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A Bruker Avance 200 NMR Spectrometer was used to perform simple quantum computations
on a two quantum-bit (qubit) bulk system of 13CHCl4. Base states |00〉 were created through the
process of temporal averaging. The logic of the controlled-NOT (CNOT) gate was observed and used
in the application of the Deutsch-Josza and Grover algorithms. The Deutsch-Josza algorithm was
successfully used to determine whether the output of a two-bit function was constant or balanced.
The Grover search algorithm, theoretically capable of completing a search in O(

√
N) time, was

implemented and used to find the desired state in one iteration.

I. PROBLEM AND RELEVANT THEORY

I.1. Quantum Information Processing

Quantum computers, operating on quantum bits
(“qubits”), are theoretically capable of performing a va-
riety of computations in a faster order of time than their
classical counterparts. This is made possible through
the harnessing of quantum mechanical properties such as
superposition, interference, and entanglement. For ex-
ample, a quantum computer can determine whether the
output of a two-bit function is constant or balanced in
one evaluation with the Deutsch-Josza algorithm, akin
to checking the fairness of a coin in one glance. Further,
with the Grover search algorithm, a list can be searched
in O(

√
N) time, a large speedup over the classical O(N)

time. Both of these provide examples of computational
accelerations of which there is no known classical analog.

I.2. Controlled-NOT Gate

The Controlled-NOT (CNOT) logic gate is a crucial
component of many quantum algorithms. It is similar to
the classical XOR gate. CNOT maps the state |x〉|y〉 to
|x〉|y⊕x〉1, where ⊕ refers to addition mod 2. The truth
table is as follows:

TABLE I. CNOT Inputs and Outputs: Truth Table

Input State Output State

|00〉 → |00〉
|01〉 → |01〉
|10〉 → |11〉
|11〉 → |10〉

If we define the state density matrix ρ = |ψ〉〈ψ|, we
can rewrite the CNOT gate as:
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1 In this paper, we refer to a two-qubit state as |xy〉, |x〉|y〉, or
|x〉 ⊗ |y〉, with (x, y) ∈ {0, 1}, as equivalent methods of notating
a state in the two-spin Hilbert space.

Ucn =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1)

which acts upon ρ as a unitary transformation. As den-
sity matrices are a useful tool in the analysis of quantum
information systems, this form of CNOT is important to
note.

I.3. Deutsch-Josza Algorithm

Let us consider a function f(x) that takes one bit as
input and has one bit as output. There are four possible
sets of outputs the function can have:

x f1(x) f2(x) f3(x) f4(x)

0 0 1 0 1

1 0 1 1 0

Functions f1(x) and f2(x) are constant, having the
same output for a 0 or 1 input bit, and functions f3(x)
and f4(x) are balanced, having different outputs. Clas-
sically, one would expect a requirement to check both
inputs of the function to determine if it is constant or bal-
anced, corresponding to two iterations of an algorithm.
With a quantum computer, however, the function need
only be evaluated once, on a superposition of all possi-
ble inputs. First, we implement these functions Ufk as
|x〉|y〉 → |x〉|y ⊕ fk(x)〉. Thus, they take the form:

• f1: |x〉|y〉 → |x〉|y〉: Identity

• f2: |x〉|y〉 → |x〉|y ⊕ 1〉 = |x〉|¬y〉: NOT y

• f3: |x〉|y〉 → |x〉|y ⊕ x〉: CNOT gate

• f4: |x〉|y〉 → |x〉|y ⊕ ¬x〉: NOT x, CNOT gate,
NOT x

With these functions, the Deutsch-Josza algorithm can
be implemented as follows:

1. Acquire base state |00〉
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2. Set up superposition with a Hadamard transform.
This translates the base state into the maximally-
mixed superposition state

1

2
[|00〉 − |01〉+ |10〉 − |11〉]

in an invertible way.

3. Act with Ufk. Note that it acts on the maximally-
mixed state, thereby evaluating all possible inputs
at once.

4. Undo the superposition with an inverse Hadamard
transform. This breaks down the superposition in
a deterministic and invertible way, bringing us back
to a pure state.

5. Measure the output state. We note that the state
takes the form[1]

1

2
[((−1)f(0) + (−1)f(1))|0〉+

(−(−1)f(0) + (−1)f(1))|1〉]⊗ |0〉

which reduces to |00〉 if f(0) = f(1) (f is constant),
or |10〉 if f(0) 6= f(1) (f is balanced).

