I. INTRODUCTION

Diffusion of atoms and ions is an important kinetic property of many materials. It determines whether stable states can be reached and at which rate this can occur. Many technologically relevant materials rely on low diffusion rates to prevent them from evolving to their equilibrium, but often less useful, state. For example, corrosion of some materials is limited by oxygen or cation transport through a surface phase. In other technologically important materials, fast ionic diffusion is desirable. This is the case in materials for ionic membranes, solid electrolytes, and insertion electrodes.

Ionic diffusion in crystalline solids typically occurs by diffusion-mediating defects such as vacancies or interstitials. Often these carriers of diffusion are present at a very low concentration such that they do not interact. In this regime, dilute diffusion theory is valid and the diffusivity can be written as

\[ D = a^2 g f x_D \nu^* \exp \left( \frac{-\Delta E_a}{kT} \right), \]

where \( a \) is a hop distance, \( g \) is a geometric factor, \( f \) is a correlation factor, and \( x_D \) is the concentration of the diffusion-mediating defect. \( \Delta E_a \) is the activation barrier which is defined as the difference in energy at the activated state and the energy at the initial state of the ionic hop. The factor \( \nu^* \) has the dimension of a frequency and is determined by the difference in entropy at the activated state and the initial equilibrium state of the hop.

For many important materials dilute-diffusion theory breaks down. This occurs when the concentration of carriers (i.e., vacancies or interstitials) is sufficiently large that they interact. Such interactions can lead to short range or even long-range order among the diffusion-mediating defects, complicating an analysis of diffusion. Along its trajectory, the migrating ion will sample different local environments and each hop will be characterized by a different activation barrier \( \Delta E_a \). Furthermore, at each step of the migration the diffusing species may have a different concentration of mediating defects in its vicinity.

Nondilute diffusion is common in technologically important materials. Examples include doped zirconias for fuel cells or perovskites for oxygen membranes (e.g., \( \text{SrCoO}_3 \)). In these compounds, large oxygen-vacancy concentrations can be obtained, enhancing the possibility of order-disorder transitions between oxygen ions and vacancies, and thereby significantly affecting the mobility of the diffusing oxygen ions. Lithium insertion oxides, used as electrodes in lithium-ion batteries are another example. In battery charging and discharging, lithium ions are inserted in and removed from interstitial sites in a transition-metal oxide host. During this process, the host undergoes a wide range of lithium concentrations and many different degrees of lithium order and disorder are sampled.
In this paper, we present a formalism to study diffusion in nondilute systems from first principles. The approach makes use of a local cluster expansion to parametrize the environment dependence of the activation barrier. Periodic cluster expansions have proven to be an invaluable tool for the investigation of thermodynamic properties in multicomponent systems exhibiting configurational disorder. It is commonly implemented for the calculation of binary phase diagrams of systems in which the different species can be ordered or disordered on a common crystal structure. The power of a cluster expansion lies in its ability to accurately and with minimal computational cost extrapolate first-principles energy values of a relatively few, small periodic arrangements of ions in a given crystal structure, to the energy of any ionic configuration within the same crystal structure. In the present context of diffusion in nondilute systems, we show how the cluster expansion formalism can be cast in a form to parametrize arrangement-dependent activation barriers calculated from first principles. The resulting local cluster expansion for the activation barrier can then be combined with a cluster expansion for the configurational energy of the solid in kinetic Monte Carlo simulations to investigate diffusion in nondilute systems. Such a kinetic Monte Carlo simulation will contain both accurate kinetic as well as thermodynamic information.

As an illustration, we implement this approach in the study of lithium diffusion in Li$_x$CoO$_2$. We find that the local arrangement around migrating lithium ions plays an essential role in determining both the hopping mechanism and the value of the activation barrier. The paper is divided into two parts. The first part (Sec. II) focuses on the formalism and introduces the local cluster expansion to describe the configuration dependence of the activation barrier. In the second part (Sec. III), the formalism is applied to Li$_x$CoO$_2$. Preliminary results of our study of lithium diffusion in Li$_x$CoO$_2$ have been published previously. Here we elaborate on those results and focus in depth on the computational details to illustrate the formalism described in Sec. II.

II. METHODOLOGY

A. Diffusion coefficient

We consider the diffusion of a single type of species on a subset of sites of the crystal structure of a host and assume that migration occurs by the exchange with adjacent vacant sites. This is a common mechanism for diffusion in many oxides and in some metals with interstitial components: In doped zirconias and defective perovskites such as SrCoO$_{3-\delta}$, oxygen diffusion occurs by exchanges with vacancies on the oxygen sublattice; in fast ion conductors such as sodium-$\beta$' alumina or insertion electrodes such as Li$_x$CoO$_2$, the sodium ions and lithium ions respectively migrate along two-dimensional interstitial sublattices within the oxide host by exchanges with adjacent vacancies; and finally, in steel, the carbon atoms reside and diffuse on the interstitial sites of bcc iron. We will denote these systems by $A_xB$ where $A$ is the diffusing species, $B$ is the formula unit of the host and $x$ is the ratio of $A$ to the number of available sites for $A$ within the host $B$.

A measure of the mobility of a particular species in a host structure is the chemical diffusion coefficient $D_c$ which relates the flux $J$ of that species to its concentration gradient according to Fick’s law

$$J = -D_c \nabla C.$$

$C$ is the concentration $x$ of the diffusing species divided by the volume of $A_xB$ and $D_c$ is the diffusion tensor. On the microscopic level the chemical diffusion coefficient can be determined at equilibrium with

$$D_c = \Theta D_J,$$

where

$$\Theta = \left[ \frac{\langle (\delta N)^2 \rangle}{\langle N \rangle} \right]^{-1} = \left( \frac{\partial (\mu/kT)}{\partial \ln x} \right)$$

is called the thermodynamic factor and

$$D_J = \lim_{t \to \infty} \left[ \frac{1}{2dt} \left( \frac{1}{N} \sum_{i=1}^N \langle r_i(t) \rangle^2 \right) \right]$$

is referred to as the jump diffusion coefficient. $N$ corresponds to the number of diffusing ions, $r_i(t)$ is the displacement of the $i$th ion after time $t$, and $d$ is the dimension of the lattice on which diffusion takes place. $\langle (\delta N)^2 \rangle$ is the fluctuation in the particle number of the diffusing species in an open system. In a closed system, it can be approximated by the fluctuation in a region of average $\langle N \rangle$ particles. $\mu$ is the chemical potential of the diffusing species at concentration $x$. Equations (3), (4), and (5) together form the Kubo-Green equation for diffusion.

The jump diffusion coefficient $D_J$ of Eq. (3), which can be considered as a kinetic quantity, is related to the displacement of the center of mass of all the diffusing ions. The thermodynamic factor $\Theta$ is related to the chemical potential $\mu$ according to the second equality in Eq. (4). $\Theta$ accounts for the deviation from ideality of the diffusing species in a solid solution with the host in which it is diffusing. The occurrence of a thermodynamic factor in Eq. (3) arises from the fact that the true driving force for diffusion is a gradient in chemical potential and not a gradient in concentration as is assumed in Fick’s law (2). The thermodynamic factor, therefore, accounts for the difference between a gradient in concentration and a gradient in chemical potential. Only for ideal solutions and in the dilute concentration limit, where the chemical potential of the diffusing species at concentration $x$ assumes the form $\mu = \mu^0 + kT \ln(x)$, does the thermodynamic factor equal 1.

