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Abstract 

With the increasing level of detail of traffic simulation models, the need for a consistent 

understanding of simulators’ performance and the adequate calibration and validation procedures to 

control uncertainty is crucial, particularly in applications focusing on complex driving behaviour and 

detailed outputs, such as road safety analysis. 

In this work the calibration of traffic microscopic simulation models for safety analysis is analysed 

considering four different key uncertainty sources: the input data, the calibration methodology, the 

model structure and its parameters, and the output data. The use of a multi-step sensitivity analysis 

(SA) framework is proposed and applied to the simulation of an urban motorway scenario, using a 

complex traffic simulation model with more than one hundred parameters. A three-level analysis is 

presented: (1) different advanced SA and calibration methods are described, compared and integrated 

in a multi-step global SA framework; (2) the proposed method is tested using both vehicle trajectory 

and aggregated traffic data to assess the impact of model parameters uncertainty and different types of 

input data on relevant outputs; and (3) accident and non-accident scenario-specific calibrations are 

performed to test the capacity of the simulator in replicating changes in detailed traffic and safety 

related measurements. Different techniques are adopted in each phase of the global SA and calibration 

method, attending to the problem complexity, the dimensionality of the experiment, and minimizing 

the necessary number of model evaluations. 

The proposed method successfully identified the role played by all parameters and by the model 

stochasticity on different safety outputs. The final model calibration, carried out by explicitly 

considering the presence of uncertainty at different levels, confirmed the potential of advanced 

microscopic traffic models to adequately replicate detailed traffic and safety measurements, shedding 

light on different aspects of the interaction between road safety and traffic dynamics. 
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1 Introduction 1 

Traffic micro-simulation tools have been developed and enhanced based on an increasing level of 2 

modelling complexity. It is becoming recognized the crucial importance of analysing these models, 3 

understanding how they work and, in particular, what influences their capability to reproduce the 4 

socio-physical phenomena they are intended to simulate. Global sensitivity analysis (SA) is the family 5 

of tools to be used with this aim. Together with uncertainty analysis, SA studies how the uncertainties 6 

in model inputs affect the model response (Saltelli et al., 2008). These analyses are of high importance 7 

in reducing the complexity of the calibration task and minimising the burden of non-influential 8 

parameters in such optimization process. 9 

Generally, previous SA on micro-simulation models refers to applications to a sub-model with few 10 

parameters, with a clear focus in car-following (CF) behaviour. In fact, when dealing with complex 11 

traffic simulation models, it is common practice to make a selection of the parameters to involve in 12 

the sensitivity analysis and calibration. On top of this, simplified approaches such as the one-at-time 13 

(OAT) approach remain the most adopted method when dealing with microscopic simulation models 14 

(see for example Mathew et al., 2010 or Kesting et al., 2008). OAT approaches are based on the 15 

estimation of partial derivatives, and assess how uncertainty in one factor affects the model output 16 

keeping the other factors fixed at a nominal value. The main drawback of this approach is that 17 

interactions among factors cannot be assessed, since they require inputs to be changed simultaneously 18 

for several variables. Furthermore, this method restricts the analysis of the model response to the 19 

proximity of a certain point, rather than allowing for exploring its full input space (Daamen et al., 20 

2014). Multi-factor analysis of variance (ANOVA) has also been used in the SA of traffic simulation 21 

models (see for example Park and Qi, 2005). It allows analysing the effect of two or more parameters 22 

on a response variable and it is used to determine both the first-order and the interaction effects 23 

between parameters and a response variable. Further to using the standard definition of ANOVA, a 24 

more efficient method based on variance decomposition can be used in model SA. This method 25 

consists in evaluating two types of sensitivity indices and represents the most advanced and 26 

conceptually sound way of performing model SA (Saltelli et al., 2008). It can accommodate 27 

parameters interactions and a comprehensive analysis of their input space. However, this method may 28 

still require a large number (𝑁 ∙  [𝑘 +  2], being k the number of parameters and N the dimension of 29 

the Monte Carlo experiment) of model evaluations when dealing with complex traffic models. This 30 

approach was successfully applied by for the SA of two CF models (Punzo et al., 2009). 31 

More recently, Ciuffo et al. (2014) proposed a multi-step approach to the use of variance-32 

decomposition SA on computationally expensive and high-dimensional traffic simulation models. At 33 

each step, a variance-decomposition-based analysis is applied to groups of parameters, selected on the 34 

basis of their possible common features, allowing for the reduction of the number of evaluations and 35 

focusing at each step on more sensitive parameters. When applying it to a complex driving behaviour 36 

model with 101 parameters (Toledo et al., 2007) using aggregated data from loop sensors, the multi-37 

step approach required 80% less model evaluations, when compared with a full SA technique. 38 

While the large majority of these calibration studies focused on aggregated traffic variables as 39 

measures of performance (MoP), simulation studies focusing on road safety depend on detailed 40 

calibrated outputs such as accelerations, headways and lane changing decisions. Indeed, the 41 
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importance of using trajectories when analysing detailed driving behaviour and interaction outputs has 1 

been pointed out in recent studies (Cunto et al., 2008, Jie et al., 2013 and Ciuffo et al., 2014). 2 

Focusing in rear-end crashes at signalized intersections, Cunto et al. (2008) used a multi-step 3 

approach to identify the most sensible parameters of the CF, lane-changing and stochasticity models 4 

of VISSIM (PTV, 2009) using real trajectory data. The measure of performance was the crash 5 

potential index (CPI) a surrogate safety assessment measure based on the acceleration differential and 6 

exogenous conditions. From 13 initial parameters, a first ANOVA reduced the number of sensitive 7 

parameters to 6 and a subsequent fractional factorial analysis reduced it to 3. A final genetic algorithm 8 

(GA) for calibration estimated the final values of the parameters. Duong et al. (2009) then extended 9 

this framework to a multi-criteria optimization, where the CPI was coupled with traffic volume and 10 

speed during the optimization of the GA. 11 

In Jie et al. (2013) trajectories were used to calibrate a subset of VISSIM parameters (PTV, 2009) 12 

regarding MoP based on speeds and accelerations. After fine tuning a few driver heterogeneity 13 

parameters individually, a local (individual and group) OAT SA was carried out on the parameters 14 

related to the car-following behaviour. Although focusing in emissions modelling, this study also 15 

showed the different detailed kinematic outputs, when using trajectories or aggregated data in the 16 

calibration process. Yet, the scope of its SA was limited to 8 parameters and based on a naive method. 17 

Ge et al. (2014) presented a comparison between the variance-decomposition method and a Kriging-18 

based approach (Ciuffo et al., 2013) coupled with the quasi-Optimized Trajectories Elementary 19 

Effects (quasi-OTEE) screening technique (Ge and Menendez, 2013) regarding the identification of 20 

sensitive parameters of the Wiedemann-74 CF model (PTV, 2009) using trajectory data. The quasi-21 

OTEE SA was used to identify the whole sub-set of influential parameters from the initial 25 set, and 22 

the Kriging-based SA was then used to refine the analysis and correctly rank the most influential 23 

parameters in a more reliable way, using 40 times less model evaluations. Along with Ciuffo et al. 24 

(2014), this study revealed the potential of coupling and replacing variance-decomposition methods 25 

with less demanding ones. Furthermore, it has been demonstrated in several studies (Toledo et al. 26 

2004; Cunto et al., 2008; Ciuffo et al., 2014) that coupling advanced SA techniques with metamodels 27 

may significantly reduce the computational burden of the calibration and validation tasks. By 28 

definition, a metamodel is an approximation of the input/output function defined by the simulation 29 

model, where per each MoP and goodness-of-fit (GoF) combination a surrogate of the simulation 30 

model could be computed and used for parameter calibration. 31 

In summary, when detailed trajectory data is available for model calibration, four different approaches 32 

may be considered: 33 

 Re-estimation, where the model is re-estimated using either traditional maximum likelihood 34 

or Bayesian approaches based on the most recent set of trajectory data. This approach has 35 

been used in the initial estimation of new driving behaviour sub-models (see for example, 36 

