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ABSTRACT1
In this paper we present Tripod, a smartphone-based system to influence individuals’ real-time2
travel decisions by offering information and incentives with the objective of optimizing system-3
wide energy performance. When starting a trip, travelers can access Tripod’s personalized menu4
via a smartphone app and are offered incentives in the form of tokens for a variety of energy-5
reducing travel options in terms of: route, mode, ride-sharing, departure time, driving style and6
trip making. Options are presented with trip information to help travelers understand the real-time7
mobility attributes and energy consequences of their choices. By accepting and executing a specific8
travel option, a traveler earns tokens that depend on the system-wide energy savings created. This9
encourages them to consider not only their own energy cost, but also the impact of their choice10
on the system. Earned tokens could then be redeemed for services and goods from participating11
vendors and transportation agencies.12

Little new infrastructure would need to be created - millions of travelers already have smart-13
phones capable of meeting the needs of the proposed system. Our proposed incentive-based system14
can be implemented for a small fraction of the cost of infrastructure-heavy projects, and at little or15
no cost to local, state and federal governments. We also showcase the current state of development16
of Tripod with numerical experiments for the Downtown Boston (Boston Proper) area and for a17
limited set of incentivized choices, with system-wide energy savings between 3 and 8%.18

19
Keywords: incentives, system optimization, energy, real-time optimization, prediction, personal-20
ization21
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INTRODUCTION1
Inefficiency in transportation systems is an issue affecting millions of people every day (see for2
example (1)). It causes increased use of energy and pollution, as well as economic loss, stress, and3
road rage. State and local transportation departments are highly motivated to manage transporta-4
tion in a more cost-effective manner, but lack the tools to do so. Real-time demand management5
has become one of the potential new paths towards more efficient networks, especially with the6
increased capabilities of information and communication technologies, computation power and7
mobility-centered devices and software.8

From the real-time traffic management perspective, externalities such as congestion and9
vehicular emissions have been historically addressed with information provision, pricing and, more10
recently, incentives and quantity control.11

Real-time information provision has been widely documented in the literature and both12
the behavioral, network conditions modeling and optimization and implementation efforts were13
extensively reported (see for example the review in (2) and (3)).14

Road pricing has received a lot of attention since the seminal paper by (4), both from the15
theory to the actual implementation. In the context of a congested networks, various mathematical16
models and algorithms have been proposed for optimizing tolls towards better road network per-17
formance (see (5) or (6) for comprehensive reviews). Within pricing strategies, dynamic pricing18
solutions were studied much more recently. Gallego et al. (7) first introduced its optimization for-19
mulation and proposed one solution by maximizing revenue under stochastic aggregated demand.20
Since then, several frameworks have been proposed ((8)) but only a few actual implementations21
have been tested ((9)). However, one of the main concerns with road pricing is how it is perceived22
by the traveler: an unfair additional cost or just another tax. If equity represents one important23
factor when considering the pricing strategies, their high implementation costs also justify the low24
applications currently observable worldwide.25

Recently, quantity control strategies have been under the spotlight. Congested roads are26
in the end a scarcity problem and this can be dealt with either a price instrument, a quantity27
instrument or a combination of both. Quantity control has been implemented most commonly28
through vehicle quota or usage restrictions. More recently, quantity control has been thought as29
the provision/distribution of a limited number of credits to be used when traveling on a congested30
link/path where the capacity is limited. Typically, the equilibrium price of credits is endogenous31
and clears supply and demand. Given the unpopularity of pricing, the direct redistribution of value32
that characterizes quality control mechanism is therefore appealing. Yang and Wang (10) examine33
an alternative simple but forceful tradable credit distribution and charging scheme, where credits34
are universal for all links but link-specific in the amount of credit charge. Lahlou and Wynter35
(11) consider tradable credits scheme for optimizing the performance of a bi-modal network using36
atomic game framework so as to model explicitly the exchange process across users. Efficient Nash37
equilibria existence is shown together with the compliance of potential regulator policies. Different38
market designs for tradable credit schemes have also been analyzed. Nie (12) for example, exam-39
ines the effects of transaction costs on two types of tradable credit schemes: an auction market40
and a negotiated market. DePalma et al. (13) and Akamatsu et al. (14) presents a methodology to41
compare pricing and tradable credit schemes under stochastic demand and prove the increased ef-42
ficiency of the latter. Similarly, Dogterom et al. (15) recently focused on the behavioral responses43
to different tradable credit schemes that target personal travel and point behavioral economics and44
cognitive psychology as domains to explore under this research stream. While existing literature45