Another useful quantity to characterize ion mobility is the more common tracer diffusion coefficient which is defined as

$$D^* = \lim_{t \to \infty} \left[ \frac{1}{2dt} \left( \frac{1}{N} \sum_{i=1}^N \langle (\bar{r}_i(t))^2 \rangle \right) \right].$$

$D^*$ differs from $D_J$ in that it measures the square of the displacement of individual particles as opposed to the square
of the displacement of the center of mass of all the diffusing ions. If on average, there are no cross correlations between displacements \( \mathbf{r}_i(t) \) of different particles at different times, \( D_j \) and \( D^* \) become equivalent.\textsuperscript{22,23} Monte Carlo studies of diffusion for simple lattice models on a square lattice indicate that \( D^* \) is typically of the same order of magnitude as \( D_j \) though not exactly equal to it.\textsuperscript{26}

To obtain the displacements \( \mathbf{r}_i(t) \) appearing in Eqs. (5) and (6) for the ions \( i \), a dynamics has to be defined for the system. While in principle, molecular dynamics can be used to generate \( \mathbf{r}_i(t) \), for most systems diffusion is too slow to be efficiently captured on the short time scales of such simulations. For hopping diffusion, a kinetic Monte Carlo model (KMC) can be used where ions hop between preselected sites and by predetermined mechanisms. By randomly selecting ions and letting them hop with correct relative probabilities, a “dynamical” trajectory for the \( \mathbf{r}_i(t) \) can be calculated. Implicit in this approach is the assumption that sufficient time elapses between different hops such that the ions are completely thermalized before they execute the next hop. This means that correlations between successive hops are negligible and diffusion can be considered a stochastic process (i.e., Markovian). Such an assumption is valid for most solids\textsuperscript{27} with the exception of those exhibiting liquidlike diffusion.

During each hop, the migrating ion crosses an energy barrier, often referred to as a dividing surface, that separates the energy wells constituting the end points of the hop. This dividing surface contains the activated state of the hop which is an effective frequency and is equal to \( (kT/2\pi)^{1/2}(\Delta \psi/\Delta \xi) \).

As with the activation barrier \( \Delta E_a \), Eq. (9) suggests that the activation entropy \( \Delta S_a \) can be written as

\[
\Delta S_a = s_{AS} - s_i,
\]

where \( s_i \) corresponds to \( k \) times the logarithm of the denominator in Eq. (9) and \( s_{AS} \) corresponds to \( k \) times the logarithm of the numerator in Eq. (9). The dominant contribution to the nonconfigurational entropy change \( \Delta S_a \) is vibrational entropy. The prefactor of Eq. (8)

\[
\nu^* = \nu \exp \left( \frac{\Delta S_a}{k} \right)
\]

has the dimension of a frequency and is typically assumed to be of the order of \( 10^{13} \) Hz. Nevertheless, examples exist, such as the two dimensional diffusion on a Ge surface, where the prefactor was found from first principles to be between \( 10^{11} \) and \( 10^{12} \) Hz.\textsuperscript{31}

The fundamental assumption of transition state theory is that all trajectories originating in the energy well of the initial state of the hop and crossing the dividing surface continue to the final state of the hop. In reality, though, a subset of trajectories exist that recross the dividing surface and return to the initial state. Transition state theory neglects the flux of recrossing trajectories and, therefore, gives an upper bound to the true hopping rate. To correct this discrepancy, the migration rate of transition state theory is sometimes multiplied by a recrossing coefficient, \( \kappa \), which typically ranges between 0.1 and 1. The value of the recrossing coefficient depends on the details of the energy surface.\textsuperscript{33,34} Several techniques to estimate the recrossing coefficient have been developed for diffusion in solids.\textsuperscript{32–36} For simplicity we will set \( \kappa = 1 \), keeping in mind that the hopping rate of transition state theory, Eq. (8), gives an upper bound to the true hopping rate.

### B. Configuration dependence of the energy and activation barrier

In this paper, we are concerned with solids in which the diffusing species resides on a subset of crystallographic sites within a host and in which diffusion is mediated by vacancies. We will refer to this subset of crystallographic sites as \( \Sigma \). In the nondilute regime, in which the diffusing species shares the sites of \( \Sigma \) with a large concentration of vacancies, there exists a degree of disorder on \( \Sigma \). Different arrangements of ions on \( \Sigma \) can occur and each arrangement typically has a different energy. At finite temperature, the configuration of ions on \( \Sigma \) evolve over time as a result of the thermally activated hops of ions on \( \Sigma \) to adjacent vacant sites on \( \Sigma \).

Not only is the energy of the solid dependent on the arrangement of ions and vacancies on \( \Sigma \), but the energy of the solid when a diffusing ion is at an activated state \( E_{AS} \) also depends on the surrounding configuration on \( \Sigma \). It is well known that the configurational energy of the solid \( E_i \) can
rigorously be described with a lattice model formalism. By assigning occupation variables to each site on $\Sigma$ which are $+1$ ($-1$) if a diffusing species (vacancy) resides at that site, it is possible to describe the configurational energy of the solid with a cluster expansion

$$E = V_0 + \sum_{\alpha} V_{\alpha} \phi_{\alpha},$$

(12)

where

$$\phi_{\alpha} = \prod_{i \in \alpha} \sigma_i.$$  

(13)

The polynomials $\phi_{\alpha}$ are equal to products of occupation variables corresponding to clusters $\alpha$ of sites $i$ of $\Sigma$. The clusters $\alpha$ refer to figures of sites on $\Sigma$ which include for example, nearest neighbor pair clusters, second nearest neighbor pair clusters, triplets of sites, etc. It can be shown that the expansion is exact when it extends over all possible clusters of sites, but to be practical, it must be truncated after a polynomial corresponding to some maximal sized cluster. The coefficients $V_0$ and $V_{\alpha}$ are referred to as effective cluster interactions (ECI) and are to be determined from first principles. Symmetry is often useful to simplify Eq. (12). Any group of clusters $\alpha, \beta, \ldots$, that are equivalent by the space group symmetry of the crystal have ECI with the same numerical value.

The advantage of a cluster expansion is that it enables a rapid calculation of the configurational energy of the crystal for any arbitrary configuration on $\Sigma$. With the above definition of the occupation variables $\sigma_i$ for each site $i$, a particular configuration on $\Sigma$ can be represented by an array of $+1$ and $-1$'s. To calculate the energy then, all that is required is that the polynomials $\phi_{\alpha}$ for the different clusters $\alpha$ appearing in the cluster expansion be evaluated for this particular configuration. The polynomials can then be multiplied by their corresponding ECI $V_{\alpha}$ and added according to Eq. (12) to obtain the configurational energy of the crystal.

The accuracy of the cluster expansion depends on the degree of convergence before it is truncated. There are several ways to determine the ECI, $V_{\alpha}$, from first principles. Typically, the energies of a set of periodic structures with different ionic configurations are calculated with a first-principles method. A truncated form of Eq. (12) is then inverted with either a least squares procedure or a method based on linear programming to calculate the values of the ECI. The effects of relaxations of the ions on $\Sigma$ and of the host structure are implicitly accounted for if the energies used in the fit correspond to those of fully relaxed structures. Other approaches for the determination of ECI have also been proposed.

For activation barriers, a description of their configuration dependence with a lattice model formalism is less straightforward than that of the configurational energy. An activation barrier depends not only on the surrounding configuration, but also on the direction in which the ion migrates between the end points of the hop. This is illustrated in Fig. 1. The hop in Fig. 1 is characterized by two end points, but in general, hops can be characterized by $n > 2$ end points whereby the hopping ion once at the activated state can choose to continue to any one of the $n$ end points.

To overcome the difficulties associated with the direction dependence of $\Delta E_a$, we introduce a kinetically resolved activation (KRA) barrier $\Delta E_{KRA}$ whereby the average of the energies of the end points of the hop are subtracted from the energy at the activated state $E_{AS}$ according to

$$\Delta E_{KRA} = E_{AS} - \frac{1}{n} \sum_{j=1}^{n} E_{ej},$$

(14)

$E_{ej}$ is the energy of the crystal when the migrating ion is at end point $j$ of the hop and the remaining $n-1$ end points of the hop are vacant. Figure 1 schematically illustrates the meaning of $\Delta E_{KRA}$ for a hop with two end points. For each of the terms appearing in Eq. (14), the configuration on $\Sigma$, excluding the end points of the hop are the same. Subtracting the term $(1/n)\sum_{j=1}^{n} E_{ej}$ from $E_{AS}$ is a way of separating an effective configurational energy, where ions reside only on sites of $\Sigma$, from a kinetic component determined when an ion resides at the activated state and the end points of the hop are all vacant. The resulting kinetically resolved activation barrier $\Delta E_{KRA}$, which is still configuration dependent, is independent of the direction of the hop.