Toledo et al., 2007). 37 

 Conditional re-estimation, in which the model is estimated with a traditional Bayesian 38 

approach using the new trajectory data set as main data, but introducing prior knowledge on 39 

the parameters values based on the previous estimations. Hogendoorn et al. (2010) used a 40 
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maximum likelihood estimator accounting for prior information on the parameter values and 1 

serial correlation in trajectory data to estimate a CF model. 2 

 Disaggregate calibration method, where each real trajectory observation point is compared 3 

with simulated values and the parameters are calibrated using a numerical optimization 4 

algorithm. The difficulty in such method is the set-up of starting conditions when using 5 

complex driving behaviour models. This method was used in Brockfeld et al. (2004) and 6 

Kesting et al. (2008), for example, for the specific calibration of the CF model. 7 

 Aggregate calibration method, where a set of aggregate statistics of the real trajectories are 8 

pre-defined and compared against the simulated statistics, also using an optimization method. 9 

The difficulty in the first two methods lies in complex likelihood functions and estimation procedures 10 

that account for simultaneous estimation of the multiple sub-models that form the driving behaviour 11 

framework of traffic simulators. The calibration-based methods have to deal with a large number of 12 

model simulations to correctly deal with input, output, model and calibration uncertainties during the 13 

calibration algorithm optimization procedure. Yet, the above mentioned recent developments point to 14 

the potential benefit of their application in the calibration using detailed data, and therefore solving 15 

several limitations of previous methods. 16 

In the next section a generalization of the multi-step framework proposed in Ciuffo et al. (2014), 17 

where different SA methods can be selected depending on the sensitivity of the model parameters, is 18 

proposed and formulated for the calibration of traffic simulators. In Section 2, the general 19 

mathematical details of the various methods used within the multi-step framework are described. The 20 

case-study application is then described in Section 3 and its results presented in Section 4. Finally, the 21 

last section sketches the main conclusions of the presented study. 22 

2 Calibration Method 23 

2.1 The proposed framework 24 

When focusing on safety, the uncertainty in the driving behaviour and the traffic demand parameters 25 

is considerable, due to the high number of outputs of interest. In fact, multiple interactions between 26 

vehicles and several detailed vehicle motion variables are of interest. All these variables may vary 27 

significantly with different traffic scenarios contexts, such as congestion, road characteristics or 28 

weather conditions. Unfortunately, large sets of real trajectories have not yet been collected for all 29 

these different scenarios, making the direct calibration of driving behaviour under such conditions 30 

impossible. To overcome this limitation, a three level process is proposed: (1) a global SA and 31 

calibration using trajectories on a generic day; (2) a global SA to identify the most sensitive 32 

parameters regarding aggregated traffic data; and (3) scenario-specific calibrations of the parameters 33 

identified in (2) using the calibrated values from (1) as initial values (see Figure 1). 34 
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 1 

Figure 1 – Proposed framework for road safety oriented calibration. 2 

As traffic simulation models were estimated with data sets from different environments, the use of 3 

trajectories collected on the specific site under analysis will improve the replication of the generic 4 

driving behaviour (Zhang et al., 2008). Following the proposed framework, existing aggregated data 5 

is then used to re-calibrate some relevant driving behaviour parameters and estimate the demand 6 

regarding temporal and local specific conditions. Both the calibration of the generic behaviour and the 7 

selection of parameters to calibrate using aggregated data are based in global SA, leveraging the 8 

control of uncertainty. It is important to point out that any simulated safety variability is therefore 9 

linked to changes in detailed traffic conditions and not to any individual risky manoeuvres. This 10 

assumption follows the concept of the safety continuum that underlies the traffic conflicts technique 11 

(Hýden, 1987). 12 

2.2 The multi-step global SA 13 

For the identification of the most sensitive parameters and for their global calibration using 14 

trajectories (tasks 1 and 2 in Figure 1), a generalization of multi-step global SA proposed in Ciuffo 15 

and Lima Azevedo (2014) was applied. In this method, parameters are grouped with respect to the 16 

simulation sub-models they belong to, and a SA is carried out considering the different groups rather 17 

than the different parameters. Parameters related to the car-following, the gap acceptance or the lane 18 

utility models, for example, are grouped accordingly. Then, iteratively, the most influential parameter 19 

groups (sub-models) are singled out, and a subsequent SA on their parameters is carried out. These 20 

iterative steps are carried out until a variance-based analysis on individual parameters is feasible. On 21 

each of these intermediate steps Ciuffo and Lima Azevedo (2014) used group variance-based analysis. 22 

In the present study, we extend this method to the use of less complex SA approaches at intermediate 23 

steps, reducing even further the number of model evaluations needed. However, variance-based 24 

methods are always preferred and simpler methods are only used when the sensitivity of the 25 

parameters is lower. Further, we use the results of each SA step to calibrate the parameters that are 26 

dropped from the analysis (less sensitive). By adopting such procedure, several issues of previous SA 27 

and calibration of traffic microscopic models were overcome: 28 

1. To consider a large number of input parameters. 29 

2. To account for parameter interaction. 30 
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3. To correctly analyse the input space. 1 

4. To accommodate different SA methods. 2 

For the present case study, two different SA methods and a screening procedure were considered: the 3 

variance-based SA, the group variance-based SA and the quasi-OTEE screening method. 4 

Furthermore, a metamodelling technique was also tested in the evaluation by coupling a Kriging 5 

metamodelling with the three mentioned SA techniques. Finally, the Weighted Simultaneous 6 

Perturbation Stochastic Approximation, an advanced aggregated calibration technique, was used to 7 

optimize the subset of driving behaviour and demand parameters for different traffic scenarios and 8 

locations. The mathematical details of all these methods are briefly presented in the next section. 9 

2.3 Methods description 10 

2.3.1 Variance-based SA 11 

The variance-based method based on the Sobol decomposition of variance is one of the most recent 12 

and effective global SA techniques (Saltelli et al., 2008 and Sobol, 1976). Given a model in the form 13 

𝑌 = 𝑓(𝑍1, 𝑍2, … , 𝑍𝑖 , … , 𝑍𝑘) two parameters are said to interact when their effect on Y cannot be 14 

expressed as a sum of their single effects. With 𝑌 being a scalar, a variance-based first order effect for 15 

a generic parameter Zi can be written as: 16 

𝑉𝑍𝑖
[𝐸𝑍~𝑖

(𝑌|𝑍𝑖)] (1) 

where 𝑍𝑖 is the 𝑖𝑡ℎ parameter and 𝑍~𝑖 is the matrix of all parameters but 𝑍𝑖. Furthermore it is known 17 

that the unconditional variance can be decomposed into main effect and residual 18 

𝑉[𝑌] = 𝐸𝑍𝑖
(𝑉𝑍~𝑖

[𝑌|𝑍𝑖]) + 𝑉𝑍𝑖
[𝐸𝑍~𝑖

(𝑌|𝑍𝑖)] (2) 

Equation (2) shows that for 𝑍𝑖 to be an important parameter we need 𝐸𝑍𝑖
(𝑉𝑍~𝑖

[𝑌|𝑍𝑖]) to be small, i.e. 19 

that the closer 𝑉𝑍𝑖
[𝐸𝑍~𝑖

(𝑌|𝑍𝑖)] to the unconditional variance 𝑉[𝑌] the higher the influence of 𝑍𝑖. Thus 20 

we may define our first order sensitivity index of 𝑍𝑖 with respect to 𝑌 as: 21 

𝑆𝑖 =
𝑉𝑍𝑖

[𝐸𝑍~𝑖
(𝑌|𝑍𝑖)]