Lima de Azevedo et al. 4

clearly identifies the benefits of tradable credit schemes (6, 16–18), the extension of such schemes1
to multi-modal systems with different users and transportation providers has been hampered by its2
design and technological implementation complexity.3

Finally, incentive-based demand management strategies are gaining increasing attention4
because they are generally considered more acceptable by the traveling public and policy makers.5
However, while congestion charging has been heavily studied, relatively little literature focus on in-6
centives, how these can be deployed for real-time travel demand management and how the traveler7
would react to it. Leblanc et al. (19) carried out a stated-preference survey in the San Francisco8
Bay Area to analyze how different incentive schemes can affect commuting decisions. As pre-9
dicted by behavioral economics, travelers were found to be much more sensitive to charges than to10
rewards, but also different sensitivities were found towards different incentives, e.g.: cash rewards11
proved to be more efficient than an HOV pass. Such evaluations are fundamental in the design and12
optimization of potential real-time incentive schemes which may, on the other hand, benefit from13
personalization to account for such sensitivities. Similarly, Kumar et al.(20) presented a detailed14
behavior analysis and modeling effort aimed at understanding how incentives affected traveler15
choices by using data collected from the Spitsmijden reward-based experiment. The Spitsmijden16
(21) experiment was a peak rewarding project in four highway corridors in The Netherlands to17
investigate the behavioral responses of personal vehicle users towards static incentives targeting18
departure time behavioral shifts. This peak rewarding experiment highlights the importance to19
design revenue-neutral incentive-based mechanism to ensure a sustainable outcome. Other exper-20
iments followed to explore the behavioral reaction to point-based, lottery-based, personalized or21
smartphone-based static incentives ((22), (23), (24) and (25)). All these proposed schemes are fun-22
damental in capturing different behavioral shifts but are limited in effectively managing demand in23
real time.24

Optimization mechanisms focusing on incentives have been documented only very re-25
cently. Rey et al. (26) evaluated a lottery-based revenue-neutral incentive mechanism to reduce the26
congestion in urban transportation systems by promoting public transit usage during off-peak peri-27
ods. They "derived the theoretical equilibrium for this decision-making game and test the validity28
of the proposed mechanism through monetized laboratory experiments". Hu et al. (27) on the other29
hand, proposed a system that considers traffic conditions in a real-time routing guidance app with30
a point-based scheme. Alternatives with higher points (that can be exchanged for rewards), such31
as traveling during off-peak times or less congested routes, are presented to the user for network32
congestion mitigation. A pilot study was deployed in Los Angeles, California, in 2013 and results33
showed behavior shifts but overall network performance measures were not presented. Gao et al.34
(28) proposed, RoadRunner, an in-vehicle app for quantity control without costly roadside infras-35
tructure. Harnessing vehicle-to-vehicle communications, the number of vehicles in a network is36
managed through a token-based exchange mechanism. Although the exchange and control formu-37
lation were not fully explored in this study, both software and hardware were successfully tested in38
field experiments and network performance assessment was carried out in simulated environment.39

In summary, the theory has vastly showed us that shifting travelers to decisions that improve40
network efficiency, such as off-peak trip making, less congested route choice or transit and shared41
ride usage, would lead to considerable savings in externalities. Along with pricing and quantity42
control strategies, incentives have been proposed by the transportation economics field to achieve43
this goal and theoretical proofs have been presented. However, the design, implementation and44
operation of such strategies is still a challenging question. Smartphone apps are increasingly used45
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to shift travel behavior for more efficient decision making (29). Many apps with static incentives1
(such as (30), (31) and (32)) can now be found in app stores for different environments, modes and2
targeted users. Yet, real-time incentive schemes optimization that account for predicted network3
conditions are still rare, targeting a limited population segment and/or limited set of traveler’s4
choice dimensions ((33)).5

