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Abstract—The development of a large scale agent-based
simulation model for the Greater Boston Area is presented,
closing the gap between state-of-the art integrated demand-
supply modeling techniques (SimMobility) with advanced en-
ergy estimation models (TripEnergy) and shedding light on its
practical application to large urban areas. This paper describes
the technical details of its three key components (activity-based
demand, multi-modal dynamic supply, and trajectory-based
energy models), the used data, the model estimation, integration
and calibration processes. The proposed model can simulate any
day with and without congestion in order to capture changes in
energy use across all dimensions of a mobility system, namely
temporal, spatial, modal or functional. For an average 24h in
the Greater Boston Area the simulated travel of 4.5-million
people resulted in 15-million trips and a total vehicle energy
consumption of 548 thousand equivalent gallons of gasoline. Our
proposed platform allows for the comprehensive and consistent
assessment of energy related policies, technologies and services
affecting traveler behavior, the transportation system’s and
vehicle energy performances.

Index Terms—Mobility, energy, simulation, microscopic,
activity-based, multi-modal.

I. INTRODUCTION

The objective of this research is to develop a large scale
transportation simulation model that can be used to estimate
energy consumption and optimize incentives for network-
wide energy consumption reduction. The System Model (SM)
modeling and simulation platform is developed to act as
a proxy for the real world and to replicate as closely as
possible travelers’ reaction to information and incentives, as
well as the multi-modal transportation system performance
for the Greater Boston area (GBA). SM consists of three main
components: supply, demand, and energy models. Supply and
demand are simulated using SimMobility [1] and the energy
consumption is simulated using TripEnergy [2].

SimMobility is an integrated agent-based simulation plat-
form used to evaluate a wide range of future mobility
related scenarios. It is comprised of three primary modules
differentiated by the time-frame in which we consider the

behavior and operation of an urban system: short-term (a
microscopic mobility simulation, few hours stimulated at 0.1-
second time resolution), mid-term (an activity-based model
integrated with a dynamic multi-modal assignment simulator,
daily simulation at 5-second resolution), and long-term (a
land use and long-term behavioral model, at 6-months to one
year resolution) [1]. For this work we are utilizing the mid-
term (MT) module where SimMobility agents behavior is
modeled in terms of activity, travel plans and actions [3]. It
is categorized as a mesoscopic simulator since it combines
the activity-based micro-simulator on the demand side with
macroscopic simulation on the supply side.

The energy model has two components: a trip matching
algorithm and a vehicle energy model. The matching al-
gorithm merges high-resolution 1-Hz velocity histories with
more representative but low-detail trip data (i.e., the trajecto-
ries produced from the mesoscopic simulator). The matched
velocity histories are then fed into the vehicle energy model
to produce energy estimates that account for driving style
and trip type [4, 5].

II. LITERATURE REVIEW

With advances in communications and computational
power, large-scale integrated models are becoming increas-
ingly common and complex. These models are typically
composed of several loosely interconnected models, each
with a specialized purpose. For example a land-use, demo-
graphic, and economic simulator (e.g. Urbansim [6]) feeds
into a demand modeler (e.g. ALBATROSS [7] or FEATHERS
[8], which then feeds into a traffic assignment simulator
(e.g. DynaMIT [9]). These components are often integrated
within platforms, such as TRANSIMS [10], CEMDAP [11],
or MATSim [12], which simulate both demand and network
assignment.

Nearly all transport models provide speed and density of
traffic on links in the network. This information can then
be used to estimate energy or emissions using a vehicle
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model. Coarse estimates can be achieved using empirically
measured energy and emission rates based on link speed with
models such as COPERT [13]. However, these models fail to
capture the effect of acceleration/deceleration on energy and
emissions. More accurate estimates can be made using high
resolution trajectories, such as with ADVISOR [14], MOVES
[15], VT-Micro [16], or CMEM [17]; but are computationally
intensive and are not practical for large-scale networks. More
recently, simulations have interpolated higher detail trajec-
tories from moderate-resolution trajectories produced by a
mesoscopic network simulation [18, 19]. These models rely
on traffic flow theory to model acceleration and deceleration
behavior of drivers based on traffic density, and infer vehicle
specific power from the interpolated trajectories.

