and end
locations, start and end time, and trip date. Operating specifications
for the NEL were obtained from SBS (the NEL operator) and can be
found in [16].

B. Calibration
The parameters of all control functions implemented within the

Service Controller were then fine tuned to the observed conditions in
Singapore. Calibration of supply has typically been done by simply
utilizing historical data, or manually collecting data at certain stations,
then extrapolating and generalizing this data to the entire train
network. In recent years, due to rapid advances in communications
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technology and the increasing ubiquity of electronic devices, auto-
matic fare collection (AFC) via the use of smart cards (or even phones
in some cities) is being adopted by an increasing number of transit
agencies worldwide relaxing the burden of traditional data collection.
This data has often been used with train movement data (known as
automatic train control, or ATC) to match passengers to trains and
therefore calibrate supply. This, unfortunately, poses a problem in
cases like Singapore where ATC data is unavailable, which, due to
privacy concerns, is becoming more prevalent. We propose a solution
to this problem via the method of sequential calibration to calibrate
the supply of trains in a rail simulator. In this method, AFC data is
used together with General Transit Feed Specification (GTFS) data
and minimal manual data collection to calibrate many aspects of train
supply. As shown in Figure 3, the flow of a passenger through the rail
system consists of 5 components: walking from the fare gate to the
platform, waiting at the platform for the train to depart, traveling (that
is, time spent in motion on the train) to the destination, dwelling at
intermediate stations, and walking from the platform to the fare gate
at the destination. This can be expressed via the following equations,
where the superscripts i, j, and k represent the starting, ending, and
intermediate stations of a trip, and the subscripts refer to specific trip
time components:

µi,j = µi
walk + µwait +

j−1∑
k=i

µk,k+1
travel +

j−1∑
k=i+1

µk
dwell + µj

walk (2)

σ2
i,j =σ2i

walk + σ2
wait +

j−1∑
k=i

σ2k,k+1
travel

+ σ2
dwell(allstations) + σ2j

walk + 2Cov(i, j)

(3)

That is, the expected travel time between stations i, j assuming no
transfers is equal to the sum of:

1) The expected walking time within station i.
2) The expected waiting time, assumed to be independent.
3) The sum of expected travel-time-between-stations on the train.
4) The sum of expected dwell times at intermediate stations.
5) The expected walking time within station j.

If the components are assumed to be independent (except walking
times within i and j), then the variance of the expected travel time
between stations i, j can be expressed in a similar manner. Note that
the variance of the dwell times is represented as a variance for total
combined dwell time, since the dwell times at stations are likely to
be correlated for one specific trip. The aim of sequential calibration
is to, for each component:

1) Select the distribution function type.
2) Estimate the mean µ and variance σ2.
3) Generate the function parameters.

As the calibration progresses, information from the previous stage is
used to estimate parameters of the next stage. It is therefore important
to constantly ensure that the calibrated parameters are coherent to
improve the accuracy of the calibration procedure. In the interests of
expediency, the calibration procedure makes five key assumptions:

1) Individual specific walk times from/to the fare gate to/from the
platform are the same for given station i.

2) Passengers and trains arrive at stations independently from
other passengers and trains respectively.

3) Between station’s travel time is constant, with zero variance.
4) µwalk and µwait are independent.
5) Commuters are always able to board the first train that arrives.
It should be noted that assumptions (1) and (4) are not strictly

necessary: the former can be relaxed by doubling the number of
walking time parameters, and the latter by introducing a second
covariance term corresponding to the interaction between walking
times and waiting times. However, these assumptions help expedite