Once $\Delta E_{KRA}$ and the configurational energy of the solid $E_{ej}$, for $j=1,n$ are known, it is straightforward to reconstruct the activation barrier for a hop that starts from one of the end points, say $j=1$ according to

$$\Delta E_a = \Delta E_{KRA} + \frac{1}{n} \left( \sum_{j=1}^{n} E_{ej} - E_{ej} \right).$$

(15)

Note that $\Delta E_{KRA}$ is equal to $\Delta E_a$ when the energies of the $n$ end points are all the same. When the energies of the end points are not equal, $\Delta E_{KRA}$ reduces to the average of all the $\Delta E_a$ seen from each of the $n$ end points of the hop.

This construction yields a quantity $\Delta E_{KRA}$, that depends on the configuration around the migrating ion, but that is independent of the direction of the hop. $\Delta E_{KRA}$ can, therefore, be described with a cluster expansion

$$\Delta E_{KRA} = K_0 + \sum_{\alpha} K_{\alpha} \phi_{\alpha},$$

(16)

As in Eq. (12) $\phi_{\alpha}$ are polynomials of occupation variables, and $K_{\alpha}$ are kinetic effective cluster interactions (KECI) describing the variation of the kinetically resolved activation barrier with configuration. When a migrating ion is at the activated state, the $n$ end points of the hop are unoccupied.

FIG. 1. The activation barrier $\Delta E_a$ depends on the direction of the hop (indicated by the arrow). The kinetically resolved activation barrier, $\Delta E_{KRA}$, however, is independent of the direction of the hop.
FIRST-PRINCIPLES THEORY OF IONIC DIFFUSION . . . PHYSICAL REVIEW B 64 184307

Assuming that Σ has L sites, the cluster expansion, Eq. (16), then extends over the \( L - n \) sites that do not overlap with the \( n \) end points of the hop.

The cluster expansion of Eq. (16) enables a rapid calculation of \( \Delta E_{KRA} \) for any arrangement of ions surrounding the end points of a particular hop. Once a configuration on \( Σ \) is specified by assigning values to the occupation variables \( σ_j \), the polynomials \( φ_{α} \) can be evaluated for all clusters \( α \) appearing in Eq. (16). Multiplying the evaluated polynomials with their corresponding \( KECI \) \( K_a \) and adding according to Eq. (16) yields the \( \Delta E_{KRA} \) for the hop of interest surrounded by the given configuration.

A distinction must be made between a cluster expansion of the configurational energy as represented by Eq. (12) and a cluster expansion for the kinetically resolved activation barrier \( \Delta E_{KRA} \). The configurational energy is a global extensive property, characterizing the total energy of the whole solid as a function of the arrangement of diffusing ions and vacancies on \( Σ \). \( \Delta E_{KRA} \), in contrast, is a local property. This has implications as to how symmetry is to be used to identify clusters with identical \( KECI \) in Eq. (16). Equivalent clusters in the cluster expansion for the energy [Eq. (12)] are determined by applying the symmetry elements of the space group of the crystal. For the local cluster expansion [Eq. (16)], the appropriate symmetry operations belong to the highest point group that maps the cluster of \( n \) end points of the hop onto itself, with the additional requirement that the point group is consistent with the space group of the solid. Since activation barriers are a local property, it is reasonable to expect that the KECI \( K_a \) of Eq. (16) will converge for clusters \( α \) that extend beyond a maximal distance away from the hopping ion. The terms in Eq. (16) that correspond to these large clusters can then be neglected.

Local cluster expansions have been used in different contexts to describe the configuration dependence of the local magnetic moments\(^{42}\) and local vibrational modes\(^{43}\) in metallic systems. Recently a local cluster expansion was invoked to study the configuration dependence of vacancy formation energies in oxides.\(^{44}\)

The exponential prefactor \( \eta^a \) given by Eq. (11) also depends on the local environment. In a similar way as with the activation barrier, we can introduce a kinetically resolved activation entropy \( ΔS_{KRA} \). The essential ingredients to describe the configuration dependence of the activation entropy \( ΔS_{a} \) are a cluster expansion for the nonconfigurational entropy and a local cluster expansion for \( ΔS_{KRA} \). The true activation entropy for the hop \( ΔS_{a} \) can then be reconstructed for any configuration in the same way as was described above for \( \Delta E_{a} \) using Eq. (15). Cluster expansions of vibrational entropy and free energy have been explored by Gubernsky and Ceder\(^{45}\) and Ozolins et al.\(^{46}\)

C. First-principles total energy calculations

The accuracy of a cluster expansion depends on the first-principles method used to derive the ECI of the expansion. A commonly used first-principles method is density functional theory (DFT) within the local density approximation (LDA).\(^{47,48}\) Many phase diagram calculations drawing on the cluster expansion formalism have relied on DFT-LDA calculations to obtain numerical values for the ECI.\(^{9–20}\) These studies have shown that DFT-LDA is capable of producing qualitatively accurate predictions of the configurational thermodynamic properties of binary and pseudobinary systems. Often the quantitative accuracy of predicted structural properties such as lattice parameters and thermodynamic properties such as order-disorder transition temperatures are good, considering that no experimental input is used.

In the present study, we have used the Vienna \textit{ab initio} simulation package (VASP) (Refs. 49,50) to calculate total energies of solids. This code solves the DFT-LDA Kohn-Sham equations within the pseudopotential approximation\(^{51}\) whereby the valence electrons are expanded in a plane wave basis set and the effect of the core states on the valence electrons are treated with ultrasoft pseudopotentials.\(^{52}\) This method is restricted to calculations in systems that are characterized by a periodic cell. To calculate activation barriers with this method, therefore, it is necessary to work with periodic supercells that are large enough to minimize the interaction between the periodic images of the ion in the activated state.

Several ways exist to calculate energies along the migration path. In this work, we have used two. The first is called the elastic band method which enables the determination of the minimum energy path between two energetically stable end points.\(^{53}\) It starts with a discretized path of on the order of 8-16 replicas of the system that are intermediate between the initial and final states of the path. The replicas are obtained by linear interpolation. A global energy minimization, using the pseudopotential method, is then performed with respect to ionic positions in each replica whereby the coordinates of each replica are connected to those of its neighboring replicas in the interpolation sequence by a spring. The working of the algorithm can be compared to the tightening of an elastic band across a saddle point between two minima of the energy landscape.

The elastic band method is useful to identify the migration path and the location of the activated state. Nevertheless, to obtain an accurate approximation of the energy at the activated state, a large number of replicas are needed. In many cases, the activated state is located at a high symmetry point between the end points and a calculation of the activation barrier can be performed with the hopping ion initially placed at the high symmetry point. During minimization of the energy of the supercell, the ion will remain at the high symmetry position and the resulting minimum energy will give the best approximation of the activation barrier within the supercell approach.

D. Kinetic Monte Carlo simulations

The kinetic Monte Carlo method enables the numerical calculation of the diffusion coefficients \( D_c \), \( D_J \), and \( D^a \) of Eqs. (3),(5),(6) by explicit stochastic simulations of the migration of a collection of ions within a host.\(^{54–62}\) It is possible provided that the probabilities for individual hops given by Eq. (8) are available. With first principles cluster expansions to calculate the activation barriers \( \Delta E_{a} \) of Eqs.
(7) and (15), such hopping probabilities in any environment can be obtained with minimal computational cost.

