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ABSTRACT 
Among the new transportation services made possible by the introduction of Automated Vehicles 
(AVs), Automated Mobility on Demand (AMoD) has attracted a lot of attention from both 
industries and researchers. AMoD provides a service similar to taxi or ride-sharing services, while 
being driver-less. It is expected to attract a huge fraction of travelers currently using mass transit 
or private vehicles and will have a disruptive effect on urban transportation. While most studies 
have focused on the operational efficiency of the technology itself, our work aims to investigate 
its impact on urban mobility. 

Our contribution is two-fold. First, we present a flexible AMoD modeling and simulation 
framework developed within a multi-modal agent-based urban simulation platform (SimMobility). 
The framework allows the detailed simulation and assessment of different AMoD operations 
together with an activity-based framework that accounts for changes in demand, such as activity 
participation, trip making, mode, destination or route choice decisions.  

Second, we focus our attention on the role of mass transit in a futuristic urban system where 
AMoD is widely available. Mass transit is already challenged by current ride-sharing services, e.g., 
Uber and Lyft, which provide comparatively better and cheaper services. This trend will plausibly 
be exacerbated with the introduction of AMoD, which may indirectly act as a replacement to mass 
transit. Our simulation results show that mass transit is irreplaceable, despite the high efficiency 
of AMoD, in order to avoid congestion and maintain a sustainable urban transportation system 
with acceptable levels of service. 
 
Keywords: Automated Mobility-on-Demand, autonomous vehicles, mass transit, activity-based 
modeling, agent-based simulation   
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INTRODUCTION 
New technologies and the ubiquitous use of smartphones have opened the possibilities for more 
convenient, affordable, fast and safe options in urban transportation. This has led to the emergence 
of mobility-on-demand (MoD) systems, such as Uber and Lyft, which aim to provide fast and 
reliable mobility that is catered to individualistic needs. At the same time, Automated Vehicle (AV) 
technology has advanced at an impressive pace. Corporations, like Google and Tesla (1), have 
been in a race for developing a fully automated vehicle. The combination of these two promising 
technologies, known as Automated Mobility-on-Demand (AMoD), has recently attracted interest 
among both researchers and industry (for example, Uber (2) has started testing AV programs in 
several states in the US). 

The term AMoD (3) designates a service similar to MoD or taxi, with the difference that 
vehicle operations are driver-less. AMoD combines the benefits of MoD and AVs in several 
aspects. First, operational cost is drastically reduced, given the complete removal of driver labor 
costs and superior energy efficiency of AVs. Furthermore, negative externalities, such as emissions, 
travel time uncertainty and accidents, may also reduce, as already observed for MoD (4) and for 
AVs (5). The latter also observes that AMoD will increase road network utilization, making it 
possible to transport more passengers with less congestion, with respect to privately owned cars. 
Fagnant and Kockelman (6) found that AV benefits would amount to between $2,690 and $3,900 
annually per vehicle, incorporating decreases in insurance, parking costs and traffic congestion. 

It is clear that AMoD is a disruptive technology that will deeply impact the transportation 
system. Most of the literature ((7), (8), (9), (10), (11)) has focused on the efficiency of AMoD and 
AVs, in terms of road movement and fleet management. However, only a handful of recent studies 
have shown the importance of considering changes in demand when designing such disruptive 
technologies. Azevedo et al. (12) assessed the sensitivity of AMoD fleet sizes and parking station 
configurations on individual mobility patterns, specifically with regard to modal shares, routes, 
and destinations. Martinez and Viegas (13) and ITF (14) focused on the mobility, mode 
performances and environmental changes that might result from large-scale adoption of shared and 
self-driving vehicle fleets in Lisbon and Helsinki respectively. 