In this paper we focus our attention on a new real-time incentive schemes, Tripod, to maxi-6
mize energy savings at the (multi–modal) network level. When starting a trip, travelers can access7
Tripod’s personalized menu via a smartphone app and are offered incentives in the form of tokens8
for a variety of energy-reducing travel options in terms of: route, mode, ride-sharing, departure9
time, driving style and actual trip making. Options are presented with information to help travelers10
understand the energy and emissions consequences of their choices. By accepting and executing a11
specific travel option, a traveler earns tokens that depend on the system-wide energy savings she12
or he creates, encouraging them to consider not only their own energy cost, but also the impact of13
their choice on the system. Tokens can then be redeemed for services and goods from participating14
vendors and transportation agencies. Tripod’s novel design and architecture 1) leverages the exist-15
ing incentive and tradable credits schemes in the literature and proposes a new solution to optimize16
incentives in real-time under a fix budget; 2) is a new full system architecture that handles incentive17
provision and rewarding without new infrastructure; 3) integrates prediction and personalization18
in the optimization framework 4) optimizes the entire multi-modal system for system-wide energy19
savings. Tripod is still under development and this paper presents the general architecture and20
control logic of this innovative system. We also showcase the current state of development with21
numerical experiments for the Downtown Boston area (Boston Proper) and for a limited set of22
incentivized choices.23

TRIPOD’S RATIONALE24
In the previous section a high-level concept of Tripod was introduced. Important premises still25
need to be introduced before the architecture design, implementation and solution formulation are26
described in more detail.27

Tripod and traveler’s decision making28
• a traveler is assumed to make mobility choices at the origin and en-route. A mobility29

choice is defined by four dimensions: mode (inc. shared modes), departure time, route,30
and driving style (if driving). These are the dimensions incentivized by Tripod along31
with trip cancellation. The latter is not covered in this paper as both its behavioral and32
optimization implications require considerable modifications to the proposed approach;33

• while en-route, a traveler cannot change mode or departure time, but can change route34
or/and driving style;35

• only opt-in travelers (subset of the travelers population) can access the Tripod app and36
make a trip request;37

• for each user, trip requests can happen both at the pre-trip and en-route level and form38
control points from whom high fidelity personal data is available through the Tripod app;39

• at the Tripod system level, requests can be received at any point in time;40
• Tripod incentives are provided in the form of tokens for each alternative in the personal-41

ized trip menu for a given requested trip;42
• if a user decides to select one of the Tripod menu options, the Tripod app will track the43
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user during the trip and tokens are provided only if the realized trip coincides with the1
selected option;2

Tripod tokens and rewards3
• tokens are awarded to a menu option proportional to the system-wide energy saving,4

which encourages opt-in travelers to consider not only their own energy savings but also5
the impact of their choice on the system;6

• tokens are not allocated directly to specific users, but are awarded to any menu alterna-7
tive selection and execution that contributes to the optimization of system-wide energy8
savings;9

• the marginal energy saving for each alternative presented to the Tripod user is calculated10
based on predicted traffic conditions for the requested trip and user specific preferences;11

• the internalization of the marginal cost through tokens will potentially drive the system12
towards optimum;13

• tokens can be redeemed for services and goods (rewards) at participating vendors and14
agencies. The available services and goods are assumed to be static and can be translated15
to a set of monetary values of reference for each reward;16

• the actual token value can be perceived differently by each user;17
• tokens can be accumulated; when a user has enough tokens to purchase at least one18

reward, the user can still save or accumulate more tokens;19
• for practicality we assume that spending the tokens on rewards does not increase system20

energy consumption. This assumption should eventually be relaxed and consider the21
different types of rewards available.22

TRIPOD’S ARCHITECTURE23
Tripod maximizes system-wide energy savings by nudging control point travelers through a per-24
sonalized mobility menu. The menu is presented to the traveler via Tripod’s smartphone User25
Interface (UI) offering tokens for certain alternatives and providing predictive information on its26
attributes. System-wide maximization of energy savings is a challenging problem. It needs to take27
into account system-wide supply and demand interactions as well as individual specific preferences28
towards different alternatives and token awarding. Since we aim to have a real-time system, the29
complexity is critical. Therefore the problem is decomposed into two tractable, loosely coupled30
problems: the System Optimization (SO) and the User Experience (UE). Figure 1 below gives an31
overview of Tripod’s higher-level framework.32

SO 1) estimates the current state of the transportation network; 2) predicts the state of the33
network given different token awarding strategies; 3) estimates the energy savings based on pre-34
dicted conditions for different token awarding strategies; 4) optimizes the token awarding strategy;35
5) provides system-wide token energy efficiency value in terms of energy savings per token to the36
UE.37