𝑉[𝑌]
 (3) 

Sensitivity indices as in (3) can be calculated per each parameter and per each parameters 22 

combination. This, however, would need a huge amount of model evaluations. In order to reduce the 23 

required efforts, a synthetic indicator to be coupled with the first order sensitivity index (the total 24 

effects index) may be defined as follows: 25 

𝑆𝑇𝑖
= 1 −

𝑉𝑍~𝑖
[𝐸𝑍𝑖

(𝑌|𝑍~𝑖)]

𝑉[𝑌]
=

𝐸𝑍~𝑖
(𝑉𝑍𝑖

[𝑌|𝑍~𝑖])

𝑉[𝑌]
 (4) 

Total effects index of the input parameter iprovides the sum of first and higher order effects 26 

(interactions) of the parameter 𝑍𝑖. When the total index is 𝑆𝑇𝑖
= 0 the 𝑖𝑡ℎ parameter can be fixed 27 

without affecting the outputs’ variance. Since the analytical feasibility of traffic flow models limit the 28 

use of the formulas for the calculation of the variances in eq. 2, the application of this method can be 29 

effectively performed in a Monte Carlo (MC) setting (see Saltelli et al., 2008 for the details on the 30 

implementation). In the present paper we applied Sobol sequences of Quasi Random Numbers (Sobol, 31 
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1976) that ensure a quicker convergence in the numerical calculation of the sensitivity indices (and 1 

therefore we applied a Quasi Monte Carlo setting, QMC).  2 

The total cost of the QMC implementation is 𝑁 ∙ (𝑘 + 2), much lower than the 𝑁2 runs of a brute-3 

force method. Since 𝑁 is usually not lower than 1000, the number of evaluation required by this 4 

efficient approach is not negligible, especially for complex and expensive models. For this reason, 5 

variance-based SA is usually used on models whose computation time range from seconds to a few 6 

minutes. In any case they represent the most reliable way to evaluate the total sensitivity indices, 7 

necessary for deciding whether a specific input/parameter should be included or not in the model 8 

calibration. 9 

2.3.2 Quasi-OTEE 10 

The Elementary Effects (EE) method is one of the most common screening approaches when dealing 11 

with complex models (Morris, 1991). Consider the same model 𝑌 specified in the last section. If only 12 

the i
th
 parameter is changed by a certain value ∆, the new output will consequently be 𝑌∆𝑖 =13 

𝑓(𝑍1, 𝑍2, … , 𝑍𝑖 + ∆, … , 𝑍𝑘). The Elementary Effect of the i
th
 parameter, 𝐸𝐸𝑖, is defined as: 14 

𝐸𝐸𝑖 =
𝑌∆𝑖 − 𝑌

∆
 (5) 

Through randomly generating a number m of X points from the input space, and changing the i
th
 15 

parameter by ∆ each time, 𝑌∆𝑖 is computed and the m EEs for the i
th
 parameter can be derived 16 

according to the above equation. The mean 𝜇𝐸𝐸𝑖
, the standard deviation 𝜎𝐸𝐸𝑖

, and the absolute mean 17 

𝜇𝐸𝐸𝑖

∗  of these m EEs can accordingly be used to infer on the sensitivity of the i
th
 parameter as follows 18 

(Morris, 1991): 19 

 If 𝜇𝐸𝐸𝑖

∗ is low, then i is a negligible parameter; 20 

 If 𝜇𝐸𝐸𝑖

∗  is high and 𝜎𝐸𝐸𝑖
is low, i has linear and additive effects but no interactions with others; 21 

 If 𝜇𝐸𝐸𝑖

∗ and 𝜎𝐸𝐸𝑖
are both high, i has non-linear effects and/or strong interactions with others; 22 

 If 𝜇𝐸𝐸𝑖
 is low but 𝜇𝐸𝐸𝑖

∗ is high, i will have oscillating effects depending on the value assumed 23 

by other parameters. 24 

As the model needs to be evaluated twice for calculating each EE, the computational cost of the basic 25 

EE method is 2 ∙ 𝑚 ∙ 𝑘. However, some of these evaluations may be used for the computation of 26 

different EEi. By sampling the parameter input space using trajectories, a lower experiment size of 27 

𝑚 ∙ (𝑘 + 1) can be achieved (Morris, 1991). 28 

Very recently, Ge and Menendez (2013) proposed the quasi-Optimized Trajectories EE (quasi-OTEE) 29 

approach, achieving similar results to the regular EE with just (𝑚 −  𝑛 +  1)  ∙  (𝑚 +  𝑛)/2  model 30 

evaluations. Variable n is the number in a sub-set of sampled trajectories that has to be defined a-31 

priori. The definition of the best sub-set relies in an iterative optimization procedure based on finding 32 

the most n “spread” trajectories (having the largest Euclidean distance between them) from the 33 

original random trajectories m. 34 

Elementary effect methods provide a reasonably cheap and reliable approximation of the total 35 

sensitivity indices. For this reason they can be used instead of variance-based techniques when the 36 
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computational cost of one model evaluation is higher than just a few minutes and when the number of 1 

parameters tends to be high (over 30-50 depending on the model non-linearity). 2 

2.3.3 Kriging Metamodelling 3 

The Kriging model may be viewed as an estimator based on the value of neighbouring points 4 

(Matheron, 1963 and Kleijnen, 2007). It first assumes that the output 𝑌(𝑋) of a simulation model is 5 

given by: 6 

𝑌(𝑋) = 𝜇 + 𝛿(𝑋) (6) 

where X is the vector of model input variables, μ the simulation output averaged over the experimental 7 

area, and δ(X) a zero mean stationary covariance process. The Kriging model uses the following linear 8 

predictor 𝑦(𝑋)of the output of a simulation model for a variable combination X: 9 

𝑦(𝑋) = 𝜆(𝑋, 𝐷)T𝑌(𝐷) (7) 

where D is the input variables design matrix of the simulation experiment for which the simulation 10 

output is known/simulated; and 𝜆(𝑋, 𝐷) is a matrix of weights between the new variables specific 11 

combination 𝑋 to be used as input in the metamodel and the points in matrix D. 𝜆(𝑋, 𝐷) values are not 12 

constant but decrease as the distance between X and D increases. To select the optimal values 𝜆∗ for 13 

the weights 𝜆(𝑋, 𝐷) one may use the Best Linear Unbiased Predictor which minimizes the Mean 14 

Squared Error of the predictor (Kleijnen, 2007): 15 

𝜆∗ = 𝚪−1 [𝛾 + 𝟏
𝟏 − 𝟏T𝚪−1γ

𝟏T − 𝚪−1𝟏
] (8) 

where1 is the n-dimensional identical vector (n is the number of the experiment variable combinations 16 

in D); 𝚪 = cov(𝑌𝑖, 𝑌𝑗) with 𝑖, 𝑗 = 1, . . . , 𝑛 is the 𝑛 ×  𝑛 symmetric and positive semi-definite matrix 17 

with the covariance of the simulated experiment outputs 𝑌(𝐷); and 𝛾 the n-dimensional vector with 18 

the covariances between the n simulated outputs and the output for the variables’ combination to be 19 

predicted by the metamodel. In simulation applications, the elements of 𝛾 and 𝚪 are estimated using a 20 

correlation function which is the product of k one-dimensional functions (being k the number of 21 

variables or parameters of the simulation model) and assuming that these correlations are determined 22 

by the distance between the inputs of the specific outputs considered: 23 

cov(𝑌𝑖 , 𝑌𝑗) = ∏ cov(𝑋𝑖,𝑔, 𝑋𝑗,𝑔)

𝑘

𝑔=1

 (9) 

where 𝑔 =  1, . . . , 𝑘. Furthermore the Kriging metamodel assumes a stationary covariance process, 24 

which implies that the covariance depends only on|𝑋𝑖,𝑔 − 𝑋𝑗,𝑔|. According to Kleijnen (2007) the 25 