Cities are increasingly focused on developing sustainable urban transportation systems 
with attempts to increase quality and access to public transport and non-motorized modes. In light 
of these initiatives, the question of the hour is: How will AMoD impact an urban transportation 
system? Merely studying efficiency of AMoD operations is not sufficient to answer this question. 
The demand for AMoD depends on both its attractiveness compared to other existing modes (such 
as private automobiles and mass transit) and on the creation of new trips due to enhanced 
accessibility. Would AVs lead to extreme on-road congestion if mass transit were to be discarded? 
The performance of the overall transportation supply system is of primary interest to urban policy-
makers. Will the ridership (and therefore revenue) of mass transit services decrease and, as a 
consequence, potentially lead to a downward spiral of reduced investment and level of service? 

Questioning the role of mass transit in the future thus becomes increasingly relevant. 
Debates are ongoing on whether current MoD will replace mass transit ((15), (16)). Researchers 
and transit authorities indicate ride-sharing as one of the possible causes for decline in transit 
ridership ((17), (18), (19)). Polzin (20) warns that the loss in revenue resulting from this decline 
would create a vicious cycle of decreased investment in public transport, which would in turn slow 
down infrastructure improvement and hamper the quality of service. Consequently, mass transit 
would experience an even larger decline in ridership. If these concerns are relevant now (with 
MoD), they will be even more so with the introduction of AMoD which is expected to lead to a 



Basu et al. (2018)  4 
 

rapid improvement of service performance and user convenience. These concerns have been 
confirmed in the literature as well (21). 

To answer questions like these, we follow an integrated approach, which embraces the 
operational aspects of the new technology while considering the response of individuals to their 
availability. To that effect, this work provides a two-fold contribution. First, we introduce a 
flexible framework, developed in the open-source platform SimMobility (22), for the detailed 
simulation of the operation of AMoD services. Designed to be modular and easily extensible, we 
expect the research community to greatly benefit through rapid development, testing and 
comparison of results. Current research works focusing on AMoD simulations lack in this aspect, 
which makes repeatability of experiments and verification of results almost impossible. 

Second, we apply this framework to a case study, where we investigate the role of mass 
transit in future urban transportation systems.  Will mass transit have the same vital importance as 
it currently does in the future when AMoD will be easily deployable? Using our simulation 
framework in a case study, we show that, in dense urban environments with infrastructural 
constraints, a mass transit system is still necessary to cope with high mobility demand. However, 
AMoD can also contribute greatly in improving urban mobility if integrated with mass transit. 
 
METHODOLOGY & FRAMEWORK 
Along with a brief introduction to SimMobility, we provide an outline for the design and 
implementation of AMoD services in our simulation framework. 
 
Overview of SimMobility 
SimMobility is a multi-scale agent-based simulation platform that incorporates time-scale 
dependent behavior modeling through activity-based frameworks. Considering land-use, 
transportation and communication interactions, SimMobility can be used for a variety of 
applications ranging from implementation of intelligent transportation systems and estimating 
vehicular emissions to evaluation of alternative future scenarios and generation of innovative 
policy and investment strategies. SimMobility encompasses three major components. 
 

1. Long-Term (LT): A macroscopic land use-transport simulator that involves creation of a 
synthetic population along with housing location choice, job location choice and car 
ownership choice at the temporal scale of days to months to years ((23), (24)); 

2. Medium-Term (MT): A mesoscopic supply simulator coupled with a microscopic demand 
(daily activity) simulator that involves mode choice, route choice, activity pattern and 
incident-sensitive (re)scheduling at the temporal scale of seconds to minutes (25); 

3. Short-Term (ST): A microscopic traffic simulator that involves lane changing, gap 
acceptance, route choice and acceleration-braking behavior at the temporal scale of a 
fraction of a second (26). 

 
This paper will focus on the MT simulator only since the AMoD framework has been designed for 
MT-level decisions. While it would be interesting to observe the effect of inclusion of such services 
on LT decisions, it serves as a direction for future research. The MT modeling framework is an 
integration of activity-based demand modeling systems with dynamic traffic assignment for 
modeling supply decisions. There are three components in the MT framework that interact with 
each other leading to feedback mechanisms for agent decisions. 
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1. Pre-day models daily activity travel patterns at the individual level for a synthetic 
population; 

2. Within-day simulates departure time choice and route choice decisions incorporating en-
route decisions such as re-scheduling; 

3. Supply provides network attributes and supply-based models for both private and public 
transportation modes. 

 
AMoD Framework 
After providing a brief overview of how AMoD fits into SimMobility, we proceed to explain the 
design and implementation in further detail. 
 