The second component, UE, includes three modules: User Optimization (UO), User Inter-38
face (UI), and a preference updater. The first is responsible for generating a personalized menu of39
travel options to Tripod users upon request, with updated information and incentives based on the40
system-wide token energy efficiency, the transportation performance predictions and the energy41
impacts generated by SO. The menu includes alternatives that are attractive to the traveler based42
on a utility function, where coefficients for explanatory variables that represent personal tastes are43
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FIGURE 1: Tripod Framework

estimated from historical data, and values of alternative attributes such as travel time and energy1
cost are calculated based on the consistent, anticipatory information from Tripod’s SO. Such a per-2
sonalized menu aligns with the traveler’s interest, and makes the system’s architecture sustainable.3
It encourages energy efficient choices for the traveler by presenting explicit, accurate energy cost4
information, and notifying the traveler of incidents and providing alternatives. The UO formulation5
is described in more detail in a dedicated section below.6

The second module builds upon the Future Mobility Sensing app (34), and extends it with a7
dedicated set of Tripod UIs (Figure 2) as well as sensing and tracking features. The UI development8
description is out of the scope of this paper and details on its initial implementation can be found9
in (35).10

The preference updater continuously revises user preferences based on her/his observed11
choices together with observed choices from users of the similar group. These updates are impor-12
tant for the success of Tripod’s personalization and are briefly presented in the UO section (a more13
detailed description of the preference update method formulation can also be found in (36)).14

System Optimization: Framework15
SO builds on a state-of-the-art dynamic traffic prediction model, DynaMIT (37, 38), which pro-16
vides real-time predictions on how users respond to provided information and incentives, and on17
TripEnergy (39), a model that estimates the energy and emission impacts of travel for a variety of18
vehicle types, driving behaviors an environmental conditions.19

DynaMIT is composed of two core modules, state estimation (SE) and state prediction20
(SP). The overall framework is depicted in Figure 5 and its modules are summarized below.21

Both DynaMIT’s SE and SP rely on an integrated demand and supply simulation. The22
demand simulator consists of choice models to capture habitual route and en-route choice behavior23
as well as response to prescriptive and descriptive real-time information. The supply simulator24
combines macroscopic speed-density relationships and deterministic queuing models. For more25
details, the reader is referred to (37).26

During each DynaMIT execution cycle, the SE module uses a combination of historical in-27
formation and real-time data from various sources (surveillance sensors, traffic information feeds,28
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FIGURE 2: Tripod menu UI
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weather forecasts) to first calibrate the demand (origin-destination matrices, behavioral parameters)1
and supply parameters (segment capacities, speed-density function parameters) of the simulator so2
as to replicate prevailing multi-modal network conditions, i.e., estimate the state of the entire net-3
work for the current estimation interval (e.g.: 5 minutes). Based on this estimate of the current4
network state, the SP module predicts future detailed traffic conditions on the multi-modal network5
for a pre-defined prediction horizon (e.g.: 30 minutes), consistent with a selected control/incentive6
strategy (please refer to (38) for more details on DynaMIT). Note that the route, departure time7
and mode choices of a simulated traveler change in response to the incentives and the predicted8
trip attributes (e.g.: travel time) presented through a simulated Tripod menu, which is personalized9
given token a specific energy efficiency strategy. This yields predicted network travel times which10
are then combined with the original incentives and trip attributes (using the method of successive11
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averages or MSA) to obtain a revised trip attributes information. This procedure is iteratively per-1
formed until consistency is achieved, i.e., the provided travel time and predicted network travel2
times are within a pre-specified tolerance limit.3

Together with the network state prediction, trip and system-wide energy consumptions are4
computed during the state prediction cycle using TripEnergy. This model accurately reconstructs5
possible driving behavior (speed and acceleration profiles) and accounts for different vehicle and6
drive-train characteristics ((39)). The energy savings are then computed by subtracting the energy7
consumption for a candidate incentive strategy and the prediction without incentives.8

Within SP, the incentive strategy optimization process is invoked. Within this process, a set9
of candidate token energy efficiency strategies, e, is generated and used in the prediction horizons10
to be evaluated within each prediction in terms of system-wide energy savings. Again, in Tripod’s11
formulation, an incentive strategy is defined by a set of energy efficiency values in terms of energy12
savings per token for the prediction horizon. This strategy definition is further discussed in the13
formulation section below.14

After comparing the set of candidate token energy efficiency strategies, SO returns to UE15
an optimal token energy efficiency that is used to award incentives for the next roll period.16