The basic algorithm implemented in this work is based on the n-fold way Monte Carlo algorithm and can be summarized as follows. At fixed ion and vacancy concentration on Σ and fixed temperature, the simulation starts with a typical ion-vacancy arrangement exhibiting the equilibrium state of short-range or long-range order. These initial configurations can be obtained with standard equilibrium Monte Carlo techniques in the canonical or grand canonical ensemble using the cluster expansion for the configurational energy. The kinetic Monte Carlo simulation then consists of the repetition of three steps as outlined by Bulnes et al. (i) First, all possible migration probabilities Γm are determined where m scans the collection of migration paths available to the different migrating ions on Σ. Γm is zero if the end points of migration path m are simultaneously occupied. When this is not the case, Γm is calculated with the hop frequency of Eq. (8). (ii) In the second step, a random number ρ of the interval (0,1) is sampled. The migration event k is chosen such that

\[
\frac{1}{\Gamma_{tot}} \sum_{m=1}^{k-1} \Gamma_m < \rho \leq \frac{1}{\Gamma_{tot}} \sum_{m=1}^{k} \Gamma_m ,
\]

where Γtot is the sum of all individual probabilities Γm. This ensures that each event m occurs with probability Γm/Γtot. The third step (iii) consists of an update of the time  \(\Delta t\) leading up to the hop of step (ii). This time is given by

\[
\Delta t = -\frac{1}{\Gamma_{tot}} \ln \zeta
\]

with ζ a random number from (0,1).

A kinetic Monte Carlo step (KMCS) is defined as the repetition of steps (i)–(iii) as many times as there are ions on Σ in the simulation. Typically of the order of 10^3 KMCS are required at each temperature and concentration. To obtain adequate averages for  \(D_J\) and  \(D^*\), a series of different initial equilibrium configurations on Σ are essential at each temperature and concentration. Initial configurations on Σ that are representative of equilibrium can be generated with canonical Monte Carlo simulations. Time averages of short-range or long-range order. These initial configurations can also be performed as described in Ref. 64.

Bulnes et al. demonstrated theoretically as well as with a numerical comparison, that the above described kinetic Monte Carlo algorithm is equivalent with the dynamic Monte Carlo algorithm commonly implemented in diffusion studies of lattice models. The advantage of the above algorithm is that a hop occurs during every sequence of steps (i)–(iii). This is especially advantageous for systems with strongly varying activation barriers. The calculation of the thermodynamic factor  \(\Theta\) of Eq. (3) can occur with grand canonical Monte Carlo simulations.

III. APPLICATION TO LITHIUM DIFFUSION IN Li\(_x\)CoO\(_2\)

In the remainder of the paper, we implement the above formalism to study lithium diffusion in Li\(_x\)CoO\(_2\). This compound is an important cathode material for rechargeable lithium batteries. Li\(_x\)CoO\(_2\) has a layered crystal structure as illustrated in Fig. 2. It consists of close packed oxygen planes stacked with an ABCABC sequence. Alternating between close packed oxygen planes are layers of lithium ions and cobalt ions which reside in the octahedral interstitial sites of the oxygen framework. Both the lithium and cobalt ions form two-dimensional triangular lattices. The particular cation ordering in LiCoO\(_2\) produces a crystal with rhombohedral symmetry that belongs to the R\(\overline{5}\)m space group. In an electrochemical cell, the lithium ions can be removed from and reinserted into the lithium planes of LiCoO\(_2\), resulting in the creation and annihilation of lithium vacancies. Lithium migration through the layered metal oxide host proceeds by exchanges with adjacent vacancies within the same lithium plane. Although variations of  \(x\) are typically limited between 0.5 and 1.0 when Li\(_x\)CoO\(_2\) is used in a commercial battery, laboratory experiments have demonstrated that almost all the lithium ions can be removed electrochemically from the CoO\(_2\) host. The ability to vary the lithium concentration  \(x\) in Li\(_x\)CoO\(_2\) over large intervals makes this an ideal material to investigate the concentration dependence of diffusion.

As the lithium concentration varies in Li\(_x\)CoO\(_2\), the compound undergoes a series of phase transformations that include order-disorder reactions, a first-order phase transformation induced by a metal-insulator transition, and a series of transformations where the CoO\(_2\) host undergoes structural changes. Furthermore, the concentration dependence of thermodynamic properties such as the lithium chemical potential or the equilibrium lattice parameters exhibit strong deviations from ideality. These phenomena can be expected to have interesting effects on the evolution of the lithium diffusion coefficient with concentration.

Although different polymorphs of layered Li\(_x\)CoO\(_2\) exist, in this paper, we restrict ourselves to a study of diffusion in
the $O3$ form of $\text{Li}_x\text{CoO}_2$, the most important polymorph of $\text{Li}_x\text{CoO}_2$. This is the polymorph that is described above and is illustrated in Fig. 2. The thermodynamic properties of layered $\text{Li}_x\text{CoO}_2$ have previously been investigated from first principles using the cluster expansion formalism.19

Our study of lithium diffusion in $\text{Li}_x\text{CoO}_2$ entailed three steps. First we identified the different possible lithium migration mechanisms from first principles using the pseudopotential method in the local density approximation (as implemented in VASP). For a given migration mechanism, we then calculated activation barriers in different lithium-vacancy environments, and used these values to obtain kinetically resolved activation barriers $\Delta E_{\text{KRA}}$ given by Eq. (14). As described in Sec. II B, we then cluster expanded the $\Delta E_{\text{KRA}}$ with a local cluster expansion. This local cluster expansion together with the cluster expansion for the configurational energy of $O3$ constructed in Ref. 19, was then used to calculate the activation barrier $\Delta E_a$ in any local lithium-vacancy environment with Eq. (15). We then implement this procedure of calculating activation barriers in kinetic Monte Carlo simulations to calculate lithium diffusion coefficients using the equations of Secs. II A and II B. The following sections describe the results of these steps in detail.

**A. First principles activation barriers**

In this section, we investigate the dependence of activation barrier on the lithium-vacancy arrangement. We find that two qualitatively different hopping mechanisms exist depending on the immediate local environment around the hopping lithium ion. These are illustrated in Fig. 3. The first hopping mechanism occurs when the two lithium sites $a$ and $b$ [Fig. 3(a)] adjacent to the end points of the hop are occupied by lithium ions. The diffusing lithium ion then migrates along a path that closely follows the shortest path connecting the initial site of the hop and the vacancy. This shortest path, denoted by the arrow in Fig. 3(a), passes through a dumbbell of oxygen ions. We refer to this migration path as an oxygen dumbbell hop (ODH). This is the mechanism by which isolated vacancies exchange with lithium. When either one or both of the sites immediately adjacent to the end points of the hop are vacant, lithium migrates along a curved path which passes through a tetrahedral site as illustrated in Fig. 3(b). For this migration mechanism to occur, the destination of the hopping lithium ion must be part of a divacancy (it could also be part of a cluster of vacancies containing more than two vacancies). We refer to this migration mechanism as a tetrahedral site hop (TSH).

In Secs. III A 1–III A 3, we describe first principles calculations that form the basis of the above picture of lithium migration in $\text{Li}_x\text{CoO}_2$. Energies of activated states were calculated in supercells of $\text{Li}_x\text{CoO}_2$ containing $12 \text{Li}_x\text{CoO}_2$ formula units. The number of ions in this supercell ranges between 47 to 37 depending on the lithium concentration (which was varied between $x = 11/12$ to $x = 1/12$). The $\hat{A}$ and $\hat{B}$ axes of the supercell form a $2\sqrt{3} \times 2\sqrt{3}$ two-dimensional superlattice in terms of the basal plane vectors $\hat{a}$ and $\hat{b}$ of the hexagonal unit cell of $\text{Li}_x\text{CoO}_2$. The $\hat{C}$ axis of the supercell connects adjacent lithium planes and was chosen to be as shallow as possible to maximize the distance between the periodic images of the hopping lithium ions in adjacent lithium planes. The coordinates of the supercell vectors in terms of the hexagonal unit cell vectors of $\text{Li}_x\text{CoO}_2$ are listed in Table I. Calculations of activation barriers were also performed in a $16 \text{Li}_x\text{CoO}_2$ formula unit supercell. In all supercell calculations, we used a $2 \times 2 \times 2$ k-point mesh which is equivalent to eight irreducible $k$ points.

**TABLE I.** The $\hat{A}$, $\hat{B}$, and $\hat{C}$ cell vectors of the supercell in which the activation barriers were calculated. The vectors are expressed in terms of the conventional hexagonal setting of the $O3$ layered crystal structure.