Overview 
The AMoD service is first made available in the pre-day, i.e. individuals from the synthetic 
population have access to it in their choice set while constructing their activity schedules. At the 
pre-day level, each individual makes a mode choice which is modeled using the random utility 
framework (27). The systematic utility of each mode is computed as a weighted sum of the 
following parameters: total travel time, which consist of in vehicle travel time, waiting time and 
walking time; travel cost, which consists of road tolls, ticket prices, service prices, etc., number of 
transfers in public transport, a dummy variable for the CBD, vehicle ownership, age and gender. 
A probability is computed for each mode depending on their utility, assuming a known distribution 
for the error term. Then, each individual makes mode choices based on these probabilities and 
constructs an activity schedule for the day, including the movement between locations as well as 
their preferred mode. We make assumptions on the generalized travel cost of AMoD (see 
Experimental Design section) based on literature since relevant data is not available for this mode. 
The reader should refer to Li & Biran (28) for further details about the underlying behavioral 
models. 

Travel times and waiting times are historical values, which are updated with the use of the 
day-to-day learning component shown in Figure 1, when "permanent or recurrent" changes on the 
system status quo are observed. This module feeds back supply outputs in the form of zone-to-
zone travel times and costs to the pre-day level to update travelers’ knowledge of the system. After 
a simulation is complete, the simulated costs, waiting and travel times are recorded, aggregated at 
the zone-to-zone level and fed back to the pre-day module for its next run (day), i.e., weighted 
averages of values from the previous and current iterations are used to update the historical values 
in the database. The pre-day simulation is then re-launched, in which the individual re-plans the 
activities and trips for the next simulation iteration (day). Assuming that there is indeed a change 
on travelers’ knowledge of the system, multiple iterations of the day-to-day learning are expected 
until convergence of these transferred values is achieved. 

Before expanding on the implementation, it is worth emphasizing the benefits of this 
approach. By using such a framework, we relax the common assumption that demand is fixed and 
pre-defined. In fact, in a multi-modal urban transportation system, such static conditions are hardly 
observed and it is crucial to consider partial behavioral shifts (based on differential utility), as our 
approach does, to provide a more realistic approach for studying the adoption and impact of AMoD 
at the system level. Furthermore, our framework is flexible enough to allow investigations under 
different hypotheses. For instance, we can determine a feasible price for AMoD operators by 
testing scenarios with different levels of price. The major contribution of our framework is to allow 
for the evaluation of impact of performance metrics on user adoption and vice-versa. For example, 
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a certain AMoD operational strategy may be widely accepted leading to large demand but is only 
able to maintain a required level of service till a certain level of demand. Therefore, the target price 
can be adjusted accordingly through experiments. We cannot present such analyses in this paper 
for brevity, but we emphasize that our framework enables this kind of research. 
 
Model and Design of AMoD in the Supply Simulator 
In the supply simulator, the AMoD framework is composed of three components: the passenger, 
the vehicle and the controller. The different interactions between them are shown in Figure 2 
through a control flow diagram. Our framework allows for simulating different AMoD services, 
each controlled by a separate controller, at the same time. The passenger sends a request to an 
AMoD service, specifying the intended pick-up and drop-off locations. The requests directed to 
an AMoD service are periodically processed by the relative controller. The processing consists in 
the creation of a schedule for each vehicle subscribed to that service. A schedule is a sequence of 
commands to instruct the vehicle. They can be of type pick-up a passenger, drop-off a passenger, 
cruise in a certain zone, and park. Each schedule is then sent to the intended vehicle, which will 
execute the sequence of commands. 

It is noteworthy that this mechanism is naturally suited to implement ride-sharing, i.e. 
serving two or more users with the same vehicle at the same time. For example, if we want 
passenger 1 to share a ride with passenger 2, it suffices to send to a vehicle a schedule containing 
the following commands: pick-up passenger 1, pick-up passenger 2, drop-off passenger 1, drop-
off passenger 2. Since the passengers, vehicles and the controller are interacting asynchronously 
through messages, the simulation is made fully parallelizable leading to significant savings in 
computation time. 