In summary, the SO framework extends the DynaMIT system in the following aspects:17
(1) simulating how users will respond to Tripod information and incentives, so that prediction18
outcomes are consistent with what users expect if they respond to Tripod; (2) incorporating an19
energy estimation model, TripEnergy (39), within the supply simulator that takes into account20
the characteristics of the vehicle and trip’s low-resolution speed and acceleration profiles; and (3)21
integrating the optimization of token energy efficiency with the state prediction and trip information22
provision.23

System Optimization: Formulation24
The transportation network is represented as a directed graph G(N,A) where N represents the set25
of network nodes (|N| = n) and A represents the set of links (|A| = m). Consider an arbitrary time26
interval [t0−∆, t0] where ∆ is the size of the state estimation interval (e.g.: 5 minutes), also termed27
as the roll period. Assume that the length of the current state prediction horizon is equal to H∆ and28
extends from [t0, t0+H∆](each ∆ interval within the prediction horizon is termed a prediction sub-29
interval). Further, assume that the token energy efficiency is fixed for a time interval equal to the30
roll period ∆ and is aligned with the state estimation intervals of DynaMIT. As noted previously,31
the decision variables in the optimization problem are the vector of token energy efficiencies for32
the prediction horizon, denoted by e = (e1,e2, . . . ,eH). Note that the token efficiency for a given33
prediction sub-interval or single roll period h can be formulated as a vector (eh), with an array of34
values by origin/destination, driving style, mode or ultimately by individual eventually potentially35
improving the efficiency of the control system.36

The rolling horizon approach is illustrated in Figure 4 for a case where H = 3. In the exe-37
cuting cycle C1, the decision variables for the system optimization are the token energy efficiencies38
for the prediction sub-intervals P1–P3. If the optimum solution is denoted by e∗ = (eC1

1 ,eC1
2 ,eC1

3 ),39
then the token energy efficiency for the next state estimation interval (execution cycle C2) is given40
by eE2 = eC1

1 . Similarly, the decision variables in the optimization for execution cycle C2 is the41
vector of token energy efficiencies for the next set of prediction sub-intervals.42

Next, define the collection of vehicles ν = 1, . . .V on the network during the prediction43
horizon [t0, t0 +H∆] and let the predictive travel time guidance be denoted by ttg = (ttg

i ;∀i ∈ A),44
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FIGURE 4: Illustration of the rolling horizon approach

where ttg
i represents a vector of the time dependent link travel times (guidance) for link i. Further,1

let the simulated trajectory of vehicle ν be denoted by τττν and the collection of vehicle trajectories2
by τττ = (τττ1, . . . ,τττV ). Note that the vehicle trajectories are a result of the state prediction simulation3
module of DynaMIT and cannot be written as an explicit function of the token energy efficiency4
and predictive guidance. We characterize the complex relationship through a function S(.) that5
represents the coupled demand and supply simulators as,6

τττ = S(xp,γγγ p, ttg,eee) (1)
7

where xp,γγγ p represents the forecasted demand and supply parameters for the prediction horizon.8
Also note that the iterative procedure described in the previous section ensures that the aggregate9
travel times that result from the vehicle trajectories τττ are consistent with the guidance ttg.10

For a given token energy efficiency vector e, the system–wide energy savings across the11
prediction horizon is defined as the difference between energy consumption under the incentive12
awarding strategy determined by e and the energy consumption of a baseline state prediction with13
no incentive awarding as,14

E(eee,τττ, τ̄) = ∑
ν=1...V

f (τττν(e),θθθ ν)− ∑
ν=1...V

f (τ̄ν ,θθθ ν) (2)
15

where f (.) represents the TripEnergy module, τ̄ν represents the simulated trajectory of vehicle ν16
in the baseline state prediction (without incentives) and θθθ

ν represent a vector of parameters that17
characterize vehicle ν such as driving style, vehicle type, etc. More details on the TripEnergy18
module may be found in (39).19

Let T (t0,e) denote the number of tokens consumed in the current state prediction horizon20
[t0, t0+H∆]. Note that this is a function of the tokens energy efficiency vector e and is computed by21
the state prediction module based on the simulated choices of Tripod users in DynaMIT. Further, let22
B(t0) denote the number of tokens available at time t0 and W (t0,e) = B(t0)−T (t0,e), the available23
token budget for the rest of the day.24