I.4. Grover Search Algorithm

The Grover search algorithm allows a list to be
searched in O(

√
N) time. Consider a function f(x) that

always maps to zero unless x = x0, in which case the
function maps to one. To classically search a list of four
elements for the value x0 takes an average of 2.25 eval-
uations of the function. A four-element list corresponds
to a 2-qubit system, within which the value x0 can be
found in only one evaluation.

The Grover iteration consists of the sequence of oper-
ations G = H⊗2PH⊗2O. O is an “oracle” operator that
flips the phase of the basis element of the state corre-
sponding to x0. For x0 = 2, corresponding to a desired
state of |10〉, this takes the form ρ = diag(1, 1,−1, 1). P
is a conditional phase-shift operator that takes the form
ρ = diag(1,−1,−1,−1) [1]. Furthermore, H⊗2 is the
Hadamard transform applied to both qubits.

We apply the Grover iteration to the base state |ψ0〉 =
H⊗2|00〉 any number of times k. Thus, we define |ψk〉 =
Gk|ψ0〉. We expect the sequence G|ψ0〉 to produce the
x0 state |10〉. The Grover algorithm also has a character-
istic oscillatory behavior resulting from the perdiodicity
of 〈x0|ψk〉[1]. We find an oscillation period of 3, as the
output state rotates between the desired state and the
base state |00〉. Thus we also expect the to find the state
|10〉 after four iterations of the Grover sequence.

I.5. Quantum Computing with NMR

A simple yet effective way of implementing a quan-
tum computer is through the use of a nuclear magnetic
resonance (NMR) spectrometer. This works under the
following principle: within a sample immersed in a mag-
netic field, a small fraction of the spins will invariably be
aligned along the magnetic field due to the lower energy
of the aligned state. A spin perturbed from this equilib-
rium will precess around the magnetic field at the Larmor
frequency. In the technique of pulsed-NMR, a well-tuned
radio-frequency (RF) pulse near the Larmor frequency
in a direction x̂ causes the spins to precess about that
axis for the length of the pulse. If timed precisely, the
RF pulse can cause a 90◦ rotation, in which the ẑ-aligned
spins rotate 90◦ into the x−y plane. The subsequent pre-
cession causes an oscillating magnetic field with a large
enough amplitude to be detected with a pickup coil. As
the sample relaxes back to equilibrium, the magnitude of
the signal decays in what is called a free-induction decay
(FID). The Fourier transform of the FID provides a spec-
trum with Lorentzian peaks at the Larmor frequencies of
the spins in the sample.

For a two-spin system, four peaks are observed. The
peaks of each spin are split by a frequency J due to a cou-
pling: if one qubit is spin-up, the magnetic field at the
other qubit is lowered, causing the oscillation frequency
to drop slightly. The opposite is true as well. Further-
more, if the state of the system is given by the density
matrix ρ = diag(a, b, c, d), then the resulting peak inte-
grals will be {a− c, b− d} for qubit 1, and {a− b, c− d}
for qubit 2.

Ideally, quantum computations are performed on a
pure base state |00〉 where ρbase = diag(1, 0, 0, 0). A
drawback of NMR quantum computing is that pure base
states can be difficult to obtain, as the sample is at room
temperature and entropy is high. The thermal density
matrix can be calculated using statistical mechanics [1]:

ρ =
eβH

Z

where β = 1/kBT and Z is the partition function.
Thus, the thermally expected density matrix is

ρtherm =
I

4
+ 10−4


5 0 0 0

0 3 0 0

0 0 −3 0

0 0 0 −5

 (2)

This corresponds to qubit 1 peak integrals both hav-
ing magnitude 8 × 10−4, and qubit 2 peak integrals of
2 × 10−4. This is unacceptable for performing quantum
computations as it is a highly mixed state. The process
of temporal averaging was used to construct pseudopure
states, allowing us to observe the effects of quantum al-
gorithms on an effective basis state. In this process, the
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algorithm of interest is implemented three times, each fol-
lowing the application of a series of permutations. The
permutations are chosen such that when the three final
states are averaged, the result is close to that which would
result from the application of the pulse sequence to a pure
base state.