<table>
<thead>
<tr>
<th></th>
<th>$\hat{A}$</th>
<th>$\hat{B}$</th>
<th>$\hat{C}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{A}$</td>
<td>4.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$\hat{B}$</td>
<td>-2.0</td>
<td>2.0</td>
<td>0.0</td>
</tr>
<tr>
<td>$\hat{C}$</td>
<td>0.333</td>
<td>1.666</td>
<td>0.333</td>
</tr>
</tbody>
</table>
In all calculations of the activation barriers, the volume of the supercell was linearly interpolated between the equilibrium volumes of the end points of the hop. During relaxations of the atomic positions, the volume was held fixed. Defect calculations in relatively small supercells converge more rapidly when the volume is held fixed than when the volume is allowed to relax. The volumes of the end-point configurations, however, were fully relaxed.

1. Migration of a vacancy in LiCoO$_2$

Insight about hopping mechanisms can be obtained by investigating lithium migration in the dilute extremes of lithium concentration. One dilute extreme is migration of a single vacancy in an otherwise fully lithiated Li$_x$CoO$_2$ host. Figure 4(a) illustrates a projection of a lithium plane and the two adjacent oxygen planes. With the pseudopotential method in combination with the elastic band method, we find that a lowest energy migration path between adjacent octahedral sites closely follows the arrow A-B of Fig. 4(a). Although in the figure, the arrow A-B forms a straight line connecting adjacent octahedral sites, the actual migration path is slightly curved, but passes very close to the center of the oxygen dumbbell formed by the oxygen ions O$_1$ and O$_2$. Because of this, we refer to this migration path as an oxygen dumbbell hop (ODH). The activation barrier for the movement of an isolated vacancy through the ODH mechanism in an otherwise fully lithiated host is predicted to be 830 meV and the energy along this path is illustrated in Fig. 5(a).

The energy of the migrating lithium ion placed exactly at the center of the oxygen dumbbell (between O$_1$ and O$_2$ of Fig. 4(a)) is only 10 meV higher than at the true activated state which is slightly shifted towards an adjacent tetrahedral site. This suggests that a reasonable approximation for the activation barrier for the ODH can be obtained by assuming the activated state to be exactly at the center of the oxygen dumbbell.

2. Migration of isolated lithium in dilute Li$_x$CoO$_2$

Another dilute extreme is the migration of an isolated lithium ion between two octahedral sites in the lithium planes of CoO$_2$. A calculation with the elastic band method shows that the lowest energy path between adjacent octahedral sites is along the arrow with end points A-B of Fig. 4(b). As is evident from Fig. 4(b), this migration path passes through an adjacent tetrahedral site making this a tetrahedral site hop (TSH). The energy along the TSH is illustrated in Fig. 5(a). The plot clearly shows that the activation barrier for migration of an isolated lithium ion is exactly at the tetrahedral site. The value of the activation barrier is close to 600 meV.

It is striking that the maximum along the TSH path occurs at the center of the tetrahedral site, a relatively open space, instead of at the centers of the oxygen triangles forming the faces of the tetrahedral site. The explanation is electrostatic in origin. The tetrahedral site shares a face with an oxygen octahedra surrounding a Co ion. The large electrostatic repulsion between lithium and the positively charged Co ion energetically penalizes the position at the center of the tetra-
hedron. This is manifested by the prediction that the saddle point at the tetrahedral site is displaced away from the ideal position of the tetrahedral site in a direction away from the cobalt ion and toward one of the oxygen ions forming the tetrahedron. As a result three lithium-oxygen bonds have a distance of 1.85 Å while the fourth lithium-oxygen bond has a distance of 1.53 Å.

The qualitative difference between the TSH and the ODH can be attributed to the absence or presence of lithium in the sites adjacent to the end points of the hop (sites a and b of Fig. 3). Once lithium ions occupy both sites a and b of Fig. 3 adjacent to the hop, the electrostatic repulsions due to these lithium ions displace the saddle point away from the sterically more attractive tetrahedral site towards a position almost at the center of the oxygen dumbbell.

3. Migration in an intermediate environment

At nondilute lithium concentrations, local arrangements will occur that are intermediate to those of the two dilute extremes. Figure 4(c) illustrates a particular arrangement around a hopping lithium ion that has features of the two dilute cases treated in Secs. III A and III B: one lithium site that simultaneously neighbors both end points of the hop is occupied, while the other lithium site is empty. Applying the elastic band method to this intermediate arrangement, we find that the migration path follows the arrow A-B of Fig. 4(c). This path passes through the tetrahedral site and can therefore be called a TSH.

Despite also passing through a tetrahedral site, the energetics of this migration path exhibits a subtle difference with the TSH for an isolated lithium ion in an empty CoO₂ host (Sec. III B). The energy along the path A-B of Fig. 4(c) is illustrated in Fig. 5(c). The tetrahedral site is no longer a maximum along the migration path, but a weak minimum. The activated state has shifted to a position closer to the center of the triangle of oxygen ions that form the face between the tetrahedral site and octahedral site. The barrier, however, is only about 25 meV higher than the energy of lithium at the tetrahedral site.

The difference between the energetics of the TSH of Figs. 4(b) and 4(c), is a result of a difference in the overall lithium concentration. The TSH of Fig. 4(c) occurs at high Li concentration (within the supercell, \(x = 0.8333\)) while that of Fig. 4(b) occurs at very low lithium concentration. As was shown in previous first principles investigations of LiₓCoO₂, as more lithium is added to the CoO₂ host, the electron donated by lithium to the host is transferred to the oxygen ions. The increased negative charge on the oxygen ions at high lithium concentration screens the electrostatic repulsion between the lithium at the tetrahedral site and the adjacent cobalt ion. This is qualitatively equivalent to saying that the effective charge on cobalt at high lithium concentration is \(1/3\) while at low \(x\) it is closer to \(1/4\). The electrostatic repulsion between cobalt and a lithium in a tetrahedral site therefore increases with decreasing lithium concentration.

4. General configuration dependence of activation barrier

The above results allow us to distinguish between two different migration mechanisms, the TSH and the ODH. Whether or not a TSH or ODH mechanism can occur depends on the lithium-vacancy arrangement in the immediate environment of the hopping lithium. If the two lithium sites that simultaneously neighbor the end points of the hop are occupied, lithium migration will occur along a path close to the ODH path. If both lithium sites adjacent to the hop are vacant, lithium will then migrate along one of the two TSH paths. And finally, if only one of the adjacent lithium sites are occupied, lithium migration will occur along the TSH passing by the empty lithium site.

Not only does the hopping mechanism depend on the local environment, but the value of the activation barrier for a
given hopping mechanism will also depend on the surrounding lithium-vacancy arrangement. To determine this dependence, we have calculated the activation barriers at several lithium concentrations and in different local lithium-vacancy arrangements. Figure 6 illustrates the kinetically resolved activation barriers $\Delta E_{\text{KRA}}$ as defined by Eq. (14) at different lithium concentrations and local environments. The filled circles correspond to TSH activation barriers and the squares correspond to ODH activation barriers. Note that for the TSH, the number of end points $n$ of the hop appearing in Eq. (14) is 3 and for the ODH $n$ is equal to 2.

In the calculation of the kinetically resolved activation barriers $\Delta E_{\text{KRA}}$ for the TSH’s, $E_{\text{AS}}$ of Eq. (7) was set equal to the energy of lithium in the tetrahedral site along the TSH path. While for low lithium concentration, this approach yields the exact activation barrier (within the limit of the supercell method), for higher lithium concentrations, it leads to an approximation since the activated state is slightly shifted away from the tetrahedral site at high $x$ (see Sec. III A 3). Nevertheless, as is clear in Fig. 5(b), the error is at most of the order of 25 meV or 10% for the TSH activation barrier at $x=0.8333$. For the ODH’s, $E_{\text{AS}}$ of Eq. (14) was set equal to the energy of the hopping lithium ion placed exactly at the center of the oxygen dumbbell. Although the actual saddle points for the ODH are slightly shifted away from the center of the oxygen dumbbell in a direction perpendicular to the hop direction, as noted in Sec. III A 1, we found that the error of this approximation is of the order of 10 meV.