Gaussian correlation function is a popular such function: 26 

cov(𝑌𝑖 , 𝑌𝑗) = ∏ exp [− (
|𝑋𝑖,𝑔 − 𝑋𝑗,𝑔|

𝜃𝑔

)

2

]

𝑘

𝑔=1

 (10) 

in which 𝜃𝑔is a parameter of the correlation function for the variable g, denoting the importance of the 27 

variable itself (the higher𝜃𝑔 is, the lower is the effect due to the variable g). In order to find the best 28 

Kriging metamodel for a simulation model, it is therefore only necessary to estimate the k-29 

dimensional vector of 𝜃𝑔, using a Maximum Likelihood Estimator. 30 
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Ciuffo et al. (2013) have applied a variance-based method for SA to a Kriging approximation of a 1 

microscopic traffic simulation model. When the number of inputs is lower than 10-20 (depending on 2 

the model non-linearity) the accuracy of the Kriging emulator in reproducing the real model can be 3 

very high even with a relatively low number of model evaluations. In Ciuffo et al. (2013), 512 model 4 

evaluations were sufficient to estimate a reliable Kriging approximation of the Aimsun mesoscopic 5 

model (TSS,2012) with 7 input parameters. 6 

2.3.4 Weighted Simultaneous Perturbation Stochastic Approximation (WSPSA) 7 

The WSPSA follows the classical aggregated calibration philosophy, where the differences between 8 

observed measurements and the equivalent simulated outputs are minimized using an optimization 9 

function: 10 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧(𝜃) = 𝑘1‖𝑦(𝑋) − 𝑌(𝑍, 𝑋)‖ + 𝑘2‖𝑍 − 𝑍𝑎‖ (11) 

where 𝑦(𝑋) and 𝑌(𝑍, 𝑋) are vectors of observed measurements and corresponding simulated 11 

measurements, 𝑍𝑎 are prior values of the parameters to be calibrated, Y is the model that generates 12 

simulated measurements, and 𝑘1 and 𝑘2 are weights depending on the relative confidence on observed 13 

measurements and different sets of prior parameter values. 14 

The original simultaneous perturbation stochastic approximation (SPSA) efficiently approximates the 15 

gradient function with only two successive measurements of the objective function (independently of 16 

the number of parameters) and therefore significantly saves computational time for large-scale 17 

problems over traditional gradient methods such as the finite-differences stochastic approximation 18 

(Spall, 1992). The general stochastic approximation algorithm starts from an initial estimation of the 19 

parameter vector and iteratively traces a sequence of parameter estimates that converge of the 20 

objective function’s gradient to zero: 21 

𝜃̂𝑘+1 = 𝜃̂𝑘 − 𝑎𝑘𝑔̂𝑘(𝜃̂𝑘) (12) 

where 𝜃𝑘 is the estimate of the decision vector in the k
th
 iteration of the algorithm, 𝑔𝑘 is the estimated 22 

gradient, and 𝑎𝑘 is an algorithm parameter that gets smaller as k becomes larger. In SPSA the 23 

approximation of the gradient 𝑔𝑘 depends on two function evaluations from a simultaneous 24 

perturbation of the parameters: 25 

𝑔̂𝑘(𝜃̂𝑘) =
𝑧(𝜃̂𝑘 + 𝑐𝑘 ⊗ Δ𝑘) − 𝑧(𝜃̂𝑘 − 𝑐𝑘 ⊗ Δ𝑘)

2𝑐𝑘𝑖Δ𝑘𝑖

 (13) 

where z is the optimizing function, 𝑔𝑘(𝜃̂𝑘) is the i
th
 element of the gradient vector, Δ𝑘 is a random 26 

perturbation vector, generated through a Bernoulli process with values of +1 and -1 with equal 27 

probabilities,⊗ is the component-wise multiplication operator, and 𝑐𝑘is an algorithm parameter that 28 

determines the amplitude of the perturbation: 29 

𝑐𝑘𝑖 =
𝑐𝑖

(𝑘 + 1)𝛾
 (14) 

where 𝑐𝑖 is the i
th
 element in an algorithm constant parameter vector and 𝛾is a constant parameter. 30 

Very recently Lu et al. (2013) proposed the Weighted Simultaneous Perturbation Stochastic 31 

Approximation by incorporating known spatial and temporal correlation between parameters and 32 

measurements to minimize the noise generated by uncorrelated measurements, improving 33 
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significantly the performance of the generic SPSA formulation. By introducing a matrix W in the 1 

generic optimizing function z, both spatial and temporal correlations between each parameter and the 2 

model outputs may be considered. Each element of W (with size 𝑛 × 𝑚) is the relative correlation 3 

between the n
th
 model parameter in the m

th
 measurement. Instead of calculating the i

th
 element in the 4 

gradient vector 𝑔𝑘(𝜃𝑘) using the objective function, a weighted sum of the measurement error 5 

changes related to the i
th
 parameter is used: 6 

𝑔̂𝑘(𝜃̂𝑘) =
𝑧(𝜃̂𝑘 + 𝑐𝑘 ⊗ Δ𝑘) − 𝑧(𝜃̂𝑘 − 𝑐𝑘 ⊗ Δ𝑘)

2𝑐𝑘𝑖Δ𝑘𝑖

𝑊𝑖  (15) 

where 𝑊𝑖 is the ith line in the weight matrix W. The output of the evaluation function z results now in 7 

a vector with length equal to the number of parameters to be calibrated, rather than a scalar: 8 

𝑧(𝜃) = [
𝑘1[𝑦(𝑋) − 𝑌(𝑍, 𝑋)][𝑦(𝑋) − 𝑌(𝑍, 𝑋)]T

𝑘2[𝑍 − 𝑍𝑎][𝑍 − 𝑍𝑎]T ] (16) 

The way to calculate weight matrices for WSPSA depends on the configuration of the case study, the 9 

parameters considered and the available measurements. For example, assignment weights regarding 10 

each sensor can be used as weights, for the calibration of origin-destination measurements using loop 11 

sensor counts. 12 

The WSPSA method is an extremely efficient optimization method, reaching fast convergence even 13 

when dealing with large parameter set. As it outputs a single solution, its use is especially suited for 14 

case-studies with a large number of needed calibrations. For further details on the WSPSA and SPSA 15 

approaches, the reader may refer to Lima Azevedo (2014) and Spall (1992). 16 

3 The case-study application 17 

The proposed methodology was applied to the calibration of an advanced microscopic simulation 18 

model for safety analysis. An urban motorway (A44) near Porto, Portugal, was selected as case study 19 

due to several safety related issues: dense traffic, unusually high number of lane changes due to 20 

frequent route-choice decision making, short spacing between interchanges and high percentage of 21 

heavy goods vehicles. A44 is a 3,940m long dual carriageway urban motorway with 5 major 22 

interchanges, two 3.50m wide lanes and 2.00m wide shoulders in each direction (see Interactive Map 23 

for the simulated network). Acceleration and deceleration lanes are added to the main carriageway 24 

section at all interchanges, although often as short as 150m. On and off-ramps connect to local roads, 25 

which generally have tight horizontal curves, intersections or pedestrian crossings, features that tend 26 

to impose significant reductions in vehicle speeds. 27 

To test the proposed calibration framework, we focused our attention in the replication of detailed 28 

traffic characteristics in accident scenarios, and test whether the simulation outputs would differ much 29 

from the non-accident ones. If such variability is replicated by the simulation model its use in specific 30 

safety studies is therefore validated. Data on 144 accidents occurring between 2007 and 2009 were 31 

collected; the simulator was calibrated separately for each of these events (see Figure 1). A total of 32 