While unable to include a detailed description of the ride-matching algorithm here for 
brevity, we refer the reader to (29). The algorithm of the AMoD controller tries to assign each 
incoming request to an available vehicle periodically. The match is feasible if adding the pick-up 
and the drop-off of the new passenger to the schedule of the vehicle satisfies the following 
constraints. 
 

1. The waiting time of all the passengers already included in the schedule, as well as of the 
new passenger, must be below a certain threshold. 

2. For each passenger, we first estimate the minimum time that the passenger would spent for 
their trip if a vehicle were only serving them, going from their origin to their destination 
directly. Next, we compute the estimate of the time between their pick-up and drop-off, as 
specified in the schedule, which we call serving time. The difference between serving time 
and minimum time is the additional delay, which accounts for detours made due to the fact 
that the trip is not exclusively serving a single user, but is shared with others. We also 
impose that the additional delay be below a certain threshold. 

 
We consider 10 minutes to be the threshold for both parameters and the sharing capacity to be 2 
passengers in this study. 
 
CASE STUDY: AMOD & MASS TRANSIT 
We now apply the framework described above to consider the role of mass transit in future urban 
mobility. Will mass transit remain as relevant when AMoD is widely available? The answer to this 
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question will drive future investment in transportation infrastructure, which is the major motivation 
behind this case study. 
 
Experimental Design 
We designed three different scenarios which are separately simulated and subsequently compared. 
We consider a Base Case scenario where smart mobility services have not been introduced yet. 
The available modes are single occupancy car (Car), pooling with one extra passenger (Carpooling 
2), sharing with two extra passengers (Carpooling 3), public bus (Bus), Mass Rail Transit (MRT), 
traditional taxis (Taxi), motor-cycle (Motorcycle) and walking (Walk). The modal availabilities are 
in accordance with our study area, which we describe in the following section. 

In the Without Mass Transit scenario we introduce AMoD in lieu of mass transit modes 
like Bus and MRT. We assume that the behavioral preferences towards AMoD are the same as 
that of taxi and that the AMoD price is reduced by 40% (w.r.t. taxi) based on the literature (30). 
Network performance in the form of travel times were passed to the day-to-day learning module, 
which feeds back to the pre-day model to update individual choices. 

A final scenario, termed With AMoD, is constructed with the inclusion of AMoD along 
with availability of all modes from the base case scenario. Apart from the traditional on-demand 
door-to-door service, AMoD can also augment the rail service by providing first-last mile 
connectivity. This would cater only to trip legs that have trip-ends at MRT stations, due to which 
ride-sharing is also heavily encouraged. The initial parameter values for AMoD remain the same; 
however, the waiting time is increased by 5 minutes for each trip leg compared to walking to reflect 
the delay passengers would experience while waiting for the vehicle to arrive. Overall travel time 
for the first and last mile of the trip will be reduced by 87.5% as compared to walk, which is due 
to our modification of the access/egress time value in the utility equation for MRT from a generic 
walking speed (4 kmph) to an average AMoD speed (40 kmph). Note that we use the average 
AMoD speed for the access/egress time in the utility equation only for the first run of the process 
(as an a-priori value). Subsequent runs have updated AMoD access/egress times obtained from the 
supply simulation. The feedback methodology described earlier is utilized in this scenario as well. 

We conducted 24 hour simulations for each scenario in SimMobility using the study area 
mentioned in the following sub-section. The initial simulation was used to generate real-time 
parameter estimates such as travel times for different modes, which were then used as feedback 
for the choice models in the pre-day component (recall the feedback loop described earlier). The 
results of subsequent simulations, which represent the actual experiments, are summarized below. 
 