The calculated activation barriers of Fig. 6 convey two major trends. First, the activation barriers for the ODH are almost twice as large as those of the TSH. This is not surprising, since the activated state of the ODH is sterically more constricted than that of the TSH. Furthermore, the ODH mechanism only occurs when the two lithium sites simultaneously neighboring the end points of the hop are occupied. The electrostatic repulsion between these adjacent lithium ions and the hopping lithium ion constitutes an additional energetic penalty to the activated state which is absent in the TSH mechanism.

The second trend in Fig. 6 is the increase in the activation barrier for the TSH as the lithium concentration is reduced. The activation barriers for the TSH vary relatively little at intermediate lithium concentration, however, at low lithium concentration, the TSH activation barrier increases by a significant amount. This increase is caused by the large contraction of the $c$-lattice parameter of the CoO$_2$ host structure below $x=0.3$, a feature of Li$_x$CoO$_2$ that has been measured experimentally$^{69,70}$ and has been predicted from first principles.$^{19}$ The contraction is accompanied by a reduction in the distance between the oxygen planes adjacent to the lithium planes which in turn causes a contraction of the tetrahedral site. To expose the role of the $c$-lattice parameter on the activation barrier, we artificially constrained the $c$-lattice parameter of the structure at $x=0.0833$ to have a value typical of that in the concentration range of $x=0.3$ and 0.6 and recalculated the activation barrier. The activation barrier decreases to 450 meV which is of the order of the activation barriers obtained at intermediate lithium concentration.

The general decrease in activation barrier above $x=0.5$ cannot be attributed to a $c$-lattice parameter variation since it is more or less constant in this concentration range. Instead it can be traced to the enhanced charge transfer to oxygen as $x$ is increased. The higher electron density on oxygen screens the lithium in the tetrahedral site from the cobalt ion in an adjacent face-sharing octahedral site. This tends to make the tetrahedral site less unfavorable for lithium than at low lithium concentration.

To obtain an estimate of the supercell convergence error for the activation barriers, we calculated the activation barriers for the TSH at $x=1/2$ and the ODH at infinite vacancy dilution in a supercell containing 16 Li$_x$CoO$_2$ formula units. For the TSH at $x=1/2$, we found that the activation barrier changes by less than 30 meV. For the ODH with only one vacancy in the supercell, we found that the activation barrier changes by less than 70 meV. This suggests that the accuracy of the TSH activation barriers is better than that of the ODH.

B. Local cluster expansion of activation barriers

Many more possible local arrangements around a migrating lithium ion exist than were considered in the previous section. With the above kinetically resolved activation barriers, a local cluster expansion can be parametrized that will approximate the kinetically resolved activation barriers for other local environments.

The TSH and ODH mechanisms, which occur in different environments are characterized by distinct features; they have a different number of end points and the values of their respective activation barriers differ by a factor of 2. It is therefore natural that the activation barriers of both mechanisms should be parametrized with a separate cluster expansion.

In the present study, we only constructed a cluster expansion for the kinetically resolved activation barriers of the TSH. Since the activation barriers of the ODH are much larger than those of the TSH, the former mechanism will only be prevalent when the number of available TSH’s are negligible. This, as will be borne out by the Monte Carlo results presented in the next section, only occurs at very dilute vacancy concentrations. In this regime, there is essen-
The prefactor has a configurational dependence, we have neglected this dependence and have assumed a constant value for $\nu^*$ for all hops. Due to current computational limitations, no attempt was made to quantitatively determine prefactors for lithium diffusion in Li$_x$CoO$_2$ and we will plot $(10^{13}/\nu^*)D$. This quantity should correspond to the true values for $D$ within one to two orders of magnitude.

The kinetic Monte Carlo simulations were performed with cells containing either 1944 or 7776 lithium sites (the actual number of lithium ions in the Monte Carlo cell can be determined by simply multiplying the concentration of lithium ions $x$ with the number of lithium sites). At fixed temperature and lithium concentration, we performed the following sequence of steps. (i) First we performed 1000 canonical Monte Carlo steps to generate a representative equilibrium lithium-vacancy arrangement. The last lithium-vacancy arrangement of this canonical Monte Carlo simulation was used as the starting configuration for the kinetic Monte Carlo simulations. (ii) Next, in the kinetic Monte Carlo simulations, we performed between 500 to 1000 KMCS using the algorithm described in Sec. II D. The last 300 to 500 of these steps were used for time averaging as described in Ref. 64. At each temperature and concentration, this sequence of steps was repeated 50 times whereby the final configuration of the kinetic Monte Carlo simulation of step (ii) was used as the initial configuration of the canonical Monte Carlo simulation of step (i). This ensured that each of the 50 kinetic Monte Carlo simulations started with a different initial lithium-vacancy configuration representative of equilibrium conditions. The repetition of the above two steps by 50 was necessary to obtain sufficiently uncorrelated data for the averages of $D_J$ and $D^*$. The thermodynamic factor $\Theta$ given by Eq. (4) was calculated with grand-canonical Monte Carlo simulations as described in Ref. 19.

### 1. Diffusion coefficients

Figures 8(a) and 8(b) show calculated values for the diffusion coefficients $D_J$ and $D^*$ at 300 and 400 K. It is clear that the diffusion coefficients vary within several orders of magnitude with lithium concentration. At high lithium concentration, the diffusion coefficients are very low, increasing by almost two orders of magnitude as the lithium concentration $x$ is reduced to approximately 0.6. For small $x$, the diffusion coefficients are again very low. The significant dips in $D_J$ and $D^*$ around $x = 1/3$ and $x = 1/2$ at 300 K and around $x = 1/2$ at 400 K are the result of lithium ordering. The cluster expansion for the configurational energy of the $O3$ form of Li$_x$CoO$_2$ predicts lithium ordering at $x = 1/2$ and $x = 1/3$ with approximate order-disorder transition temperatures of 430 and 380 K, respectively.\(^{19}\) In the ordered phase at $x = 1/2$, the lithium ions order in rows separated by rows of vacancies while at $x = 1/3$ the lithium ions order according to a $\sqrt{3} \times \sqrt{3}$ superlattice. The occurrence of these ordering transformations can best be represented in a phase diagram which for the $O3$ form of Li$_x$CoO$_2$ was done in Ref. 19. In real systems ordering may be somewhat less perfect than in the simulations, making the dips in $D_J$ and $D^*$ less pronounced. Notice that $D_J$ and $D^*$ have the same order of magnitude yet they do not equal each other.
The chemical diffusion coefficient $D_c$ which determines macroscopic diffusion as defined by Fick's law is equal to the product of $D_J$ with the thermodynamic factor $Q$.

The calculated lithium diffusion coefficients for $\text{Li}_x\text{CoO}_2$ at (a) 300 K and (b) 400 K. Because of the uncertainty in $v^*$ of Eq. (11) we plot $(10^{13}/v^*)D$ where $D$ is either $D_c$, $D_J$, or $D^*$ and is expressed in cm$^2$/s.

The chemical diffusion coefficient $D_c$ which determines macroscopic diffusion as defined by Fick’s law [Eq. (2)] is equal to the product of $D_J$ with the thermodynamic factor [Eq. (4)]. Figure 9 illustrates the thermodynamic factor for the $O3$ form of $\text{Li}_x\text{CoO}_2$ at 300 K.

Note that $D_J$ and $Q$ give opposite effects of ordering on $D_c$. Near the ordered stoichiometries, $Q$ is large, enhancing the chemical diffusion coefficient. $D_J$ on the other hand drops by several orders of magnitude at these stoichiometries, reflecting the fact that ordering “locks up” the vacancies needed for diffusion. In this system, $D_J$ clearly dominates and the overall $D_c$ also has a minimum. Due to a very asymmetric minimum in $D_J$ (which occurs exactly at $x = 1/2$ and $x = 1/3$) and a symmetric thermodynamic factor around those same compositions, the exact minima in $D_c$ arise at $x$ slightly less than 1/2 or 1/3.

FIG. 9. The calculated thermodynamic factor $\Theta$ at 300 K. $\Theta$ measures the deviation from ideality of the system and is given by Eq. (4).