the calibration process; furthermore, walk time data collected in a
sample station seems to support the first assumption [16]. Assumption
(2) is a common assumption made in train modelling, and can also
be relaxed by examining passenger arrival rates for trends to predict
when passengers arrive in clusters as opposed to singly. However,
that is out of the scope of this paper. Assumption (3) is a reasonable
assumption given that the NEL is automated: trains are controlled by
a computer, and run at almost identical speeds, with variance only
occurring if a train delay affects the train behind it. However, the NEL
rarely runs at peak frequency; as such, cascading delays are unlikely
and travel time can be assumed to be generally constant. Finally,
Assumption (5) was addressed by calibrating the rail simulator for
both the off-peak and peak. In the former, denied boarding can be
safely assumed to be zero; as such, it may be possible to compare
trends across the two time periods and identify probabilities of denied
boarding as an area of future work. The results of each disaggregate
calibration were then checked against existing data and then used as
input for the next calibration stage (of the next associated model). For
example, passenger walking time parameters were estimated, verified
against station counts, and then used to estimate train dwell time
parameters. This was possible due to the nature of AFC data (which
captures commuters’ points and times of entry and exit into/from
the system, thus providing a good picture of overall travel times), as
well as well-structured individual components of travel time, which
allowed for reasonable simplifying assumptions to be made. For
details on each individual step of the calibration the reader is referred
to [24]. Regarding the goodness-of-fit-measure for the calibration,
Hollander et al. [23] provide a good summary of the advantages
of different objective functions. For the purposes of this estimation,
the objective function was chosen to be the root-mean-squared error
(RMSE) and the root-mean-squared normalized error (RMSNE) was
also calculated as control metric. The Simultaneous Perturbation
Stochastic Approximation (SPSA) algorithm as described in [24,22]
was run multiple times with different initial seeds for the dwell time
calibration step. At the end of the entire calibration process, the
estimated parameters are observed to fit simulated travel times to
actual times reasonably well, with a RMSE value of 176.23 seconds,
or about 18.4% of the actual average travel time of 960 seconds,
while the average deviation of each simulated trip from the actual
trip duration was about 29%. Approximately 57% of simulated travel
times fell within +/- 15% of the actual travel time, and approximately
68% of simulated times fell within +/- 20% of the actual travel time.
Figure 7 plots the CDFs of simulated and actual travel times against
each other. The curves are generally similar, although the variance
of actual travel times is slightly larger than that of the simulated
travel times. This is likely due to the presence of difficult-to-detect
factors in actual travel times that result in erroneous data, which
will be subsequently elaborated on. Figure 8 compares actual and
simulated travel times, with the x-axis representing the former and
the y-axis representing the latter. Each ’+’ represents a specific trip,
and the red 45◦ line represents the ideal ’perfect fit’, where every
simulated travel time matches actual travel time exactly. It can be
seen that the estimated/actual travel time pairs generally lie along
this line, demonstrating that a linear dwell time function results in a
reasonable approximation for the data.

C. Validation
In order to validate the parameters estimated in the previous

section, AFC data from an arbitrarily chosen weekday (Friday, 9 Aug
2013) was used. This data comprises approximately 170,000 trips
which were then fed as demand into the rail simulator. Heatmaps
were used to compare the distribution of demand in the calibration
day against the validation day, as shown in Figure 9.

The numbers on the axes correspond to the station numbers (for
example, ’1’ refers to station NE1). The distribution of origin-
destination pairs is largely similar across both days, with major
interchange stations such as NE12 (Serangoon) experiencing high
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Fig. 7. Distribution of Simulated vs. Actual Travel Times - Calibration

Fig. 8. Comparing Simulated and Actual Travel Times - Calibration

commuter flow. We also note that NE1 (Harbourfront) has a signifi-
cantly higher passenger flow on the validation day than the calibration
day, likely due to its popularity as a recreational location. The
calibrated parameters resulted in a RMSE of 204.21 seconds, or
19.8% of the actual average travel time of 1034 seconds. (Note that
the difference between these results and the results obtained earlier
exceed the standard deviation of the RMSE, which was roughly 0.3
seconds). The RMSNE value was 0.2679, a seeming improvement
over the estimated case; however, this was due to the longer average
travel times in the validation case, which was likely a result of
the flow of passengers to NE1 and back to the suburbs mentioned
earlier. Approximately 52% of simulated travel times fell within +/-
15% of the actual travel time, and approximately 65% of simulated
times fell within +/- 20% of the actual travel time. The parameters
estimated are therefore shown to constitute a reasonably accurate
model of travel time. Figure 10 plots the CDFs of simulated and
actual travel times against each other. We observe that simulated
travel times tend to be shorter than the actual travel times, once
again due to the validation day having longer travel times overall
than the validation day. This problem can likely be rectified via the
use of a larger sample size across multiple days for estimation, by
performing separate estimations for weekdays and weekends (with
Friday considered a weekend), etc. Figure 11 is very similar to
Figure 8, with the estimated/actual dwell time pairs generally lying
along the line of perfect fit. We therefore conclude that the approach
here presented is a valid method of estimating parameters, especially
when the goal is to simply obtain appropriate initial seed values