II. EXPERIMENTAL SKETCH AND SALIENT
DETAILS

II.1. Setup Overview

FIG. 1. Block diagram of the experimental setup

A Bruker Avance 200 NMR Spectrometer was used
in this experiment. This spectrometer houses a 4.7
Tesla cryogenically cooled superconducting electromag-
net. The cryogenic system consisted of a liquid helium
core with a liquid nitrogen jacket. The magnetic field
was “shimmed” by a number of correction coils that al-
low the field along various spherical Legendre polynomi-
als to be adjusted in order to cancel gradients that can
lead to decoherence. The magnetic field is capable of be-
ing shimmed to a uniformity of 10−9 over 1 cm3. The
sample, 13CHCl3 (carbon-13 chloroform), was located in
a flame-sealed 5mm glass tube in a “spinner” at room
temperature inside the spectrometer. The spinner pro-
vided a means for the sample to be spun at a fast rate in
order to average away the transverse inhomogeneities of
the magnetic field.

The hardware controlling the spectrometer was con-
nected to a Linux computer running Bruker’s xwin-nmr
software. A second computer, an Athena workstation,
was connected via direct TCP/IP link to other machine.
Commands were sent through a MATLAB script that
translated them into nmrx commands to be sent over
the network link. This provided a suite of available com-
mands, including the specification of pulse lengths, direc-
tions, phase corrections, and delays in arbitrary custom
sequences.

The proton and carbon-13 of the 13CHCl3 provided
two fermionic particles to serve as qubits 1 and 2, re-
spectively. The relaxation constants T1 and T ∗

2 were mea-
sured to be 17.3 ± 0.2 s and 1.34 ± 0.16 s, respectively,
for the proton, and for the carbon, T1 = 14.8 ± 0.3 s
and T ∗

2 = 1.88 ± 0.18 s. For comparison, the pulse se-
quences were on the order of milliseconds. T1 was mea-

sured with the 180 − 90 inversion-recovery method, and
T ∗

2 was found from a fit to the Lorentzian peaks, which
have width 2/T ∗

2 . As a result of these relaxation times,
50 seconds were waited before the application of a pulse
sequence in order to ensure the system had returned to
equilibrium. A 90◦ pulse around the x̂ axis was applied
in order to initiate a readout FID.

III. DATA PRESENTATION AND ERROR
ANALYSIS

In the following sections, we refer to pulse sequences
with the capital letter of the corresponding qubit and
the subscript of the rotation axis. For example, Xi is
90◦ rotation around î (x̂) on qubit X, and Yj̄ is 90◦

rotation around −ĵ (−ŷ) on qubit Y. A τ refers to a
delay of time 1/2J = 2.325 ms. The peak separation
(J = 215.05 ± 0.01 Hz) was measured by a simple sub-
traction; the sharpness of the peaks made one data point
clearly the highest beyond poisson uncertainties, elimi-
nating the necessity to fit a functional form.

The pulse widths were determined by measuring peak
area as a function of pulse width, fitting to a decaying
sinusoid, and finding the maximum. They were 9.32 ±
0.11 µs for the proton, and 10.04±0.19 µs for the carbon.

For most implementations, only the proton spectrum
was obtained due to the ease of reconstructing the state
solely with its information. A positive peak refers to spin-
up (|0〉), while a negative peak refers to spin-down (|1〉).
Furthermore, a peak on the left indicates that the other
qubit was spin-up, while a peak on the right indicates
the other qubit was spin-down. As a result, a positive
peak on the left refers to |00〉, and on the right, |01〉. A
negative peak on the left refers to |10〉 and on the right,
|11〉.

III.1. CNOT Gate

As an approximation to the CNOT gate, tests begun
with the use of a near-CNOT gate. This gate is less
error-prone as it only contains two pulses and one delay
in the sequence Xj̄ − τ −Xi. However, the phases differ
for each qubit, i.e., the phase is not global. This makes
it unsuitable for use in algorithms and causes a quicker
accumulation of error. The near-CNOT gate is useful
as a measure to estimate the uncertainties inherent in
acquiring spectra.