The challenge in integrating long-term macroscopic mod-
els (e.g. housing and economics) and short term microsopic
models (e.g. traffic), is that it can impose certain limitations
on the simulation platform, such as restricting the ability
of agents to change their daily activity patterns. This poses
a problem when attempting to integrate auxiliary models,
such as emissions or energy models where outcomes may
be dependent upon intra-day or intra-trip changes.

III. DEMAND MODELS

Travel demand is modeled using three components: syn-
thetic population, pre-day model and within-day model. The
synthetic population provides a disaggregated set of individ-
uals as demand generators. The pre-day model estimates the
planned activities and trips of individuals and the within-day
model accounts for its modifications that occur during a day.

A. Population Synthesis

A fully disaggregated population of individuals, house-
holds, and vehicles with attributes is needed for agent-
based simulation. Such a population can be synthesized using
detailed samples and marginal total data available for the
simulated area. The synthetic population is generated in three
phases, (1) baseline generation with fixed work-trip distri-
bution, (2) auxiliary models and attribute assignment, and
(3) synthetic vehicle population and ownership model. The
baseline population is generated using Iterative Proportional
Fitting (IPF) [20]. IPF is a method to fit a joint distribution
of cells to match known marginal totals by proportionally
scaling cells across dimensions until error converges. Since
IPF is also used for fixed work-trip distribution, it has
been integrated directly into the population synthesis IPF for
improved accuracy [21].

The synthetic population was generated using US Census
data with aggregated marginals from the American Commu-
nity Survey (ACS) [22], disaggregated samples from Public
Use Microdata Samples (PUMS) [23], and trip distribution
marginals from the Longitudinal Employer-Household Dy-
namics Origin-Destination Employment Statistics [24].

In order to estimate energy and emissions, a detailed
vehicle fleet is necessary. A synthetic population of vehicles
allocated to individuals is also generated and assigned to
owners in the person population. This is achieved using a
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Fig. 1: Fixed work trip distribution fit

three-part process: (1) estimate a vehicle ownership choice
model as a multinomial logit model; (2) generate a pool
of assigned vehicle classes directly from individual persons
choices, and (3) assign a specific vehicle type to each vehicle,
based on its assigned class.

B. Pre-day
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Fig. 2: Pre-day Model Structure

Pre-day models follow the Daily Activity Schedule (DAS)
approach [25] to decide an initial overall daily activity
schedule of an agent. This includes tours, sub-tours, preferred
modes, departure times by half-hour slots, and destinations.
This is based on the sequential application of hierarchical
discrete choice models using a Monte-Carlo simulation. This
allows for a direct modeling of individual trip purposes and
is capable of capturing the dependencies between within-
day decision making, fundamental for the proper evaluation
of behavioral change and impacts. Figure 2 presents how
the pre-day models from lower levels are conditioned on
decisions made with models from higher levels. There are
three different hierarchies in the system: day pattern level,
tour level, and intermediate stop level.

1. Day pattern models: Agents decide on the types of
activities to be performed during the day. These activities
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can either be the primary activities of tours, or activities per-
formed at intermediate stops. After selecting their activities,
agents decide on the exact number of tours performed for
each activity type (e.g., work, education, shopping, recre-
ation, personal, or escort).

2. Tour level models: These include the tour
mode/destination models and tour time of day models.
Mode/destination choice models vary by primary activity:
for education tours the destination is known and therefore
only mode choice is simulated; for work tours, an additional
model is used depending on whether an individual has a
usual work location or not. If the usual work location is
known, only the tour mode is simulated. Otherwise if not,
then mode and destination are simulated simultaneously. In
addition, a work-based sub-tour generation model is applied
to work tours in order to simulate the number of sub-tours
performed by an individual during a work activity. Finally,
a tour time of day model is applied in order to simulate the
arrival and departure time for the primary activity of each
tour simultaneously.

3. Intermediate stop level models: An intermediate stop
generation model is applied for each tour in order to simulate
the number of stops within the tour. The mode/destination
choice is then simulated for each stop. Finally, the stop time
of the day model is applied in order to simulate the arrival
or departure time for each intermediate stop.

The pre-day models for GBA travelers have been estimated
using Massachusetts Travel Survey (MTS) data [26], which
include activity diaries for 33,000 individuals belonging to
15,000 households. Days are divided into four different sec-
tions: AM peak, PM peak, mid-day, and nighttime. Activities
in MTS were categorized into six main categories, which are
work, education, shopping, personal activities, recreation, and
escort [27]. Individual travel behavior is validated using the
data from future mobility survey in GBA.