6,400 non-accident scenarios were also randomly selected from the same time period, and used for 33 

comparison. Aggregated (loop sensor) data was collected for each of the sampled events and detailed 34 

vehicle trajectories were collected on-site for the entire length of the motorway during a generic day. 35 
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Finally, we also show the importance of trajectory data in driving behaviour model calibration when 1 

the replication of detailed traffic variables is at stake. It is common design (and even research) 2 

practice to use simulators calibrated with aggregated data to extract detailed simulated information 3 

from the transportation system under analysis. An example of such practice is the analysis of 4 

(acceleration-based) fuel consumption outputs or surrogate safety measures with a simulator 5 

calibrated with just loop sensor counts or average speeds. Different combinations of accelerations and 6 

headway parameters may be compatible with a good calibration performance under loop speed or/and 7 

count based optimization. In this paper, the proposed detailed calibration method is also applied for 8 

comparing the use of different input data sets: loop sensor data and trajectory data. 9 

<Interactive Map: kml map file attached> 10 

<https://mapsengine.google.com/map/edit?mid=zUbJxE1-0Ukg.kHTC2zNSqI0U> 11 

3.1 The micro-simulation model 12 

The integrated driver behaviour model presented in (Toledo et al., 2007) is of particular interest due to 13 

the high interaction of all advanced models describing driving behaviour and the high number of 14 

parameters (101). It integrates four levels of tactical decision-making: target lane, gap acceptance, 15 

target gap and acceleration, in a latent decision framework based on the concepts of short-term goal 16 

and short-term plan. Furthermore, probabilistic frameworks are used to capture drivers’ route choice 17 

decisions and to assign driving behaviour parameters and vehicle characteristics. This model has been 18 

integrated in MITSIMLab, an open-source traffic simulation platform developed in C++ (Yang et al., 19 

1999). It can output simulated vehicles’ location, speed and acceleration at 1 second resolution 20 

allowing the computation of further detailed traffic variables. Higher resolutions can be reached by 21 

changing the simulator open-source code. As a large number of simulations are required for the 22 

present case-study, this resolution was kept as such, but the output format was changed to a lighter 23 

structure (Lima Azevedo, 2014). MITSIMLabs’ driving behaviour model formulation has been 24 

enhanced over the years by introducing several complex structures associated with detailed behaviour 25 

and behavioural interactions. For the description of the 101 parameters and the model formulation 26 

itself, please refer to Ciuffo and Lima Azevedo (2014), Toledo (2007) and Yang et al. (1999). 27 

3.2 The data 28 

Three different traffic data sets were specifically collected for the present study: 29 

 A dynamic seed origin-destination (OD) matrix estimated using the generalized least squares 30 

(GLS) simultaneous estimator (Cascetta et al., 1993) and a sample of license plate matching 31 

records and vehicle counts (Lima Azevedo, 2014); 32 

 5 min loop sensor speeds and counts for the existing eight traffic stations, during the three 33 

years analysis period direction (see Interactive Map). Erroneous records were filtered out 34 

using the daily statistics algorithm (DSA) proposed by Chen et al. (2003). The details on the 35 

application of the DSA to the present case study can be found in Lima Azevedo (2014); 36 

 1855 partial vehicle trajectories collected for a generic morning by aerial remote sensing for 37 

the entire length and access links of the A44 motorway and for congested and non-congested 38 

periods. A Cessna T210L Centurion II aircraft equipped with high-resolution photographic 39 

https://mapsengine.google.com/map/edit?mid=zUbJxE1-0Ukg.kHTC2zNSqI0U
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equipment fixed to a gyro-stabilizing platform overflew the A44, between 8:45 and 10:45 AM 1 

on the 11th of October 2011. Images were recorded at an average rate of 0.5Hz and were then 2 

orthorrectified using a 3D terrain model, the camera and lens characteristics, and the precise 3 

flight positioning data recorded through differential GPS. The vehicle detection was carried 4 

out using coloured background subtraction and its trajectory was then reconstructed using an 5 

extension of the k-shortest disjoint path algorithm using motion-based optimization. For 6 

further details on the trajectory extraction method and its validation the reader is referred to 7 

Lima Azevedo et al. (2014). 8 

3.3 The calibration design and set up 9 

For the SA regarding aggregated loop sensor data, eleven different measures of performance (MoP) 10 

were considered to assess the impact of using different combinations of traffic stations and output data 11 

(speed vs. counts). MoP computed on each single detector (8), on all the detectors of each road 12 

direction (2) and on all the detectors of the network (1) were considered for both count and speed 13 

data. Furthermore, to assess the dependence from the selected GoF, three different statistics were used 14 

for comparison: the root mean squared error (RMSE), the root mean squared percentage error 15 

(RMSPE) and the Theil’s inequality coefficient U, (please refer to Hollander and Liu, 2008, for their 16 

formulation and description). Therefore, a total of 66 different GoF-MoP combinations were 17 

considered in the identification of the most relevant parameters regarding the loop sensor data. 18 

Similarly, for the trajectory-based SA and calibration, a set of statistics for the simulated trajectories 19 

were extracted and compared against its real counterpart collected on-site. A set of 9 MoP were 20 

selected for describing the trajectory data: speed, acceleration, deceleration, headway, time-to-21 

collision (TTC), deceleration rate to avoid crash (DRAC), number of lane-changes (NLC), and lead 22 

and lag gaps during a lane-change. For each of these variables (except for NLC) 11 statistics were 23 

considered in the computation of its GoF, characterising their distribution within the A44 and its 24 

access links: the minimum value, nine percentiles (10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th and 25 

90th) and the maximum value of the distribution. Again, in order to assess the dependence from the 26 

GoF measure selected, the RMSE, RMSPE and U were computed, resulting in a total of 27 GoF-MoP 27 

combinations to be analysed during the SA. 28 

The sizes for the variance-based SA QMC experiment, the trajectory sampling of the quasi-OTEE and 29 

the Kriging experiment size are defined in the next section. 30 

For the calibration of each specific event using the WSPSA algorithm, the average speed and sensor 31 

counts for the 30 min before the accident occurrence were used as measurements in the optimizing 32 

function. The full trajectory-based calibrated parameters and the GLS-estimated dynamic seed OD 33 

were used as initial parameters. The assumed weights of the optimizing function (eq. 11) were 34 

𝑘1
𝑐𝑜𝑢𝑛𝑡𝑠 = 0.3, 𝑘1

𝑠𝑝𝑒𝑒𝑑𝑠
= 0.5 and 𝑘2 = 0.2. These values were defined previously, assuming the 35 

contribution of each data source to the calibration process. As we focus on detailed traffic statistics a 36 

higher contribution was given to speed related data. A sensitivity analysis on these weight values may, 37 

however, enhance the calibration final results. Finally, the constant parameters of the WSPSA 38 

algorithm were set to previously estimated values under a generic SPSA application to MITSIMLab 39 

calibration (Vaze et al., 2009). 40 
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For carrying out this computationally demanding task, MITSIMLab was installed under Scientific 1 

Linux in a cluster with 80 cores with 1GB of RAM memory each. This resource allowed for an 2 

extended parallelization of the required number of simulations. 3 

4 Results 4 

4.1 The effect of calibration data on simulated safety outputs 5 

4.1.1 Calibration using aggregated data 6 

In early research (Ciuffo and Lima Azevedo, 2014) the proposed methodology was applied to the 7 

identification of sensitive parameters regarding loop sensor data, using the current case study and for 8 

the specific day of trajectory extraction. The multi-step SA carried out was a two step procedure. 9 

A first group variance-based SA (N = 2048) was performed on 15 groups accounting for the entire 10 