FIG. 8. Calculated lithium diffusion coefficients for $\text{Li}_x\text{CoO}_2$ at (a) 300 K and (b) 400 K. Because of the uncertainty in $v^*$ of Eq. (11) we plot $(10^{13}/v^*)D$ where $D$ is either $D_c$, $D_J$, or $D^*$ and is expressed in cm$^2$/s.

2. Microscopic hopping behavior

In the kinetic Monte Carlo simulations, both the TSH and ODH mechanisms are considered. The frequency with which either hop mechanism occurs is proportional to the availability of the particular mechanism multiplied by the exponent of the negative of the activation barrier divided by $kT$. Figure 10 illustrates the average availability of TSH and ODH mechanisms per lithium ion as a function of lithium concentration. Also illustrated is the average number of vacancies adjacent to a lithium ion normalized per lithium ion. At low $x$, the availability of TSH’s is high while that of ODH’s is very low. Above about $x = 0.65$, however, the number of candidate ODH paths accessible to each lithium increases and exceeds the availability of TSH paths. The TSH mechanism requires at least a divacancy adjacent to the hopping lithium ion and at high lithium concentration, the concentration of divacancies is less than the concentration of single vacancies. In fact, if the lithium ions and vacancies are randomly distributed, the concentration of divacancies scales as $(1-x)^2$ while that of single vacancies as $(1-x)$. Since vacancies repel each other as $x$ approaches 1, the concentration of divacancies is even lower than $(1-x)^2$ in $\text{Li}_x\text{CoO}_2$. The crossover in the availability of TSH paths versus ODH paths suggests that at low lithium concentration, the TSH mechanism will dominate and at high lithium concentration the ODH
mechanism should dominate. The transition between the TSH and ODH mechanism can be estimated by the value of \( x \) for which

\[
a_{\text{TSH}} \nu^* \exp\left(-\frac{\Delta E_{a}^{\text{TSH}}}{kT}\right) = a_{\text{ODH}} \nu^* \exp\left(-\frac{\Delta E_{a}^{\text{ODH}}}{kT}\right),
\]

where \( a_{\text{TSH}} \) and \( a_{\text{ODH}} \) are the average availabilities of the TSH and ODH mechanisms and where \( \Delta E_{a}^{\text{TSH}} \) and \( \Delta E_{a}^{\text{ODH}} \) are representative activation barriers for the respective mechanisms. At this concentration \( x \), the TSH and ODH mechanisms occur with equal frequency. Using values for \( a_{\text{TSH}} \) and \( a_{\text{ODH}} \) from grand canonical Monte Carlo simulations and typical activation barriers for the two mechanisms, we find that the transition from the TSH to the ODH mechanism occurs at infinite vacancy dilution, implying that the TSH mechanism always dominates. This was also predicted by the kinetic Monte Carlo simulations.

The average activation barrier \( \langle \Delta E_{a} \rangle \) as experienced by hopping lithium ions is illustrated in Fig. 11. Since lithium ions hop according to the TSH mechanism between \( x = 0 \) and 1, \( \langle \Delta E_{a} \rangle \) naturally follows the same trend of the first principles values of \( \Delta E_{XRA} \) of Fig. 6, i.e., increasing \( \langle \Delta E_{a} \rangle \) with decreasing \( x \).

The large variations in \( D_{c} \) with \( x \) are closely linked to the variation in activation barrier and availability of the TSH mechanism with \( x \). At dilute \( x \), the activation barrier is high resulting in a small diffusion coefficient. As \( x \) increases, the activation barrier progressively decreases producing an increase in the diffusion coefficient. The dips in diffusivity around \( x = 1/3 \) and \( x = 1/2 \) are a result of lithium ordering which from an energetic point of view tends to lock the lithium ions in their sublattice sites. Further increase of \( x \) above 1/2 results in a decrease in the diffusion coefficient, even though the average activation barrier levels off. This reduction of \( D_{c} \) is a result of a decline in the number of available vacancies to hop to in combination with an even more rapid decline in the average number of available TSH paths to enable lithium hops to neighboring vacancies.

3. Correlation factor

The prevalence of the TSH mechanism for most values of \( x \) has interesting implications about the correlated motion of the lithium ions. The above results indicate that lithium migration in layered LiCoO$_2$ is mediated through clusters of divacancies since they enable lithium ions to hop according to the TSH mechanism. While at low lithium concentrations, divacancies are sufficiently abundant, at high \( x \) clusters of vacancies are energetically and entropically less favored than a uniform distribution of single vacancies. Nevertheless, even for high \( x \) a preponderance of lithium hops occur through divacancies.

To better understand the implications of divacancy diffusion, it is useful to consider the motion of an isolated divacancy. Figure 12(a) illustrates a cluster of two vacancies surrounded by lithium ions in the immediate environment. Figures 12(a)–12(e) shows the effect of lithium diffusion according to the TSH mechanism (as illustrated by the curved arrows), is to rotate the divacancy similar to the movement of a cartwheel. Only on rare occasions after the occurrence of an ODH do the vacancies of the divacancy cluster separate. The latter case is illustrated in Figs. 12(e) and 12(f) and has a very low probability of occurrence due to the high activation barrier associated with the ODH mechanism.

A measure of correlated motion is the correlation factor which is defined as

\[
f = \frac{\langle \hat{r}(t)^2 \rangle}{na^2}.
\]

where \( \langle \hat{r}(t)^2 \rangle \) is the average distance squared that a lithium ion has travelled after time \( t \), \( n \) is the average number of hops that a lithium ion has performed, and \( a \) is the distance associated with a hop. The correlation factor \( f \) measures the deviation of the lithium intrinsic diffusion coefficient \( D^* \) from that of an equal number of random walkers on a triangular lattice. When lithium migration is uncorrelated, the correlation factor equals one. This occurs as \( x \) approaches
zero since the interactions among different lithium ions disappear and migration of isolated lithium ions becomes that of a random walk. As \( x \) approaches one, the motion of the isolated vacancies becomes that of a random walk, however, migration of the lithium ions does not. The theoretical value of \( f \) as \( x \) approaches 1.0 on a triangular lattice is to first approximation \( 2/3 \).

Figure 13 illustrates the correlation factor for lithium diffusion in Li\(_x\)CoO\(_2\) as a function of \( x \) at 300 K. Although \( f \) approaches the theoretical value in the dilute limit of \( x = 0 \), at intermediate \( x \), it deviates strongly from a linear interpolation between \( f = 1 \) at \( x = 0 \) and \( f = 2/3 \) at \( x = 1 \). In fact, as \( x \) approaches 1, \( f \) remains very low. Only once the ODH mechanism dominates at infinite vacancy dilution whereby lithium exchanges with isolated vacancies will \( f \) approach the value of \( 2/3 \). Figure 13 clearly illustrates that the TSH hop mechanism results in significant correlated motion of the lithium ions, and thereby reduces the diffusivity from what it would be for a random walk.

D. Discussion

In this paper, we have presented a formalism for the first-principles study of diffusion in systems with configurational disorder. The procedure entails three steps: (i) a systematic first-principles investigation of migration mechanisms and their activation barriers in the presence of different configurations, (ii) the construction of cluster expansions to parametrize the configuration dependent activation barriers, and (iii) implementation of the cluster expansions in kinetic Monte Carlo simulations to obtain kinetic properties such as diffusion coefficients. A key feature of this formalism is the local parametrization of a kinetically resolved activation barrier. When implemented in a kinetic Monte Carlo simulation together with the standard configurational cluster expansion, an accurate model for the kinetic behavior of materials can be obtained. By construction this model has the correct ensemble averages and thermodynamic properties.

As an example, we have applied this approach for the study of lithium diffusion in Li\(_x\)CoO\(_2\). First principles pseudopotential calculations within LDA have shown that two hopping mechanisms exist in Li\(_x\)CoO\(_2\) depending on the local environment: the tetrahedral site hop (TSH) and the oxygen dumbbell hop (ODH) (Sec. III A). Furthermore, calculations of activation barriers for lithium migration in different lithium-vacancy environments have shown that the activation barrier can vary significantly with concentration and local configuration. These simulations have shown that of the two possible hopping mechanisms, the TSH mechanism dominates at all lithium concentrations, meaning that lithium diffusion is mediated by the motion of divacancies. Furthermore, the simulations predict that the diffusion coefficient has a strong concentration dependence.