C. Within-day
The within-day models take the generated DAS from pre-

day and modify it throughout the day to account for the
changes in schedule due to event triggers, such as incidents,
information, controls, or incentives. As the simulation pro-
ceeds, the schedules of the individuals are monitored. If
an individual is on schedule, their activities and travel are
simulated as per the schedule generated in pre-day. Otherwise
if the individual is off-schedule, their schedule is recomputed
for the rest of the day based on a framework similar to pre-
day, but adjusted for information on the current state [27].

Figure 3 shows the times at which people make their
trips classified by tour types. With the exception of under-
representing the personal tour peak during the day which is
probably due to the fact that the time of day model decides
the time in a hierarchical order (personal is decided after
work and education), the model successfully captured the
time of day choices for other tour purposes.

IV. SUPPLY MODELS

The supply model consists of the road network (i.e.,
geometry and traffic performance characteristics), the transit

(a) Work trips (b) Education trips

(c) Recreational trips (d) Shopping trips

(e) Personal trips (f) Escort trips

Fig. 3: Tours by time-of-day

network (i.e., bus and train routes, stops/stations and sched-
ules) and the mobility service controllers (for the operation
and decision making of bus, rail and on-demand mobility
services).

Fig. 4: Supply network

The road network in SM is represented by a hierarchical
structure composed of links, segments, lane groups, lanes,
connectors, and turnings. The vehicle simulation in the SM
supply simulator is mesoscopic where the segment is the
basic processing unit. Each segment represents a section of
homogeneous roadway which is further divided into two
traffic flow regions: the moving area and the queuing area
[9]. Vehicles in the moving area travel at some uniform
positive speed determined by a segment-specific, predefined
macroscopic speed-density function. Vehicles in the queuing
area form a horizontal queue whenever the arrival rate of the
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traffic flow exceeds the capacity of the segment. In terms of
resolution, the network is detailed up to the point of small
local streets. The final SM network for GBA has 17,817
nodes, 44,672 links, and 164,802 segments (see Figure 4).

Buses are also simulated to include bus stop related move-
ments and is composed of four steps: lane selection, entering
bus stop, boarding and alighting, and re-joining traffic flow.
Since our mesoscopic simulator is able to simulate vehicle
movement, the interaction between buses and the main flow
of traffic is also considered under this framework (such as
queue spillback). As a result, the impact of crowdedness,
waiting times, and denied boardings on traffic can be cap-
tured, which is important for assessing the effectiveness of
incentives and controls.

The rail controller was developed for SM as a mesoscopic
simulator with three different components: (1) train vehicles
agents with predefined capacities that constantly accelerate or
decelerate towards the defined speed limit; (2) a controller
that dynamically defines all movement properties (dwell
time, speed limits, dispatching) based on internal predefined
control functions and the current state of the network; and
(3) agents assigned with the rail mode in their DAS trips;
these agents are considered as rail users and are allowed to
interact with the rail controller and the train vehicle.

The rail network is constructed in the simulator as set of
station platforms as nodes connected by lines and poly-lines
as tracks. The attributes of a platform include the geograph-
ical location on the map and its associated walk times. Train
routes and schedules are defined in the SimMobility database
as an input to the controller (as a sequence of track blocks,
train stops and train dispatching frequency). The simulated
transit network includes 8,387 stops/stations, 12 commuter
rail routes, 13 rapid transit routes, and 183 bus routes.

On-demand mobility services is simulated to allow multi-
ple and different services to operate at the same time, e.g.,
regular taxi services and on-call services (Uber, Lyft). The
agents involved in these services are controllers (one per
each service), drivers, and passengers. Passengers can request
a trip by either hailing a taxi on the street or by sending
a request to one of the available controllers. Drivers can
both operate as taxi drivers or subscribe at the same time
to different on-call services. While operating taxis, drivers
can pick up passengers hailing on the street, without waiting
for controller instructions. If subscribed to an on-call service,
they can also accept instructions from the controller.