Applying a near-CNOT gate on the |00〉 state yields
the |00〉 state with real peak integrals for the pro-
ton of (1.81, 0.25).2 For carbon, the raw peaks are
(0.326, 0.057). These must be adjusted because of dif-
ferences in amplifier gain; they should be set such that

2 On peak integrals we exclude an arbitrary factor of 106 for clarity.
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the proton peaks in the thermal spectrum have four times
the area of the carbon peaks, as dictated by Eq. 2. Thus,
after analysis of the thermal spectrum, it was determined
that the carbon peaks should be multiplied by 3.46, yield-
ing: (1.13, 0.20). Solving the equations relating the ele-
ments of the density matrix and the peak integrals in a
least-squares fashion yields:

ρ = diag(0.791, 0.190, 0.019, 0.000)

where we stipulate that every element be positive and
we normalize such that the trace is unity. Each ele-
ment has an associated systematic error of 0.106, as-
signed as a result of compounding uncertainties from the
the peak phases, pulse widths, and Lorentzian width (in-
homogeneity). A more detailed explanation of this er-
ror can be found in Section III.4. The expected density
matrix has only one element, one, at |00〉. Thus, the
mean deviation of the matrix elements from the expected
ρ = diag(1, 0, 0, 0) is 0.985σ. This effectively quantifies
the error introduced by the non-zero secondary peaks.

The true CNOT gate can be translated into the pulse
sequence XjYj̄YīYjXj̄XīXj̄-τ -Xj̄ which replicates the
unitary transformation matrix up to an irrelevant overall
phase [2]. The output was just as expected, following
Table I.

III.2. Deutsch-Josza Algorithm

The Hadamard operator can be translated to the pulse
sequence YjXj̄ . Further, the four functions Ufk can be
translated as follows:

1. No pulses

2. NOT y: Y 2
i

3. CNOT: XjYj̄YīYjXj̄XīXj̄-τ -Xj̄

4. NOT x, CNOT, NOT x: X2
iXjYj̄YīYjXj̄XīXj̄-τ -

Xj̄X
2
i

We recall that for a constant Function (f1, f2), we
expect the state |00〉; for a balanced function (f3, f4), we
expect |10〉. As can be seen in Fig. 2, this is clearly the
case.

III.3. Grover Search Algorithm

The Grover sequence corresponding to a desired state
of |10〉 can be represented by the pulse sequence U =
XīXj̄YīYj̄− τ −XīXj̄YīYj̄− τ , according to [3]. Applica-
tion of this algorithm G to the |ψ0〉 state yields the state
|10〉, as desired. Furthermore, G2|ψ0〉 yields |00〉, G3|ψ0〉
yields the mixed state, and G4|ψ0〉 gives |10〉 once again.
This is in accord with the expected oscillatory behavior.
Spectra can be seen in Fig. 3.
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FIG. 2. Proton Spectra for Deutsch-Josza Algorithm. Axis labels
removed for clarity. Y-axis is amplitude in arbitrary units, 5 height-
units per tick. X-axis is frequency (Hz), 100 Hz per tick.
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FIG. 3. Proton spectra from Grover algorithm output. Axis labels
removed for clarity. Y-axis is amplitude in arbitrary units, 5 height-
units per tick. X-axis is frequency (Hz), 100 Hz per tick. Note the
less-pure states resulting from the longer Grover pulse sequences
as well as the diminishing peak amplitudes.

III.4. A Note on Uncertainties

Pulse-width calibration error contributed approxi-
mately a 2.8% error for every 10 pulses, based on trans-
lating the uncertainty in the width measurement into
an angle drift and then a peak area shift. Errors in
the phases contributed a peak area uncertainty of ap-
proximately 9.5%, based on the size of the imaginary
parts of the peaks after they had been minimized in a
daily calibration. Further, magnetic field inhomogeneity,
thereby variations in T ∗

2 , contribute approximately 9%
error based on the uncertainty in peak width. Adding
these in quadrature leads to an overall systematic uncer-
tainty of approximately 13.4% within a spectrum. Day-
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to-day magnetic field drift caused frequent reshimming
to be necessary, increasing our errors further in a less
quantifiable way. Qualitatively, it is almost always clear
to which state a spectrum refers.

Typical secondary peaks have area less than 10% of
the primary peak (i.e., Fig. 2). The secondary peaks ob-
served in the implementation of the Grover algorithm are
generally larger and asymmetric. This is likely a result
of a cumulative phase error made apparent by the longer
pulse sequences.

IV. CONCLUSIONS

The CNOT logic gate was implemented and followed
the expected truth table. The Deutsch-Josza algorithm
was implemented and used to test if a function was con-
stant or balanced in one step. The Grover search al-
gorithm was implemented and used to find a desired
state among two qubits in one evaluation. The algo-
rithmic speedup provided by quantum computation was
thus shown.
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