The Tripod system assumes a daily budget of incentives that can be allocated. Conse-25
quently, the optimization formulation must, either explicitly or implicitly, account for this budget26
so as to prevent from myopically allocating too many tokens within any given roll period. This is27
done using a beyond horizon energy estimator g(.) which provides an estimate of energy savings28
from the end of the current prediction horizon (t0+H∆) until the end of the day based on the avail-29
able budget W (t0,e), a feature vector ζζζ (t0) that describes characteristics of the current day (e.g.:30
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the network state in the form of time–dependent link flows, speeds and densities over the period of1
the day thus far, the network state over the prediction horizon, weather, incidents, special events,2
etc) and a historical database Y (containing historical observed and simulated traffic conditions,3
token consumption, energy savings, weather, special–event and incident information). Thus, the4
beyond–horizon energy savings is given by,5

Ē(eee, t0) = g(W (t0,e),ζζζ (t0),Y) (3)
6
7

The beyond horizon energy estimator described above is still under development and as a8
workaround, for the current implementation, a fixed token budget is imposed for each roll period.9
The collection of simulated vehicle trajectories by τττ results from the reaction of Tripod users10
to a given token energy efficiency strategy. Therefore in DynaMIT, the menu generation and its11
personalization process needs to be simulated. For that, we have developed the Simulated User12
Optimization (SUO) module that interacts directly with the demand module of DyaMIT. First, the13
number of tokens awarded to individual n for alternative p is defined as,14

T Knp = max
(

0,
[

En0−Enp

e

])
p ∈ Pn (4)

15
where Enp is the energy consumption of alternative p for individual n (computed based on the16
predicted network state), En0 is the predicted energy consumption of individual n without tokens,17
and e is the token energy efficiency for the current roll period or prediction sub-interval as the case18
may be. Then the (simulated) individual n -specific UO process described in the next section is19
ran.20

Finally, the response to the simulated Tripod menu is simulated within the SP. For the21
numerical experiments presented in this paper, it is assumed that the total network demand is22
fixed (inelastic) and the behavioral response of users to the incentives and predictive travel time23
is solely through route choice. This is modeled within the demand simulator of DynaMIT using24
a multinomial logit model. The utility perceived by individual n for path p ∈ Pn (where Pn is the25
choice set) is given by,26

Unp =Vnp + εnp

= βT T T Tnp +βC(Cnp−αnpγT Knp)+ εnp (5)
27

where Vnp is the systematic utility, βT T and βC are model parameters, T Tnp is the predicted (or28
historical depending on whether the vehicle has information access) travel time on path p, Cnp is the29
monetary cost, γ is the market value of the token, αnp is a unit-free token value inflation/deflation30
factor, T Knp is the number of tokens allocated to individual n for using path p (discussed in more31
detail subsequently), and εnp is a random error component that is i.i.d. Gumbel distributed. For the32
ease of notation, we did not talk about the specification of parameters. Nevertheless, βT T and βC33
are defined such that they are introduced with a distribution, i.e., heterogeneity in the population is34
considered.35

It should be noted that a more sophisticated implementation of the Tripod is ongoing which36
includes a nested logit model that captures travelers’responses to the tokens along with the choice37
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dimensions of mode, route, departure time, trip cancellation and driving style. Further, since the1
current implementation is cars-only we assume a one-to-one correspondence between individuals2
and vehicles.3
With these definitions, the optimization problem to solve for the current prediction horizon is given4
by,5

maximize
e

E(eee,τττ, τ̄)+ Ē(eee, t0)

subject to τττ = S(xp,γγγ p, ttg,eee)
e≥ 0
W (t0,e)≥ 0

(6)6

User Optimization: Framework7
UO generates a personalized menu of options in real-time that maximizes a user-specific objec-8
tive function (e.g.: consumer surplus) based on the guidance from SO regarding predicted traffic9
conditions as well as token energy efficiencies. The tokens associated with each option are deter-10
mined before running UO based on the formula provided in (eq. 4) with the optimal token energy11
efficiencies, e, given by SO every 5 min. The reference energy value, En0, is the expected energy12
consumption without tokens, i.e., the preferences are used to compute the choice probabilities of13
each option and the expected value is computed accordingly when the tokens are not present in14
the utility function (eq. 5). The user specific (menu) objective function - i.e.: selection of the15
alternatives to present in the menu - is the consumer surplus represented by the log-sum from the16
choice model.17

