
Outline for the next couple of lectures 

-Magnetism and the Ising Model (today’s lecture) 
-Liquid-vapor transitions and polymer demixing 
(Monday’s lecture) 

Important concepts to be learnt from these lectures 
-How to build a molecular theory and solve it using different  
(mean-field) approximations. Develop conceptual 
frameworks on how to solve a given problem. 
-Regular solution theory for ordering transitions and the 
mean-field solution to magnetism are equivalent. 
-Thermodynamic results in magnetism, such as the critical 
(or Curie) temperature below which spontaneous 
magnetization occurs. 



Magnetism: The Ising Model 

1) Spins can be only in two states:  UP  or DOWN 

Consider N spins arranged in a lattice, 
Q: what is the net magnetization of this material? 

2) The spin-spin interactions are only with the  
nearest neighbors (nn): 

The spin-spin interaction strength is characterized by 
the coupling constant         J

Rules for the Ising Model: 

The energy per spin is then: 

The spins variable takes the values σ = +1(↑),−1(↓)

εi = −J
∑

j={nn}

σiσj − hσi



Magnetism: The Ising Model (contd.) 

Consider first the case of T=0 (where entropy vanishes) 

This implies that for T≠0, but sufficiently low, we expect 
materials with a positive coupling constant to display 
ferromagnetic behavior!  

J =

{
> 0 ferromagnetic
< 0 antiferromagnetic

We expect the system to exhibit the following behavior 
if J>0. 

M

TTc



Magnetism: The Ising Model (contd.) 

To obtain the thermodynamic properties of this system 
lets go brute force and calculate the partition function: 

Q =
∑

ν

e−βEν

In terms of the spin variables, we find 

Somebody knows how to solve this? 

=
∑
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
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∑

σ1=+1,−1

∑

σ2=+1,−1

. . .
∑

σN=+1,−1

e−β
P

i εi



The Ising Model: Macroscopic Observables 

Imagine that we knew how to calculate       !!!  

The magnetization of the system can then be 
calculated by 

Q

And the magnetization per spin is simply  

〈M〉 = 〈
∑

i

σi〉 =
1
β

∂

∂h
log Q

m =
〈M〉
N

= 〈σ〉



The Ising Model 

Q: what problem do we know how to calculate?  



The Ising Model 

Q: what problem do we know how to calculate?  

A collection of independent non-interacting spins!!!  



The Ising Model 

Q: what problem do we know how to calculate?  

A collection of independent non-interacting spins!!!  

Q: how can we convert the Ising Model to something 
we can solve?  



The Ising Model: Mean-Field Theory 
Q: what problem do we know how to calculate?  

A collection of independent non-interacting spins!!!  

Q: how can we convert the Ising Model to something 
we can solve?  

Solution: consider the average (or mean) field from the 
neighboring spins.  

εi = −J
∑

j={nn}

σiσj − hσi

εi = −Jzσi〈σ〉 − hσi

z = 2DLattice coordination 
hmol = Jz〈σ〉



The Ising Model: Mean-Field Theory 

Q = qN

q =
∑

σ=+1,−1

eβσ(hmol+h) = 2 cosh (β(hmol + h))

By factorization, we can calculate the partition function 
as  

where the single spin partition function is 

q = 2 cosh (βJz〈σ〉 + βh)



The Ising Model: Mean-Field Theory 

The average magnetization per spin is calculated as  

m = 〈σ〉 =
1
β

∂

∂h
log q

m = tanh (βh + βJzm) trascendental eq. 

Solve graphically (for the case                 ) h = 0

mT > Tc

T < Tc
T = Tc

m



The Ising Model: Mean-Field Theory 

The critical temperature is simply evaluated by the 
condition  

β =
1
Jz

Tc =
Jz

kB

TMF
c (3D) =

6J

kB

In 3D the critical temperature is 

T exact
c (3D) =

4J

kB

The solution below       for        is given by Tc m

β =
1

2Jzm
log

(
1 + m

1−m

)



The Ising Model: Mean-Field Theory 

The magnetization per spin as a function of T 

T/Tc

m



The Ising Model: The bold approach 

Also called the Bragg-Williams Theory    

Consider the same problem as 
before. The magnetization (per 
spin )can be computed as 

m = (N↑ −N↓)/N



The Ising Model: The bold approach 

Also called the Bragg-Williams Theory    

Consider the same problem as 
before. The magnetization (per 
spin )can be computed as 

m = (N↑ −N↓)/N

The entropy (per spin) for a fixed m is given by 

−S

kBN
= f↑ log f↑ + (1− f↑) log(1− f↑)

= − log 2 +
1
2
(1 + m) log(1 + m) +

1
2
(1−m) log(1−m)



The Ising Model: The bold approach 

Assume directly that the energy contribution is 
given by a mean-field 

E

N
= ε = −1

2
Jzm2 − hm

The free energy (per spin) is then 

F

kBTN
= f(m) = −1

2
βJzm2 − hm− log 2

+
1
2
(1 + m) log(1 + m) +

1
2
(1−m) log(1−m)



The Ising Model: The bold approach 

How does the free energy look like? 



The Ising Model: The bold approach 

How does the free energy look like? 

m
βJz > 1

βJz = 1
βJz < 1 f(m)



The Ising Model: The bold approach 

Near the critical point, the magnetization is small. 
What can we do then? 

The free energy (per spin) is then 

Expand in powers of m 

f =
1

2T
(T − Tc)m2 +

1
12

m4 + . . .

This is a classical result for system where the 
symmetry forces the free energy to only have even 
powers. Landau exploited this idea and constructed 
a whole field of phase transitions! 

as before Tc =
Jz

kB



The Ising Model: The bold approach 

Lets keep on going!  
Taking the derivative of the free energy with 
respect to m  and minimizing yields 

∂f

∂m
= −βJzm− h +

1
2

log
(

1 + m

1−m

)
= 0

β =
1

2Jzm
log

(
1 + m

1−m

)
h = 0

Same result as before!!!  



Summary 

-The Ising Model can be solved approximately by mean-field 
methods equivalent to those applied to obtain regular solution 
theory. 
-Provided two independent frameworks on how to think about 
the Ising Model, and ordering transitions, and how to obtain 
the observable thermodynamic quantities. 
-Showed that using a macorscopic or a microscopic mean 
field  approach yielded the same results. 
-The ideas developed for solids and ordering transitions can 
be directly applied to the case of magnetism. 
-The ideas developed for solids and ordering transitions can 
be directly applied to the case of magnetism and liquid-vapor 
phase transitions 