Fig. 9. Heatmaps of Calibration Demand vs. Validation Demand

Fig. 10. Distribution of Simulated vs. Actual Travel Times - Validation

for a secondary simultaneous calibration (or in other cases where
computational speed is prioritized over a high degree of accuracy).
Calibration improvements can be made at the cost of additional data
or computing power; these are briefly discussed in the next section.

D. Disruption Example
In [26], the proposed rail simulator was used for the assessment

of a bus-bridging disruption management strategy, using additional
shuttles between pairs of disrupted MRT stations. This was the first
application of the simulator and provides a good demonstration of
its capabilities. This bus-bridging strategy was used during an actual
real incident in 2013, when the NEL service was interrupted between
stations NE11 and NE17. Adnan et al. [26] compared this strategy
against a no extra service scenario, where travelers have to seek for
other existing alternatives namely buses, taxis, or walking. Several
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Fig. 11. Comparing Simulated and Actual Travel Times - Validation

metrics were obtained from the simulations, namely travel times,
dwelling time, waiting times, denied boarding and mode share across
the Singapore network. Unsurprisingly, the bus bridging strategy
substantially outperforms the no extra service scenario with, for
example: an average door-to-door travel time reduction of 36.8 min,
for all trips that are directly affected by the disruption; a reduction
of over 60 min in the average delay time for the trips to/from the
Central Business District that utilized the disrupted MRT; over 50%
reduction in denied boardings on the bus stops nearby disrupted MRT
stations; and a reduction of the taxi mode share by 13 percentage
points. Further details on this specific analysis can be fond in [26].

VI. CONCLUSION

We developed a new comprehensive rail simulator incorporated
within the SimMobility platform, which integrates rail supply with
other modes of transportation. The simulator captures not only supply
and demand interactions within the rail network, but also how these
interactions affect other modes of transport, and was successfully
calibrated only on AFC data to yield reasonably accurate estimates
of simulation parameters. The features of the proposed Service
Controller, a powerful entity that allows the user to construct a
wide range of scenarios, were demonstrated via the simulation of
a case-study in Singapore and shown to help in the assessment
of rail related policies and scenarios in complex urban scenarios.
Nevertheless, there is still much room for improvement. For example,
rail networks with manually driven trains (which require modeling
driver behavior) were not considered in the proposed framework.
More detailed models could also have been used; for example, the
dwell time model could have included a non-linear congestion term
in order to better capture crowding effects. A more ambitious long-
term goal would be to expand the rail simulator to model light surface
rail. These systems present an additional dimension of difficulty as
train-agents interact not only with passenger-agents, but also with
road conditions (cars, buses, pedestrians, etc.) and their own drivers
(the train-driver-agents mentioned above). The models used in the
Service Controller will therefore need to be significantly improved to
capture the increased degree of autonomy present in such situations.
Regarding the calibration presented here, a considerable number of
assumptions were used to improve the efficiency of the sequential
calibration process. Although this resulted in a reasonable fit, some
of these assumptions could be removed to obtain more accurate
estimation parameters. For example, a natural improvement would
be to use a non-linear dwell time function to replicate the increasing
marginal delay that each additional passenger has on dwell time. This
approach was used in [21], which fit a cubic function to the data. It
should also be noted that in this work, the NEL was calibrated in
isolation out of necessity, as the other lines in the Singapore rail

network were not yet developed in the simulation environment. The
sequential calibration process should therefore be revisited once the
entire Singapore rail network is modeled. Finally, any availability of
AVL data would allow us to validate the overall calibration method.
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