101 parameter set: the reaction time distribution parameters (group 1), the car-following acceleration 11 

model (2), the free-flow acceleration model (3), the merging model (4), the mandatory lane change 12 

model (5), the yielding model (6), the nosing model (7), the nosing control parameters (8), the 13 

courtesy yielding model (9), the driver heterogeneity parameters (10), the target gap acceleration 14 

model (11), the gap acceptance model (12), the lane utility functions (13), the target gap model (14), 15 

and the origin-destination variability parameters (15). 16 

A second full variance-based SA (N = 512) was then carried out with the 41 most sensitive 17 

parameters. This second step resulted in the identification of the final 11 most sensitive parameters, 18 

which accounted for almost the 90% of the output’s variance: 19 

 𝜇𝑅𝑇 and 𝜇𝑑𝑣
ℎ  are the mean of the reaction time and headway threshold distributions 20 

respectively. 𝜇𝐷𝑆 is the distribution mean of the desired speed factor. These are known to be 21 

important parameters, especially when analysing individual models separately; 22 

 𝛼𝑐𝑓
𝑎𝑐𝑐 and 𝛼𝑐𝑓

𝑑𝑒𝑐 are the constant parameters of the CF acceleration and deceleration models; 23 

 𝛽𝑐𝑓
𝑎𝑐𝑐 is the speed parameter in the CF acceleration model, and it emerged as sensitive mostly 24 

when analysing non-congested situations; 25 

 𝛾𝑐𝑓
𝑑𝑒𝑐 and 𝜌𝑐𝑓

𝑑𝑒𝑐 are the gap and speed differences between the subject and the leader vehicles 26 

of the CF deceleration model. Although 𝛾𝑐𝑓
𝑑𝑒𝑐 was already found as significant in previous SA 27 

of MITSIMLab (Kurian, 2000), it is clear that it is closely linked to the speed difference and 28 

both parameters should be taken jointly into account; 29 

 𝛼𝐶𝐿, 𝛿𝑙𝑢𝑚
1  and 𝜃𝑀𝐿𝐶 are parameters of the lane selection (utility) model: the constant 30 

parameter of the current lane utility, the one-lane-change-required to exit parameter, and the 31 

distance-to-exit parameter. The latter two parameters are used together (combined) in the lane 32 

utility function formulation. The two lane carriageway layout of the A44 motorway clearly 33 

conditioned this outcome, as the network configuration almost only requires for one 34 

mandatory lane-change throughout its entire extension. 35 

The reader is referred to Toledo et al. (2007) and Lima Azevedo (2014) for a description of the 36 

mathematical formulations of the models where these parameters are used. 37 
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The methodology required a total of 55,808 model evaluations instead of the 421,888 (-80%) 1 

otherwise required for applying variance based techniques to the whole set of parameters. 2 

The sizes of the QMC experiments were found to be sufficient as all GoF converged. For stochasticity 3 

control, three replications of each combination were considered during this analysis. This number was 4 

conditioned by computational resources. The results were, in general, the same for all GoF. However, 5 

a clearly slower convergence of the QMC results was obtained for the RMSE. At each step, the less 6 

sensitive parameters were set to the best speed-based U combination accounting for all sensors. 7 

Finally, the most sensitive 11 parameters found were integrated into a final Kriging calibration, in 8 

which a set of 13,312 combinations (1024 × (11 + 2)) were computed, each with 10 replications for 9 

stochasticity control (see Ciuffo and Lima Azevedo, 2014 for details). 10 

4.1.2 Calibration using disaggregated data 11 

Similarly to the previous section, the first step of the application of the proposed method to the 12 

trajectory data was a group variance-based SA performed on the same 15 groups (101 parameters). A 13 

total of 34,816 non-replicated simulations (assuming N = 2048) were carried out to compute the group 14 

sensitivity indices based of the 27 GoF mentioned earlier.  15 

The resulting number of parameters in the most sensitive groups (56) is substantially higher than in 16 

the previous aggregated data based SA (41). Furthermore, the size of the QMC experiment may still 17 

reach a very high number, due to the multiple nature of the MoP considered for the trajectory-based 18 

SA. Also, the initial grouping has a consistent structure based on the sub-models of MITSIMLab, and 19 

a different grouping might be counter-intuitive. Therefore, the quasi-OTEE method was used as a 20 

second step to further identify most influential inputs. This also generalises the proposed multi-step 21 

SA to other techniques. 22 

For this second step, a set of m = 500 trajectories and n = 100 quasi-OTEE were selected. 56,000 23 

simulations would be necessary for the basic EE method (total number of parameters k = 56), whereas 24 

5,700 are needed for the quasi-OTEE method. The less sensitive 46 parameters values were set to the 25 

combination with the best combined U from the previous step (combination of all 11 MoP considered 26 

for trajectories). The quasi-OTEE allowed to quickly identify the 15 most sensitive parameters, 27 

although without providing a quantification of the related uncertainty. With these 15 parameters a full 28 

final variance-based SA is now computationally feasible. 29 

We started with a smaller size for the QMC experiment of N = 256, thus with 4,352 model 30 

evaluations. If convergence had not been achieved, additional simulations would have been necessary. 31 

Again, the other 41 parameters values were set to the values of the best overall GoF combination of 32 

the quasi-OTEE analysis. As we are collecting individual vehicle observations and the stochasticity 33 

was assumed to be captured by the large number of vehicle position observations computed, no 34 

replications of each combination were performed at this point. Convergence was reached and this 35 

final variance-based SA allowed for the identification of nine model parameters (out of 101) that 36 

accounted for, at least, 50% of the output’s variance of each computed trajectory-based MoP: 37 

 𝜇𝑅𝑇 and 𝜎𝑅𝑇 are the mean and standard deviation of the reaction time distribution; 38 

 𝜇𝐷𝑆 and 𝜎𝐷𝑆 are the mean and standard deviation of the alternative desired speed distribution; 39 
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 𝛼𝑐𝑓
𝑑𝑒𝑐 and 𝜌𝑐𝑓

𝑑𝑒𝑐 are the constant parameter and speed difference between the subject and the 1 

leader vehicles parameter of the car-following deceleration model; 2 

 𝛽𝑡𝑎𝑖𝑙
𝑇𝐿 , 𝛿𝑙𝑢𝑚

1  and 𝜃𝑀𝐿𝐶 are the tailgating, one lane-change required to stay in path, and the 3 

distance to exit parameters of the lane selection model. 4 

The interaction component is still very important for all MoP and is responsible for the increased 5 

share in the output variance for the selected nine parameters. With this methodology 44,868 model 6 

evaluations were performed, instead of 212,992 (-79%) required with the full variance based method. 7 

Finally, these 9 most sensitive parameters were calibrated using the Kriging approach. For the 8 

experiment design, a set of 11,264 combinations (1024 × (9 + 2)) with 10 replications each were 9 

computed. 10 

4.1.3 Comparison and Discussion 11 

As expected, the proposed global SA framework using the distributions of trajectory statistics resulted 12 

in a more complex procedure than using data from a small set of loop sensors. 13 

The majority of the relevant parameters from the SA with loop-based data was also detected as 14 

sensitive in the last steps of the trajectory-based SA. This vouches the consistency of both the 15 

proposed global SA and the MITSIMLab driving behaviour model itself. The reaction time, desired 16 

speed and car-following (CF) deceleration constant parameters, and the lane selection (utility) model 17 

parameters were revealed as fundamental simulation models. However, some other parameters are 18 

also important in the replication of trajectory statistics: the standard deviations of relevant driving 19 

behaviour heterogeneity distribution parameters, namely those for reaction time and the desired speed; 20 

interaction parameters (speed difference and density) of the CF acceleration model; and even 21 

parameters of the nosing and courtesy yielding models. The identification of calibration parameters is 22 

very sensitive to each case study configuration and observed traffic conditions; in fact, these two 23 

models were expected to be important models in the busy A44 case study. 24 

After the two final calibrations, setting a single best solution for replication is not advisable for 25 

several reasons: the Kriging approximation might not capture small changes existing in the true 26 

model; a single best option may easily change, depending on the daily traffic data; and the best 27 