User Optimization: Formulation18
Assume that we are selecting Mn options to be presented on the menu among the set of alternatives19
p ∈ Pn for user n. The binary decision variable xnp represents if option p is selected to be on the20
menu or not. We have a set of preference parameters, i ∈ In, for each individual n, i.e., we have21
In many draws from the posterior distribution of individual n’s preference parameters. This set22
of parameters represent the distribution of a specific user’s preferences which is referred as intra-23
consumer heterogeneity. Note that the preference parameters are intended to be updated as users24
make new trips, as well as a periodic (e.g., weekly) entire-traveler population-parameter update25
with information from other travelers off-line update. The individual level parameters are updated26
after every choice that is observed with an efficient Bayesian on-line update procedure (see (36)27
for detailed formulations). These two update procedures enable to make use of most up-to-date28
choice data in an efficient way. The UO model is based on these continuously updated preference29
parameters and given as follows for a user n:30

maximize
x ∑

i∈In

1
µ

[
ln

(
∑

p∈Pn

xnpexp(µVnpi)

)]
subject to ∑

p∈Pn

xnp ≤Mn

xnp ∈ {0,1} ∀p ∈ Pn

(7)31

32
where systematic utility, V , is given in (eq. 5). Note that the parameters, βT T and βC, are repre-33
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sented by In draws from the posterior distribution and thus the index i in the utility. The objective1
function represents the consumer surplus under a set of preference parameters. The constraint2
maintains that the number of options to be presented on the menu is not greater than Mn. This is3
included to ensure that the menu is not very large but can be customized for each user. The added4
value of personalization will be greater when the menu size is limited.5

The UO problem (eq. 7) is a nonlinear integer programming problem. In general such6
problems are difficult to solve. Currently an approximation of this problem is utilized in the Tri-7
pod system such that mean of the posterior distribution for preference parameters is used which8
removes the summation over the set In from the objective function. The solution simply turns to be9
a sorting algorithm and the menu to be presented will consist of alternatives that provide the top10
Mn utility values among all alternatives. Furthermore, the approximation of the UO is integrated in11
DynaMIT (through the above mentioned SUO module) in order to represent UO in SO for evalu-12
ating different strategies. As we are dealing with simulated agents in SO, an efficient computation13
is needed and this approximation serves as an appropriate alternative.14

In (40) the proposed UO model performance is investigated: the added value of personal-15
ized menu optimization compared to non-personalized menu optimization and the performance of16
the menu optimization based on updated preference parameters. It is observed that in all the cases17
personalized menu optimization provides better menus, namely the probability that the user will18
choose an alternative on the menu is consistently higher. Furthermore, the on-line update proce-19
dure is shown to provide preference parameters that are close to the estimated parameters with the20
full set of choices.21

NUMERICAL EXPERIMENTS22
This section reports results from numerical experiments conducted to evaluate the performance of a23
preliminary version of Tripod that incentivizes only route choice for private vehicles, and replaces24
the beyond-horizon energy saving estimation (where token budget allocation for the remainder of25
the day is endogenous) with a roll-period based token budget (where token budget allocation for the26
remainder of the day is exogenous). Although this is a simplification that can yield sub-optimal27
results, it suffices for the purposes of the experiments here, which are intended as a proof-of-28
concept and to gain some preliminary insights into the performance of Tripod.29

Assumptions30
For the purposes of the simple experiment, the parameters of the behavioral model (eq. 5) were31
assumed to be uniformly distributed: βT T = −0.01 and βC = −2 which yields a value of time of32
18$ per hour that is consistent with empirical studies. The market value of the token γ is assumed33
to be 0.5$ and αnp = 1∀n, p. Ideally, a stated-preference survey would help in estimating initial34
model parameters based on Boston commuters’ response to hypothetical travel choice scenarios35
involving tokens. In the absence of such information the above values were used in the current36
experiments. In addition, the token budget per five minute interval is assumed to be 1000 and the37
penetration rate of 50% Tripod op-in travelers.38

Setup39
The experiments are conducted on the Boston Central Business District (CBD) network which40
consists of 846 nodes, 1746 links, 3085 segments and 5057 lanes including both highways and41
arterials. The simulation period was from 6:30 am to 9:00 am with a roll period of 5 minutes42
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FIGURE 5: Boston CBD Network

and a rolling horizon of 15 minutes. The time-dependent origin-destination demands and supply1
parameters (segment capacities, free-flow speeds, and traffic dynamics parameters) were obtained2
from the Boston Region Metropolitan Planning Organization planing model. The effectiveness of3
Tripod is evaluated by performing two simulations: one in which incentives are awarded based on4
optimal estimates of the token energy efficiency computed by the SO module and a base simulation,5
involving DynaMIT with no incentives. The performance measures are the average travel time and6
energy consumption per vehicle and the distribution of travel time and energy consumption.7