Study Area 
This case study was tested using a prototypical city - Virtual City, which consists of a moderately 
sized network and population, generated so as to resemble land use patterns, travel behavior, and 
activity patterns observed in Singapore. The total population in our Virtual City is 351,000 (~ 10% 
of Singapore) with an average tour rate of 1.14 per individual. The road network consists of 95 
nodes (intersections), 286 segments (road sections with homogeneous geometry) and 254 links 
(groups of one or more segments with similar properties). There are 12 bus lines, each having a 
constant service headway that ranges from 3 minutes to 9 minutes, spanning the region with 86 
bus stops. Virtual City also has 4 MRT lines with a total of 20 subway stations, and 24 Traffic 
Analysis Zones (TAZs) overall. Relevant maps have been shown in Figure 3. 
 
Results for Virtual City 
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As mentioned in previous sections, a strong suit of SimMobility is the flexibility to adapt demand 
models as a part of the pre-day simulation component (that generates the day activity schedule). 
Therefore, we are able to observe the changes in mode choice while comparing the pre-day 
simulation results for the three scenarios. The temporal distribution of total trips, obtained through 
the time-of-day (TOD) choice model is shown in Figure 4. Since the TOD model is largely 
dependent on individual socio-economic characteristics as independent variables, we do not 
witness significant changes in the pattern across the three scenarios, i.e. 4(a), 4(b) and 4(c). 

From Figure 4, we can see that the demands for Taxi and AMoD during both morning and 
evening peak periods are significantly higher compared to the remainder of the day. Therefore, we 
adopt a dynamic fleet sizing strategy, whereby the fleet size is selected to match or be slightly 
higher than the demand for the remainder of the day but will only match about 10-15% of the 
demand during peak periods. Despite this seemingly low fleet size, the network experiences 
considerable levels of congestion as we discuss in the following sub-sections making addition of 
further vehicles to the fleet counter-productive. 

We observe from Figure 5 that the sharpest increase in mode share for the Without Mass 
Transit scenario occurs in the case of AMoD. AMoD is also found to be more preferable to Taxi 
due to lower tariffs for both the futuristic scenarios. The consistently high Walk share is in 
agreement with a study by the Land Transport Authority (LTA) in Singapore that reported several 
South-East Asian hubs like Bangalore, Delhi, Mumbai, Beijing, Osaka, Shanghai, Tokyo and 
Singapore itself witnessing high mode shares for walking, ranging from 20-30% (31). Considering 
the With AMoD scenario, it is clear that the drop in Bus share is compensated by AMoD. An 
interesting point of note is a rise in the choice of MRT with the introduction of AMoD, thereby 
indicating that availability of first-last mile connectivity does play a role in enhancing the choice 
of mass transit. 

To evaluate the performance of the whole transportation system on a typical day, three 
categories of metrics are defined. 

 
1. System performance metrics reflect the system's overall behavior for a particular 

scenario. We are specifically interested in identifying the levels of congestion. To this 
aim, we compute segment density and queuing. Segment density is defined as the 
number of aggregated vehicles on a road segment over its length, which can be 
expressed in veh/lane/km. As indicators of queuing in the network, we investigate 
proportion of segments experiencing queuing along with their average queue lengths. 

2. User experience metrics reflect an individual's quality of travel in the network. We 
compute parameters of interest such mode-specific In-Vehicle Travel Times (IVTTs) 
and Waiting Times (WTs) at the trip level. Longer IVTTs might point towards high 
levels of congestion in the network, while longer WTs would indicate that the current 
supply parameters such as fleet size are not adequate for the existing demand. The total 
Travel Time (TT) is also computed as the sum of IVTT and WT, except for Car which 
does not have WT due to which TT is equal to IVTT. 

3. AMoD performance metrics: Introduction of AMoD warrants a separate examination 
of its performance. A preliminary evaluation of the ride-sharing algorithm can be made 
through observing the average vehicle occupancy and the proportion of shared trips. 
We would also like to explore the Vehicle Kilometers of Travel (VKT) (which acts as 
a proxy indicator of emissions) by AVs while in different states. 
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System Performance Metrics 
Since the morning peak has a higher trip volume than the evening peak (Figure 4) and we wish to 
examine the overall system in its most critical state, we drop the evening peak period from further 
analysis. Figure 6 shows segment density maps for Virtual City during the morning peak period 
and the off-peak period across the three scenarios. It is easy to observe that congestion for With 
AMoD scenario is comparatively higher than the base case, while the Without Mass Transit 
scenario experiences extremely high levels of congestion. It is interesting to note in the Base Case 
and With AMoD scenarios that congestion drains away during the off-peak period, as one would 
expect. However, in the Without Mass Transit scenario, congestion deteriorates considerably. 