combination for a specific MoP is most likely different from the best one for another measure. For 28 

these reasons the thirty best combinations with comparable performances were kept for the validation 29 

testing. This number was selected by rounding the number of combinations with a (speed-based / 30 

combined) GoF measure (for aggregated / trajectory data) with U <0.085. 31 

From Figure 2 it is clear that both trajectory and loop based calibrations allowed for good replication 32 

of sensor outputs. However, a clear improvement in the overall detailed variables distributions is 33 

observed for the trajectory-based calibration (see Figure 3). This improvement is even more 34 

significant when analysing road section types that do not have loop sensors anywhere in the A44 35 

layout, and therefore no sensor-based speed measurements (Figure 4). A perfect fit is not reached due 36 

to the limited calibration iterations, the intrinsic modelling errors and the choice of a combined GoF 37 

accounting for an overall (and not variable specific) MoP as optimizing function. 38 
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Besides the clear dependence between the calibrated parameter values and the chosen MoP, these 1 

results show the importance of using trajectory data in the calibration of driving behaviour models 2 

when the replication of detail variables is at stake. Yet, when the calibration process aims at reaching 3 

a less comprehensive model (i.e., only replicating generic aggregated network efficiency 4 

measurements) trajectory data might not bring significant improvements, especially when the driving 5 

behaviour model is robust and the sensor coverage is comprehensive and well distributed (covering 6 

merging, weaving areas, etc). 7 

  

a) Full network average traffic flow (veh./h/lane) by time of day 

  

b) Full network average speed (km/h) by time of day 

  

c) Loop sensor #401 average speed (km/h) by time of day 

Figure 2 – Loop sensor output from sensor-based (left) and trajectory-based (right) calibrations (grey) 8 

and its real counterparts collected on-site (black). 9 
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a) Acceleration CDF for the entire network (m/s
2
) 

  

b) Deceleration CDF for the entire network (m/s
2
) 

  

c) Headway CDF for the entire network (m) 

  

d) Speed CDF for the entire network (m/s) 

Figure 3 – Trajectory output from sensor-based (left) and trajectory-based (right) calibrations (grey) 1 

and its real counterparts collected on-site (black). 2 
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a) Acceleration CDF in the right lane of two-lane sections, grade between 0 and 2%, 

and low traffic conditions (m/s
2
) 

  

b) TTC CDF for two lane sections in the left lane of two-lane sections, grade lower than 

-2%, and low traffic conditions (s) 

Figure 4 – Trajectory output from sensor (left) and trajectory-based (right) calibrations (grey) and its 1 

real counterparts (black). 2 

4.2 The effect of accident data-based calibration on driving behaviour parameters 3 

In this section the focus is on the calibration of MITSIMLab to replicate detailed variables for a large 4 

set of different scenarios (time periods and network locations). As it was concluded from the previous 5 

sections, the selection of a set of “best” combinations and a high number of replications is always 6 

preferable when dealing with stochastic simulation applications. This however, may cause a 7 

significant increase in the size of the simulation scenarios set. In fact, for each simulation scenario, the 8 

simplest Kriging metamodel may need thousands of replications for the selection of its best set of 9 

combinations. To overcome this computational burden, the WSPSA described above was used for the 10 

event-specific calibration. This type of simultaneous demand-supply method views the calibration 11 

process as an optimization problem reaching a unique solution, rather than controlling data variability 12 

using multiple combinations. 13 

When applying the above method to this case study, the parameter set to be calibrated is composed of 14 

the dynamic OD pairs of interest and the selected 11 most sensitive driving behaviour parameters 15 

regarding aggregated measurements (from section 5.1.1), as it is the only available data for event-16 

specific calibration. 17 
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The dynamic OD has a total of 100 OD paths per each 30 min period. As no significant intra-1 

variability was found in almost all intervals, a total of 100 demand parameters may be considered for 2 

each 30 min period. The rest of the parameters were set to their best values for the trajectory-based 3 

calibration (see section 4.1.2). Regarding the specification of the weight matrix W of the WSPSA, 4 

each matrix entry was defined as the relative correlation between the flow of a specific OD pair in a 5 

specific period p1 (parameter to be calibrated) and the count of sensor (measurement) in period p2. 6 

Due to the small size of our case study, these correlations were calculated using simple static 7 

assignment proportions directly computed from the network configuration. As all vehicles departing 8 

at time p reach their destination at p + 1 at most, the static simplification is acceptable. Driving 9 

behaviour parameter weights in W were set to 1 as no distinction was made between individual effects 10 

on different loop sensor output. Using just 30 iterations of this WSPSA set up, the RMSNE was 11 

reduced on average by 38%. 12 

4.2.1 Comparison of parameters values 13 

In Figure 5 the probability density estimates of the calibrated 11 parameters for accident (dashed area) 14 

and non-accident (light grey area) events are presented. These estimates are based on a normal kernel 15 

function, using a window parameter based on 100 equally spaced points that cover the range of each 16 

parameter. In solid and dashed thin vertical bars are the default parameters values estimated in 17 

previous research efforts by Ahmed (1999) and Toledo et al. (2007), respectively. It is worth 18 

remembering that Ahmed (1999) estimated an independent formulation of the lane-changing and 19 

acceleration models, and thus, not estimating some of the parameters considered in the analysis. Also, 20 

it is crucial to understand that there are interactions between these parameters and the analysis of the 21 

variability of a single parameter should be carefully done. 22 

 23 

Figure 5 – Distribution of calibrated parameters for accident (dashed area) and non-accident (light 24 

grey area) events. 25 
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It is clear from Figure 5 that the distribution of 𝜇𝑅𝑇, 𝜇𝐷𝑆,𝜌𝑐𝑓
𝑑𝑒𝑐 and 𝜃𝑀𝐿𝐶show substantial differences 1 

from past estimates. Yet, the estimated mean reaction time (𝜇𝑅𝑇) for both accident and non-accident 2 

events remained close to the value estimated using the real trajectory data set and to typical low safety 3 

thresholds values found in the literature. Also, the estimated desired speed add-on (regarding the 4 

speed limit) parameter, 𝜇𝐷𝑆, will obviously result in higher free flow speed values. 5 

No significant differences in the distribution of 𝜇𝑅𝑇 and 𝜇𝐷𝑆 were observed between accident and 6 

non-accident calibrations. Lower values for 𝛼𝑐𝑓
𝑎𝑐𝑐 and 𝛽𝑐𝑓

𝑎𝑐𝑐 were observed for the calibrated accident 7 

events, generally resulting in lower CF acceleration rates under the same conditions. The lower 𝛾𝑐𝑓
𝑑𝑒𝑐 8 

and higher 𝜌𝑐𝑓
𝑑𝑒𝑐 for calibrated accident events, result in higher deceleration rates for these conditions: 9 

a lower 𝛾𝑐𝑓
𝑑𝑒𝑐 parameter, the headway parameter for the CF model, results in deceleration rates more 10 

sensitive to the headway distance to the front vehicle; 𝜌𝑐𝑓
𝑑𝑒𝑐 is the speed difference deceleration 11 

parameter for the CF model and its higher value results in deceleration rates more sensitive to the 12 

speed difference between the follower and the leader vehicles. The higher headway threshold mean 13 