A sensitivity analysis is also performed by systematically varying the base demand level8
and the token inflation factor αnp (which is assumed to be fixed across individuals and alternatives).9

Results10
The preliminary results show promising potential of tokens in nudging users to more energy effi-11
cient choices. The percentage reduction in average energy consumption (across a total of 9600012
simulated trips) is 5.94% with a corresponding reduction in average travel times of 4.8%. The13
reduction in energy consumption and travel times is also evident from the cumulative distribution14
plots (CDF) in Figure 6.15

Effect of Demand16
The sensitivity analysis with respect to demand (see Table 1) indicates that as the demand level17
increases, the percentage reduction in energy and travel time increases, reaching a maximum of18
7.45% and 9.59% respectively, following which, the improvement decreases to 3.73% and 0.24%19
respectively. This may be explained by the fact that at very high levels of demand, the energy20
savings to be gained through re-routing are minimal given the already congested network state.21

Effects of preferences towards incentives22
The sensitivity analysis with respect to the token inflation factor is summarized in Table 1 and23
indicates, as expected, that as the token inflation factor increases (or the sensitivity to tokens in-24
creases) the energy and travel time savings increase. The percentage reduction in average energy25
consumption increases from 3.24% to 6.45% as the token inflation factor increases from 0.5 to 1.2.26
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FIGURE 6: Travel Time and Energy CDFs

(a) Travel Time CDF

(b) Energy CDF

The corresponding improvement in average travel time increases from 0.5% to 5.85%.1

CONCLUSION2
With the very simple numerical example we were able to illustrate the potential of Tripod, open-3
ing a new research stream on real-time optimized incentives. A new solution to optimize incen-4
tives in real-time under a fix budget constraint was formulated, implemented and tested, using5
simulation-based predictions and behavioral models to cope with both reaction to incentives and6
the personalization features of Tripod. To allow for real-time performance, we decoupled the opti-7
mization into two components, which have different time resolutions and objective functions. The8
System Optimization includes two state-of-the-art models, DynaMIT and TripEnergy, allowing for9
accurate and flexible estimates and predictions of different network traffic conditions and energy10
consumption. The User Optimization brings the benefit of personalization and real-time behavioral11
preference updating to the incentive system. Despite the computational and tractability advantages12
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TABLE 1: Effect of Demand and Token Inflation Factor Level

Demand (% of base)
Average Energy (KJ) Average Travel Time (seconds)

Tripod Base % Diff Tripod Base % Diff
50 4858.72 5235.11 7.19 118.72 129.33 8.21
60 4882.13 5268.14 7.33 119.39 130.19 8.29
65 4956.24 5342.08 7.22 121.91 133.21 8.49
75 4947.68 5329.28 7.16 122.24 133.32 8.31
80 4990.91 5392.62 7.45 127.71 141.26 9.59
90 5054.42 5436.71 7.03 139.15 150.99 7.84
100 5330.04 5666.58 5.94 177.27 186.21 4.80
110 5589.16 5805.96 3.73 193.73 194.19 0.24

Token Inflation factor
Average Energy (KJ) Average Travel Time (seconds)

Tripod Base % Diff Tripod Base % Diff
0.5 5483.26 5666.58 3.24 185.29 186.21 0.50
0.6 5435.55 5666.58 4.08 183.87 186.21 1.26
0.7 5409.07 5666.58 4.54 182.40 186.21 2.05
0.8 5370.36 5666.58 5.23 179.46 186.21 3.63
0.9 5343.10 5666.58 5.71 177.73 186.21 4.56
1 5330.04 5666.58 5.94 177.27 186.21 4.80
1.1 5314.15 5666.58 6.22 176.06 186.21 5.46
1.2 5301.32 5666.58 6.45 175.32 186.21 5.85

of the proposed decoupling of the optimization function, it precludes with the optimality condi-1
tion. Further simulation should be carried out to test the performance of the proposed formulation2
against others (e.g.: including more decisions variables such as multiple token efficiency values,3
incorporate equity, mobility or energy constraints in the objective function, etc). Also, the simpli-4
fications assumed in the current numerical experiments are currently being relaxed. Finally, the5
Tripod team is working on the evaluation of the proposed system in a detailed agent- and activity-6
based simulation environment for the Greater Boston Area to be able to accurately generate a wide7
range of performance evaluations.8
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