A hopping mechanism involving an adjacent tetrahedral site has previously been conjectured from molecular dynamics simulations using empirical potentials. The present systematic study of the environment dependence of the activation barriers using more realistic first-principles calculations has shown that in fact two migration paths exist depending on the immediate environment. More importantly, the present study has shown that the migration path through the tetrahedral site occurs only if the end point of the hop belongs to a divacancy. This is a significant constraint on the TSH mechanism, especially at high lithium concentration where the number of divacancies is severely limited. Moreover, as is evident from the calculated correlation factor, diffusion mediated by divacancies in Li\(_x\)CoO\(_2\) is very inefficient. One of the advantages of a kinetic Monte Carlo simulation for the study of diffusion in configurationally disordered systems is that the system can be thermodynamically equilibrated and diffusion can be sampled over long times. These long-time regimes are currently inaccessible with molecular dynamics simulations. The subtle influences of lattice parameter variations and charge transfer from lithium to the Co-O complex on the activation barrier, also illustrate the importance of a quantum mechanical description of the energetics. It is unlikely that empirical potential methods as are often used in oxides would be able to capture this environment dependence of the activation barrier.

Several sources of inaccuracies in the calculated activation barriers can be identified that originate either from numerical errors or from approximations. Potential numerical inaccuracies arise from an inadequate \( k \)-point convergence and the use of a supercell. We estimate these errors to be of the order of 50–100 meV on the activation barriers. Nevertheless, since the same supercell and \( k \)-point mesh was used in the calculation of all activation barriers we expect this to be a systematic error. Another inaccuracy occurs at high lithium concentration. At large \( x \), the activation barrier for the TSH is not at the tetrahedral site as was assumed in our calculations, but is slightly shifted away from the tetrahedral site as illustrated in Sec. III A 3. The error of this approximation is at most 25 meV and diminishes as \( x \) is reduced. Then there is the error resulting from the truncation of the local cluster expansion. While the least squares error between the first principles values for \( \Delta E^{\text{KRA}} \) and those reproduced by the local cluster expansion of 40 meV is of the same order as those due to \( k \)-point and supercell convergence, the expansion has only a limited number of terms and
may therefore lack sufficient predictive power. Nevertheless, the average activation barrier calculated in the Monte Carlo simulation (Fig. 11) traces the same trend as the first principles values for \( \Delta E_{\text{KRA}} \) of Fig. 13. This indicates that the local cluster expansion captures the essential physics of the concentration dependence of the activation barrier. Finally, an error that is more difficult to quantify, arises from the use of the local density approximation of density functional theory. Since hopping rates depend exponentially on the activation barrier, calculated diffusion coefficients are very sensitive to relatively small errors in activation barriers. A systematic error in the calculated activation barrier of 100 meV, a value that is not uncommon for first principles calculations, produces an error of two orders of magnitude in the diffusion coefficient at 300 K.

Due to computational limitations, we have not attempted to calculate a value for the prefactor \( \nu^* \) given by Eq. (11) which appears in the hop frequency \( \Gamma \) of Eq. (8). Instead we have assumed a constant value for \( \nu^* \) and have plotted calculated diffusion coefficients as \((10^{13}/\nu^*)D\), where \(10^{13} \text{ sec}^{-1}\) is a reasonable estimate for \(\nu^*\). Although in general, the configuration dependence of \(\nu^*\) is likely to be negligible, for LiCoO\(_2\), this may not be the case. The prefactor depends on the local entropy of a lithium ion in an octahedral site and a lithium ion in the activated state. In the LiCoO\(_2\), the latter value will be sensitive to concentration since the shape of the energy surface around the tetrahedral site varies qualitatively with lithium concentration [compare Figs. 5(b) and 5(c)]. Future studies should address the accurate calculation of the prefactor for diffusion in LiCoO\(_2\) to clarify its importance in affecting the diffusion coefficient. In addition to assuming an environment independent \(\nu^*\) we have also assumed a recrossing coefficient \(\kappa\) equal to unity. The recrossing coefficient is sensitive to the shape of the potential surface around the dividing surface\(^{33,34}\) and we can expect it to differ from 1 especially at high lithium concentration where the energy along the migration path exhibits a slight local minimum.

Several experimental studies of the lithium diffusion coefficient in LiCoO\(_2\) have been performed in recent years. The different measurements of \(D_e\) qualitatively exhibit a similar concentration dependence. Although, in Refs. 77,78, \(D_e\) is expressed as a function of voltage, the concentration dependence can be inferred by comparison with accurately calibrated voltage versus concentration curves. In Ref. 79, \(D_e\) is expressed as a function of concentration, however, comparison of their voltage versus concentration curves with those typically shown in the literature\(^{68,69}\) suggest that the concentration scale in Ref. 79 is slightly expanded. Typically the lithium concentration attributed to 4.15 V is measured to be 0.5, while that reported in Ref. 79 is 0.3, suggesting that the amount of lithium assumed to have been removed from the LiCoO\(_2\) during charging is overestimated in Ref. 79. After either making the conversions from voltage to concentration for the data of Refs. 77,78, or the necessary adjustments in concentration in Ref. 79, the basic trend in \(D_e\) can be summarized as follows. \(D_e\) drops by almost two orders of magnitude as \(x\) is increased between \(x=0.5\) and 0.75. Between \(x=0.75\) and 0.95, a two phase region exists and a value for \(D_e\) cannot be defined.

A recent experimental study by Jang et al.\(^{80}\) showed that \(D_f\) exhibits a minimum as a result of lithium ordering at \(x = 1/2\), in qualitative agreement with the calculations in this work. The experimentally measured dip in \(D_f\) at \(x = 1/2\), however, is not as large as predicted in this work and the measured chemical diffusion coefficient \(D_e\) actually peaks due to the spike in \(\Theta\) at \(x = 1/2\). The extent of the dip in \(D_f\) due to ordering is expected to increase with the stability of the ordered phase. The stability of the ordered phase at \(x = 1/2\) in LiCoO\(_2\) at room temperature is predicted by the cluster expansion to be much stronger than observed experimentally.\(^{19}\) In fact, the order-disorder transition temperature of this phase is overpredicted by 100 °C.\(^{19}\) Furthermore, the stability of the ordered phase at \(x = 1/2\), measured experimentally, is significantly weakened by the presence of impurities,\(^{81}\) suggesting that the degree of ordering in LiCoO\(_2\) can vary from sample to sample. This complicates a comparison between the experimental and calculated values of \(D_e\) at \(x = 1/2\).

IV. CONCLUSION

In this paper, we have described a formalism to calculate diffusion coefficients from first principles in systems with significant configurational disorder. The link between first-principles total energy methods (such as density functional theory) and statistical mechanics methods such as kinetic Monte Carlo simulations lies in the cluster expansion formalism. We have extended this formalism to describe the configuration dependence of the activation barriers.

As an illustration, we have investigated lithium diffusion in layered LiCoO\(_2\). Our calculations have shown that lithium ions can hop according to two migration paths depending on the local environment around the hopping ion. Furthermore, we have found that the activation barrier for a particular hopping mechanism can depend strongly on the local lithium-vacancy configuration. Kinetic Monte Carlo simulations predict that lithium diffusion in LiCoO\(_2\) is mediated by divacancies even at high lithium concentrations where the concentration of divacancies is low. The simulations have also shown that the strong concentration dependence of the activation barrier results in a diffusion coefficient that spans several orders of magnitude with lithium concentration.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Dane Morgan and Dr. Stephen Foiles for helpful discussions. This work was supported by the Department of Energy, Office of Basic Energy Sciences under Contract No. DE-FG02-96ER45571. This research was supported in part by NSF cooperative agreement ACI-9619020 through computing resources provided by the National Partnership for Advanced Computational Infrastructure at the San Diego Supercomputer Center. One of the authors (A.V.D.V.) gratefully acknowledges support from the U.S. DOE Computational Science Graduate Fellowship Program.