𝜇𝑑𝑣
ℎ  for accident events represents a broader control of CF model over the free flow acceleration 14 

model, i.e. a vehicle is under the influence of the front vehicle stimulus for larger headways. Finally, 15 

the 𝜃𝑀𝐿𝐶 distribution shows the importance of the distance to the desired exit in the lane change 16 

decision (the greater is 𝜃𝑀𝐿𝐶 the more significant is the effect of the distance to exit to the lane utility 17 

value). For calibrated accident events, higher parameter values result in an expected higher number of 18 

lane changes for shorter distances to exit. 19 

Even if the estimates of straightforward safety influencing parameters such as the reaction time or the 20 

desired speed do not have significant differences for both the accident and the non-accident samples, 21 

their combination with other parameters may still be related with unsafe events. The desired speed 22 

parameter (as it is specified in MITSIMLab, i.e. only for free flow conditions) for example is not, in 23 

fact, a primal explanatory factor in the occurrence of the rear-end collisions or side collisions under 24 

dense traffic scenarios as observed in the A44. The complexity of the underlying mechanisms of the 25 

relationship between the chosen driving behaviour model and unsafe events is thus exposed. 26 

4.2.2 Detailed traffic data 27 

After the calibration of each of the considered accident events and sampled non-accident events, we 28 

are now able to generate artificial data for each of them, and check of the simulator ability to replicate 29 

more dangerous conditions. Artificial vehicle trajectories simulated for the location and time of each 30 

event were used to generate the detailed traffic variables of interest regarding safety (see section 4.3). 31 

For the accident occurrences, the 144 simulations resulted in an average of about 1.5 ×32 

 105observations of vehicle motion variables at a frequency of 1Hz. These observations were 33 

recorded for the 50 m section upstream the accident location, and within the 5 min period before its 34 

occurrence. The 6,400 sampled non-accident events resulted in about 4.5 ×  106 observations for the 35 

same spatial and temporal units. A high number of replications is always desirable when working with 36 

simulated data. However, when dealing with the above mentioned number of observations per 37 

simulated scenario, the total number of trajectory records for multiple replications quickly becomes 38 

unmanageable. Thus, due to computational limitations, only three replications of each event were 39 
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performed. Table 1 contains summary statistics of several variables for both accident and non-1 

accident events. The distributions of speed, acceleration and headway are shown in Figure 6. 2 

Variable Mean Std. dev. Median 

Speed (m/s) 

Accidents 12.51 10.00 12.19 

Non-accidents 18.97 8.78 19.50 

Real trajectories 21.73 7.38 22.84 

Acceleration (m/s
2
) 

Accident 1.17 0.89 0.93 

Non-accident 0.79 0.61 0.71 

Real trajectories 0.66 0.87 0.30 

Deceleration (m/s
2
) 

Accident -1.10 0.92 -0.87 

Non-accident -0.92 0.86 -0.72 

Real trajectories -0.85 0.90 -0.44 

Headway (m) 

Accident 21.83 29.87 6.80 

Non-accident 38.23 34.57 29.50 

Real trajectories 45.84 33.90 35.86 

Lead side gap before a lane change (m) 

Accident 4.49 6.95 1.90 

Non-accident 9.68 10.91 4.5 

Real trajectories 11.90 8.87 10.53 

Lag side gap before a lane change (m) 

Accident 3.68 5.37 1.87 

Non-accident 10.19 8.71 8.56 

Real trajectories 12.46 8.99 11.77 

Table 1 –Statistics of variables related to artificial trajectories for the 5 min before accident and non-3 

accident events and to real trajectories collected on-site. 4 

The average speed is lower for the accident events than for the non-accident events. This suggests that 5 

some accidents took place at lower speed sections (such as entry and exit ramps) or under more dense 6 

traffic scenarios. However, this lower average speed does not mean that the drivers have made 7 

adequate speed choices. In fact, the speed standard deviation, often used as a surrogate indicator for 8 

multiple vehicle crashes, is higher. Both acceleration mean and standard deviation are significantly 9 

higher for simulated accidents than for non-accident events. Similarly, deceleration values are more 10 

conservative for non-accident events. A possible explanation is the presence of denser traffic 11 

conditions for the simulated accident events. Front relative speeds are defined as the speed of the front 12 

vehicle minus the speed of the subject vehicle, under car-following situations. Their distributions do 13 

not differ much for both samples. However, the headway values for the accident events are much 14 

smaller than for the non-accident. 15 

   

a) speed (m/s) b) deceleration (m/s
2
) c) acceleration (m/s

2
) 
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d) headway (m/s
2
) e) front relative speed (m/s) f) lead gap (m) 

   

g) lead relative speed (m/s) h)lag gap (m) i) lag relative speed (m/s) 

Figure 6 –Distribution of simulated variables for accident (white) and non-accident (grey) events 1 

The relations between the subject and the lead and lag vehicles in the target lane affect the gap 2 

acceptance and gap choice behaviours and, therefore, lane change conflicts. The statistics of the lead 3 

and lag gaps (for both left and right lanes) and relative speeds were only computed when a driver 4 

wished to switch lanes. The average values for both lead and lag gaps for accident events are much 5 

smaller than the non-accident ones and than those found in previous studies (Toledo et al. 2007, 6 

Choudhury, 2007). 7 

5 Conclusions and Future Research 8 

In this paper, the entire problem of calibration is treated under the light of uncertainty management. 9 

An application-ready global SA based calibration is proposed, estimating a large set of parameters and 10 

using a multi-step approach. Different SA techniques can be chosen depending on the complexity of 11 

each step, allowing for a significant reduction of the number of simulations and for the use of detailed 12 

analysis to more sensitive parameters set. The proposed framework clearly brings advanced methods 13 

to the global calibration of complex traffic microscopic simulation tools and was successfully applied 14 

to a specific motorway safety study using a driver behaviour model with 101 parameters. 15 

The proposed method was coupled with a metamodel based calibration to test the importance of 16 

trajectory data in the replication of detailed traffic variables, typically used in safety analysis. Poorly 17 

adjusted trajectory outputs deteriorate the usefulness of simulated traffic conflict surrogates, which as 18 

a result tend to reflect just the influence of traffic on crash frequencies. In fact, similar phenomena 19 
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were detected in early traffic conflict definitions (Hauer and Gårder, 1986). Despite the 1 

unquestionable value of trajectory data, its collection is still burdensome. The proposed method can 2 

also be used to test the simulators performance after calibration using other improved data sets, such 3 

as section-specific distributions of speeds, accelerations or headways at the lane level (more 4 

frequently available through video-based traffic monitoring systems). Yet, if detailed traffic and 5 

safety analysis are at stake, practitioners and researchers should always seek for such improved data 6 

to control uncertainty. The present document clearly show the importance of this uncertainty control 7 

in the calibration of simulators for the replication of safety outputs, both at the input data and at the 8 

methodological framework levels. 9 

The method was also coupled with a powerful simultaneous demand-supply calibration method and 10 

successfully applied in the calibration of a large set of accident and non-accident scenarios. The 11 

different values of the calibrated parameters allowed identifying diverse simulated behaviours in 12 

accident and non-accident scenarios, relying also on the interpretation of the intrinsic nature of each 13 

parameter itself. Furthermore, the artificial data generated by the differently calibrated models showed 14 

a clear divergence in the simulated outputs typically used for safety assessment, corroborating the 15 

usefulness of advanced traffic microscopic simulation tools in the replication of detailed interactions 16 

and driving behaviour. 17 

It is worth mentioning that the calibration tests were carried out separately considering accident and 18 

non-accident events. An accident type specific calibration should be tested in future research as the 19 

identification of different types of detailed behaviour (and, therefore, model parameters) might be of 20 

interest. Furthermore, to fully assess the efficiency of the aggregated calibration logic using 21 

disaggregated data presented in this paper, a comparison with other estimation frameworks needs to 22 

be carried out, namely: the direct and the conditioned estimations methods, both using maximum 23 

likelihood or Bayesian techniques directly on space-time observations, and outside of the simulation 24 

tool; and with the disaggregated calibration, where an optimizing function is specified in terms of 25 

space-time observations. The simulation tool must then be configured to match each real initial 26 

trajectory and the simulation positions be compared with the real ones. All these enhancements should 27 

be carried out alongside the development of more advanced behavioural models, which will allow the 28 

replication of near-accident driving behaviour. 29 
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