To examine the queuing patterns, the number of queued vehicles and total queue length 
were averaged over the morning peak and off-peak periods, following which we focused only on 
the segments which had a queue. For the morning peak period, 64% of segments experienced 
queuing with an average queue length of 6.6 meters in Base Case. This increased to 69% with a 
massive jump in queue length to 229 meters for Without Mass Transit, while With AMoD had a 
queuing rate of 67% with an average queue length of 49 meters. 

Similar trends, although of lower magnitudes, were observed for the off-peak period as 
well. Base Case had 28% segments with 0.1 meter as the average queue length, indicating minimal 
levels of congestion. As observed from the congestion maps, With AMoD also experienced 
minimal congestion with 49% of segments experiencing queuing but with an average queue length 
of only 0.2 meters. The extent of unexpectedly high congestion in the off-peak period for Without 
Mass Transit can be witnessed through a queuing rate of 41% with a staggeringly large average 
queue length of 1100 meters. 
 
User Experience Metrics 
An important parameter that define a user's travel experience is travel time, which has two 
components - IVTT and WT. We present cumulative distribution functions for mode-specific 
travel times in Figure 7. We keep MRT out of this analysis, since it operates on a fixed schedule-
based service and its user experience is not affected by on-road congestion. Although increased 
demand would require an increase in train capacity or a more frequent service, this investigation 
is an avenue for future research. 

Bus users have almost similar waiting experiences in both the Base Case and With AMoD 
scenarios due to the constant headway-based bus service. However, users in the With AMoD 
scenario have a higher IVTT due to more on-street congestion. While 65% of Taxi users have to 
wait for less than 15 minutes in Base Case, the same is experienced by 80% in the other two 
scenarios indicating a good level of service. However, due to congestion, the IVTT increases 
considerably with the 95th percentile being around 15, 45 and 30 minutes respectively for the three 
scenarios. Car users experience a similar trend in IVTT as well. The dynamic fleet sizing strategy 
provides a lower WT for AMoD users in the With AMoD case. This scenario also witnesses lower 
IVTT and hence, lower total travel time. The higher congestion in the Without Mass Transit 
scenario has resulted in the comparatively largest travel times for AMoD users, leading to the most 
unfavorable travel experience. 
 
AMoD Performance Metrics 
We now examine the performance of AMoD specifically to gain deeper insights into their impact 
on the system as a whole. Considering the considerably higher demand for AMoD in the Without 
Mass Transit scenario, we observe the average vehicle occupancy to decrease from 1.80 to 1.47 in 
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the With AMoD scenario. The proportion of shared trips also decreases by around 30%, thereby 
indicating that AMoD adjusts to incorporate more ride-sharing as demand increases. 

For the With AMoD scenario, around 60% of total VKT is spent while traveling with a 
passenger, 35% while going for pick-up or parking, and 5% for empty vehicle cruising. The same 
observations for the Without Mass Transit scenario are 55%, 40% and 5% respectively. The 
considerably high non-trip contribution to VKT has been pointed out earlier in our discussions, 
which can be decreased through future explorations of better ride-matching and routing algorithms. 
However, an interesting observation is that higher demand may lead to an increased contribution 
to VKT while going for a pick-up. 
 
Discussion 
Advancements in AV technology and MoD services herald the arrival of smart urban mobility in 
the next decade. In the light of concerns about what this might bode for the future of mass transit, 
it is important to investigate the impact of AMoD on an urban multi-modal transportation system. 
We undertake a simulation-based approach to examine hypothetical scenarios for different policy 
implementations with regard to the role of AMoD. 