Figure 5 shows zone to zone vehicle flows validation be-
tween results from simulator and Massachusetts Department
of Transportation (MassDOT) count data, and zone to zone
vehicle travel time validation between results from simulator
and Uber travel time data in three time intervals. With the
exception of some data points, which maybe because of
different route choices, the simulator successfully reflected
real world traffic situations.

V. ENERGY MODELS

The energy estimator is based on the TripEnergy model
[2, 28], which matches lower-resolution data on vehicle trips

Fig. 5: Zone to zone flows and travel time validation

with a less representative set of high-resolution GPS data
from real-world driving. Here, the low resolution inputs are
the timestep average speeds for each vehicle simulated, and
the high resolution data are portions of 1-Hz velocity histories
from over 100,000 trips, accounting for over 28,000 hours of
real-world driving. Before simulation, these high resolution
trajectories are divided into 5 second partial trajectories and
stored in a compressed format such that they can be easily
accessed by the simulation on the fly [28].

These high-resolution partial trajectories are matched with
the simulated vehicles movement over a timestep based on
three inputs: (1) the average velocity of a given vehicle for
the 5-second time period being estimated, (2) the average
velocity over the preceding time periods and (3) the average
velocity over the following time periods. These three quanti-
ties are each binned, together pointing to a bin containing a
set of aggregate driving behavior parameters that have been
calculated from all matched partial trajectories taken under
similar conditions. This procedure is described in detail in
[28]. These high-resolution trajectory characteristics are used
to estimate the vehicle’s tractive and braking energy use
(Eaccel and Ebrake, respectively) over the timestep, which
are combined with the vehicle-specific efficiency parameters
for the total vehicle net energy consumption estimation:

Etot = Eaccel/ηdrive − Ebrakeηbrake + PidleT (1)

where Pidle is the idling power consumption, ηdrive is the
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peak efficiency between the energy storage device (gas tank
or battery) and the wheels, ηbrake is the average efficiency
between the brakes and the energy storage device for vehicles
with regenerative braking—parameters that are calibrated of-
fline in advance based on fuel economy test result data—and
where T is the trip duration. The current vehicle attributes
database, including vehicle mass and coastdown coefficients
needed for dynamometer tests and the unadjusted results
of the CAFE tests, considers approximately 10,000 vehicle
types tested by the EPA with model years 2010-2018.

VI. RESULTS

The complete integrated simulation takes about 22 hours
to run with 20 cores which can be improved when additional
resources are available given the parallel implementation in
SimMobility. A total daily personal vehicle energy consump-
tion of 531 GJ (which is equivalent to 0.95 gallons of gasoline
per capita) was estimated from a 24-hour simulation of the
GBA network. This equates to an average fuel economy of
25.8-MPG, which is slightly higher than the average fleet
wide fuel economy in the U.S. for 2015 of 22.0-MPG. This
discrepancy may be due to localized fleet differences in GBA
compared to the average U.S. fleet as well as increased
penetration of alternative fuel and higher fuel economy
vehicles since 2015.

Fig. 6: Fuel economy for different vehicles, by vehicle class.

The energy estimates for vehicle class matched the expec-
tations of vehicles performing better on highways compared
to stop-and-go travel, shown in Figure 6. Compared to trucks,
minivans, and SUVs; cars result in the greatest variability
in their energy estimates due to the wide range of vehicle
power trains, such as high-performance sport cars versus
hybrid and electric vehicles. Age groups also yielded varying
levels of fuel economy due to driving style (e.g. fast driving
younger drivers) and off-peak travel (e.g. older drivers). In
Figure 7 it would appear that suburban areas provide higher
fuel economy; however, this is likely due to less congestion
and higher traffic speeds experienced in these low density
areas.

VII. CONCLUSIONS

The integration of the state-of-the-art models of TripEn-
ergy and SimMobility offers a new avenue of research

Fig. 7: Average fuel economy of overall Traffic Analysis
Zones (TAZs) in the GBA

potential to evaluate real-time system response. Although
the tests performed need further improvements in terms of
calibration, runtime performance, and overall scalability, the
paper present a framework to evaluate systemic effects —in
both mobility and energy— of policies and controls. Further
simulations are being carried out to test the performance
of the proposed model when incidents and disruptions are
present in the network. Next steps will include integrating of
the simulation platform into a larger real-time optimization
framework that minimizes energy and emissions through
incentivized behavioral change.
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