While With AMoD encourages the introduction of AMoD and suggests that it might be 
useful for boosting mass transit ridership by providing first-last mile connectivity, Without Mass 
Transit represents a scenario where mass transit has been completely discarded. While we obtain 
mode-specific insights about individual travel experience, all three categories of scenario 
evaluation metrics point out that completely replacing mass transit with AMoD might not be 
possible without adversely affecting user experience and level of service. Making mass transit 
unavailable would indeed force a modal shift to on-road modes like cars, taxis and AMoD. 
However, the resulting congestion would make for a terrible travel experience and lead to a 
complete breakdown of the system due extremely heavy congestion. Mass transit would be 
irreplaceable in areas with dense demand due to its high passenger/space ratio: one bus equals 
about 30 cars in terms of capacity, whether the car is automated or not. 

A key contribution of this research has been to clearly identify how policy-makers should 
encourage the growth of AMoD and attempt to incorporate it in the existing transportation system. 
Results from With AMoD look promising enough to perhaps consider providing subsidies to 
services that encourage use of mass transit, such as provision of access/egress connectivity. 
Therefore, future research should focus on the scenarios in which future urban mobility shapes 
AMoD not as a competitive but complementary service to mass transit. 

We acknowledge that this is a preliminary investigation and the trends we observe in our 
case study cannot be generalized. Therefore, several research avenues remain open for further 
exploration. Supply decisions such as optimal fleet sizing and more refined algorithms for re-
balancing and ride-sharing would be important contributions. Further scenarios can be designed to 
test different policy implementations of AMoD, such as a modified AMoD price scenario for 
subsidized AMoD services providing connectivity to mass transit. The effects of preferential traffic 
treatments like transit signal priority or high-occupancy vehicle lanes should be evaluated. The 
interplay between mass transit and AMoD deserves further investigation. Redesigning mass transit 
services (headways, routes, capacities, etc.) based on changes in vehicle occupancies on different 
transit lines due to availability of AMoD is a particularly promising avenue. 

Finally, the next step would be to test these scenarios on different urban scenarios, 
including mixed urban and suburban areas, contrasting a transit-friendly city like Singapore with 
automobile-dependent regions such as Boston, and different levels of car ownership and income. 
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All these aspects are expected to impact the mode share and the performance of the transportation 
system. The authors do not expect AMoD to be a panacea for all the urban scenarios; we rather 
reinforce that urban policies must be driven by inherent transportation cultures. 
 
CONCLUSION 
AMoD is unanimously considered as a game-changer in urban transportation. In order to fully 
exploit the benefits and limit the potential negative effect, systematic investigation is needed. 
Focusing on the performance of the operations of AMoD only is not sufficient. To correctly capture 
its impact on future urban transportation, an integrated approach is needed which also encompasses 
how travelers will respond to the availability of this technology. To this aim, we presented an 
AMoD framework in SimMobility, that allows us to evaluate the adoption of the new service by 
the travelers as well as its operations. Furthermore, we apply the framework to a case study which 
shows that mass transit may play an irreplaceable role in urban transportation, especially under 
scenarios of wide adoption of AMoD. Having proposed a method to quantify the implications of 
discarding mass transit and demonstrated it in a specific AMoD-inclusive urban scenario, the next 
question we ask is: When are we better off without mass transit, and when does mass transit 
complement AMoD? 
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FIGURE 1  Feedback loop mechanism in SimMobility Medium-Term (adapted from Lu et al. (25)). 
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FIGURE 2  Control flow diagram for the AMoD framework. 
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(d) 
FIGURE 3  Maps of the Virtual City showing (a) TAZ boundaries, (b) road network, (c) bus 

network, and (d) MRT network. 
  



Basu et al. (2018)  17 
 

 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
(h) 

FIGURE 4  Temporal distribution of total trips (a, b, c), taxi demand and supply (d, e, f) and 
AMoD demand and supply (g, h) for all possible scenarios. 
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FIGURE 5  Changes in modal shares across the three scenarios. 
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FIGURE 6  Congestion maps for peak and off-peak periods. 
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FIGURE 7  Overall user experience metrics for different modes across scenarios. 

 


